Linux Fundamentals
Paul Cobbaut

Linux Fundamentals
Paul Cobbaut

[t-2.0

Published Thu 01 Aug 2013 01:00:39 CEST

Abstract

This book is meant to be used in an instructor-led training. For self-study, the intent is to read this book next to a
working Linux computer so you can immediately do every subject, practicing each command.

Thisbook isaimed at hovice Linux system administrators (and might beinteresting and useful for home usersthat
want to know a bit more about their Linux system). However, this book is not meant as an introduction to Linux
desktop applications like text editors, browsers, mail clients, multimedia or office applications.

More information and free .pdf available at http://linux-training.be .

Feel free to contact the author:

* Paul Cobbaut: paul .cobbaut@gmail.com, http://www.linkedin.com/in/cobbaut

Contributors to the Linux Training project are:
» Serge van Ginderachter: serge@ginsys.eu, build scripts and infrastructure setup
* Ywein Van den Brande: ywein@creaaw.eu, license and legal sections

» Hendrik De Vloed: hendrik.devloed@ugent.be, buildheader.pl script

We'd also like to thank our reviewers:

» Wouter Verhelst: wo@uter.be, http://grep.be

» Geert Goossens. mail.goossens.geert@gmail.com, http://www.linkedin.com/in/geertgoossens
 Elie De Brauwer: elie@de-brauwer.be, http://www.de-brauwer.be

* Christophe Vandeplas: christophe@vandeplas.com, http://christophe.vandeplas.com

» Bert Desmet: bert@devnox.be, http://blog.bdesmet.be

» Rich Yonts: richyonts@gmail.com,

Copyright 2007-2013 Netsec BVBA, Paul Cobbaut

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of thelicenseisincluded in the section
entitled 'GNU Free Documentation License'.

Table of Contents

I, INErOAUCLION TO LINUX .eouviiiiiiiesiesiisiesesceee ettt 1
IO 1 0)T 1 o Y SRS 2
2. AISEIDULIONS ... 4
G o= 1S T o S 6
4. getting LinuX @ NOMEooveieieceeeces e 10
I1. first steps on the command [iN€ccovveiiieeii e 21
T 101 I 0726 [RPN 22
6. Working With dir€CtOriESocveveei e 26
7. WOrKIiNG With fIl€S ..o 35
8. working with file CONtENEScceeieeeceee e 44
9. the LiNUX FII@ TrE. ..ccveieieeeeeeee e 51
T, Shell @XPaNSIONocueeececee et 72
10. commands and argUIMENLSccceereeeeeseereeiee e seeeeseeseesee e sreeaesneens 73
11. CONLIOl OPEIELOISeceeeieeeiecieeeieeieeee et e e e et e e sae e sreensenneens 83
12, VAHTADIES ... s 89
ICTES £ 1 o Y S 100
14. file globbiNG ...c.eceeceeeee e 106
V. pipes and COMMANAScccceeieiieiece et 113
15. redireCtion and PIPESccveriereeieeie e seeste e e e ee e aenres 114
G 111 = £ USSP 123
17. basiC UNIX TOO0IS ..o 136
R USRS PP 145
18. INtrOdUCTION TO Vi ..ot s 146
RV o o)] T S 156
19. SCripting INtrOAUCLIONecuveiieeieeeeseee e 157
P20 RS o] o 1] e o] o= 163
21, SCripting PAr@MELENSccceceereeeieeeesteeeesreeseeeee e e steeseesreeseeeseesreeneesneens 170
22. MOFE SCHPLING 1vveeveeeeeeeeeesteeeeseesieeeeseesteseesreesseeseesseensesseesseesesneensens 178
VII. local uSer ManagemMeEntccccvveeeiierie e e 186
23, USEY'S ottt ettt r e e e n e e ne e r e e nnes 187
P o | (011 oS TSRS 207
VT, FI@ SECUMITY ettt s esneenne s 213
25. standard file PErmMiSSIONSccceveereerieseese e 214
26. advanced file PErMISSIONScccceeeereeie e 225
27. aCCESS CONLIOl TISES ...vivieeieieieeieee s 231
28. THE TINKS ..o 235
A o] o= g T Lot 242
AL CEITITICALIONS ... e e 243
B. Keyboard SEtliNgSccceovreeieereeese e 245
C. NAITOWEIE ...t 247
D I o= 0L PSSO 251
INOEX ettt ettt e e e nrenne s 258

List of Tables

18.1. getting to COMMAN MOUEccceveerierieriere e 147
18.2. SWItCh tO INSEIT MOEeoviieiiriereee e 147
18.3. replace and dElELecooceeiece e 148
18.4. UNAO @Nd FEPEALeeeveeeeeeeeeie ettt enre e sneennn 148
18.5. cut, copy and paste @ liNeccevveeeveeie s 148
18.6. cut, COpY and Paste lINESccceieerieeereerie e 149
18.7. start and end Of 1INEoouoriiiii s 149
18.8. JOIN TWO TINES ...ttt nn 149
18.9. WOKAS ..ottt bbb bbb s 150
18.10. SAVE @NA EXIT Vi .eeueiiiieriesiesiesiesesee et s 150
18.11. SEAICNING ..eeeiieeectieie ettt eneenne e 151
ST D (= o - o T 151
18.13. read files @and INPULcceeveeiiieerece e 151
18.14. tEXE DUFTENS ..o 152
18.15. MUILIPIE FIIES ..ttt s 152
18.16. GDDrEVIBLIONScoveeeeieiiesieree e e 152
23.1. Debian USer ENVIFONMENTccoviriiiiierie e 206
23.2. Red Hat USer ENVIFONMENTccvviiieieiesiesiese s 206
25.1. UNiX SPECIAl FIlES .ot 216
25.2. standard Unix file permiSSIONSccoveeveeieeneese e see et 217
25.3. Unix file permiSSions POSItIONcccevveeeieereeieseesie e seesee e 217
25.4. OCtal PErMISSIONScccvveieieieiiieieeeeseesieseesreesseeeesreesseseesreesseeseesseensesneesees 220

Part I. introduction to Linux

Chapter 1. Linux history

Table of Contents

1.1. Linux history
This chapter briefly tells the history of Unix and where Linux fitsin.
If you are eager to start working with Linux without this blah, blah, blah over history,

distributions, and licensing then jump straight to Part 11 - Chapter 6. Working with
Directories page 26.

Linux history

1.1. Linux history

All modern operating systems have their roots in 1969 when Dennis Ritchie and
Ken Thompson developed the C language and the Unix operating system at AT& T
Bell Labs. They shared their source code (yes, there was open source back in the
Seventies) with therest of theworld, including the hippiesin Berkeley California. By
1975, when AT& T started selling Unix commercially, about half of the source code
was written by others. The hippies were not happy that a commercial company sold
software that they had written; the resulting (legal) battle ended in there being two
versions of Unix in the Seventies : the official AT& T Unix, and the free BSD Unix.

In the Eighties many companies started developing their own Unix: IBM created
AlX, Sun SunOS (later Solaris), HP HP-UX and about a dozen other companies did
the same. The result was amess of Unix dialects and a dozen different waysto do the
same thing. And hereisthefirst real root of Linux, when Richard Stallman aimed
to end this era of Unix separation and everybody re-inventing the wheel by starting
the GNU project (GNU isNot Unix). Hisgoal wasto make an operating system that
wasfreely availableto everyone, and where everyone could work together (likein the
Seventies). Many of the command line tools that you use today on Linux or Solaris
are GNU tools.

The Nineties started with Linus Torvalds, a Swedish speaking Finnish student,
buying a 386 computer and writing a brand new POSIX compliant kernel. He put
the source code online, thinking it would never support anything but 386 hardware.
Many people embraced the combination of this kernel with the GNU tools, and the
rest, asthey say, is history.

Today more than 90 percent of supercomputers (including the complete top 10), more
than half of all smartphones, many millions of desktop computers, around 70 percent
of all web servers, alarge chunk of tablet computers, and several appliances (dvd-
players, washing machines, dsl modems, routers, ...) run Linux. It is by far the most
commonly used operating system in the world.

Linux kernel version 3.2 wasreleased in January 2012. Itssource code grew by almost
two hundred thousand lines (compared to version 3.1) thanksto contributions of over
4000 devel opers paid by about 200 commercial companies including Red Hat, Intel,
Broadcom, Texas Instruments, IBM, Novell, Qualcomm, Samsung, Nokia, Oracle,
Google and even Microsoft.

http://en.w ki pedi a. org/ wi ki / Denni s_Ritchie

http://en.w ki pedi a. org/wi ki /R chard_Stal | man
http://en.w ki pedi a. or g/ wi ki /Li nus_Tor val ds
http://kernel.org

http://Iwn. net/Articl es/ 472852/

http://ww. | inuxfoundation. org/

http://en.w ki pedi a. org/ wi ki /Li nux

http://ww. | evenez. com uni x/ (a huge Unix history poster)

Chapter 2. distributions

Table of Contents

A T <o [o - 5
2.2, UDUNEU <.ttt ettt e st s st esbe e e sabe e e sabe e s sabe e s snbesssnbeeesnbessanseeans 5
ARG T B 1 o= [5
A T © 1 3T 5
2.5. WhiCh 10 CHOOSE 2 ...ttt s 5

This chapter gives a short overview of current Linux distributions.

A Linux distribution is a collection of (usually open source) software on top of a
Linux kernel. A distribution (or short, distro) can bundle server software, system
management tools, documentation and many desktop applicationsin acentral secure
softwar e repository. A distro aims to provide a common look and feel, secure and
easy software management and often a specific operational purpose.

Let'stake alook at some popular distributions.

distributions

2.1. Red Hat

Red Hat is a billion dollar commercial Linux company that puts a lot of effort in
developing Linux. They have hundreds of Linux specialists and are known for their
excellent support. They give their products (Red Hat Enterprise Linux and Fedora)
away for free. WhileRed Hat EnterpriseLinux (RHEL) iswell tested beforerelease
and supported for up to seven yearsafter release, Fedor aisadistro with faster updates
but without support.

2.2. Ubuntu

Canonical started sending out free compact discs with Ubuntu Linux in 2004 and
quickly became popular for home users (many switching from Microsoft Windows).
Canonical wants Ubuntu to be an easy to use graphical Linux desktop without need
to ever see a command line. Of course they also want to make a profit by selling
support for Ubuntu.

2.3. Debian

There is no company behind Debian. Instead there are thousands of well organised
developersthat elect a Debian Project Leader every two years. Debian is seen asone
of the most stable Linux distributions. It is also the basis of every release of Ubuntu.
Debian comesin three versions: stable, testing and unstable. Every Debian releaseis
named after a character in the movie Toy Story.

2.4. Other

Distributions like CentOS, Oracle Enterprise Linux and Scientific Linux are based
on Red Hat Enterprise Linux and share many of the same principles, directories and
system administration techniques. Linux Mint, Edubuntu and many other *buntu
named distributions are based on Ubuntu and thus share alot with Debian. There are
hundreds of other Linux distributions.

2.5. Which to choose ?

When you are new to Linux in 2012, go for the latest Ubuntu or Fedora. If you only
want to practice the Linux command line then install one Ubuntu server and/or one
CentOS server (without graphical interface).

redhat . com
ubunt u. com
debi an. org
centos. org
di strowat ch. com

Chapter 3. licensing

Table of Contents

3.1. about SOFtWAIE lICENSESoceeceeeieee e 7
3.2. public domain software and freBWareccccccveeveerecceese e 7
3.3. Free Software or Open Source SOftWarecccveceveereereseeseesee e see e 8
3.4. GNU General PUbIiC LICENSEccceeiueeeeciecie e eie et eee e 8
3.5. USING GPLV3 SOftWAIEccviiuiecieeie ettt e e e e sneeneeneens 8
3.6. BSD [ICENSE ...eoieeie ettt sttt et ereenn 9
G A0 11 0= g o= 1SS 9
3.8. combination of SOftware lICENSEScccvveeieee e 9

This chapter briefly explains the different licenses used for distributing operating
systems software.

Many thanks go to Ywein Van den Brande for writing most of this chapter.

Ywein is an attorney at law, co-author of The International FOSS Law Book and
author of Praktijkboek Infor maticarecht (in Dutch).

Yoweie ban don B secds

Het Praktijkboek Informaticarecht:
Recht rendeert voor uw onderneming

H wiat u moet wetan

‘over Informaticarecht
‘gebundeld in een
praktische on
deskundige gids.

H The International Free

amd
Open Source Software
Law Book

eltnd by'ion den Brade - Saghlin - Faeger

epases s,

http://ifossl awbook. org
http://ww. creal aw. eu

licensing

3.1. about software licenses

There are two predominant software paradigms. Free and Open Sour ce Software
(FOSS) and proprietary softwar e. The criteriafor differentiation between these two
approachesisbased on control over the software. With proprietary softwar e, control
tends to lie more with the vendor, while with Free and Open Sour ce Softwar e it
tends to be more weighted towards the end user. But even though the paradigms
differ, they use the same copyright laws to reach and enforce their goals. From a
legal perspective, Free and Open Sour ce Softwar e can be considered as software to
which usersgenerally receive morerightsviatheir license agreement than they would
have with a proprietary software license, yet the underlying license mechanisms
are the same.

Legal theory states that the author of FOSS, contrary to the author of public domain
software, hasin no way whatsoever given up hisrightson hiswork. FOSS supportson
therightsof the author (the copyright) toimpose FOSS |icense conditions. The FOSS
license conditions need to be respected by the user in the same way as proprietary
license conditions. Always check your license carefully before you use third party
software.

Examples of proprietary software are Al X from IBM, HP-UX from HP and Oracle
Database 11g. Y ou are not authorised to install or use this software without paying a
licensing fee. Y ou are not authorised to distribute copies and you are not authorised
to modify the closed source code.

3.2. public domain software and freeware

Software that is original in the sense that it is an intellectual creation of the
author benefits copyright protection. Non-original software does not come into
consideration for copyright protection and can, in principle, be used freely.

Public domain softwareis considered as software to which the author has given up all
rights and on which nobody is able to enforce any rights. This software can be used,
reproduced or executed freely, without permission or the payment of a fee. Public
domain software can in certain cases even be presented by third parties as own work,
and by modifying the original work, third parties can take certain versions of the
public domain software out of the public domain again.

Freewar eis not public domain software or FOSS. It is proprietary software that you
can use without paying a license cost. However, the often strict license terms need
to be respected.

Examples of freeware are Adobe Reader, Skype and Command and Conquer:
Tiberian Sun (this game was sold as proprietary in 1999 and is since 2011 available
as freeware).

licensing

3.3. Free Software or Open Source Software

Both the Free Software (trandates to vrije software in Dutch and to Logiciel
Librein French) and the Open Sour ce Softwar e movement largely pursue similar
goals and endorse similar software licenses. But historically, there has been some
perception of differentiation due to different emphases. Where the Free Software
movement focuses on the rights (the four freedoms) which Free Software providesto
its users, the Open Sour ce Softwar e movement pointsto its Open Source Definition
and the advantages of peer-to-peer software devel opment.

Recently, the term free and open source software or FOSS has arisen as a neutral
aternative. A lesser-used variant is free/libre/open source software (FLOSS), which
useslibreto clarify the meaning of free asin freedom rather than asin at no char ge.

Examples of free softwar e are gcc, MySQL and gimp.

Detailed information about the four freedoms can be found here:

http://ww. gnu. or g/ phi | osophy/ free-sw. htm

The open sour ce definition can be found at:

http: //ww. opensour ce. or g/ docs/ osd

The above definition is based on the Debian Free Software Guidelines available
here:

htt p: // ww. debi an. or g/ soci al _cont ract #gui del i nes

3.4. GNU General Public License

More and more software is being released under the GNU GPL (in 2006 Java was
released under the GPL). This license (v2 and v3) is the main license endorsed by
the Free Software Foundation. It's main characteristic isthe copyleft principle. This
means that everyone in the chain of consecutive users, in return for the right of use
that isassigned, needsto distribute theimprovements he makesto the software and his
derivative works under the same conditions to other users, if he choosesto distribute
such improvements or derivative works. In other words, software which incorporates
GNU GPL software, needs to be distributed in turn as GNU GPL software (or
compatible, see below). It is not possible to incorporate copyright protected parts of
GNU GPL softwareinaproprietary licensed work. The GPL hasbeen upheldin court.

3.5. using GPLv3 software

Y ou can use GPL v3 softwar e almost without any conditions. If you solely run the
software you even don’t have to accept the terms of the GPLv3. However, any other
use - such as modifying or distributing the software - implies acceptance.

licensing

In case you use the software internally (including over a network), you may modify
the software without being obliged to distribute your modification. You may hire
third partiesto work on the software exclusively for you and under your direction and
control. But if you modify the software and use it otherwise than merely internally,
thiswill be considered as distribution. Y ou must distribute your modifications under
GPLv3 (the copyleft principle). Several more obligations apply if you distribute
GPLv3 software. Check the GPLVv3 license carefully.

You create output with GPLVv3 software: The GPLv3 does not automatically apply
to the outpui.

3.6. BSD license

There are several versions of the original Berkeley Distribution License. The most
common one is the 3-clause license ("New BSD License" or "Modified BSD
License").

Thisisapermissive free software license. The license places minimal restrictions on
how the software can be redistributed. Thisisin contrast to copyleft licenses such as
the GPLv. 3 discussed above, which have a copyleft mechanism.

This difference is of lessimportance when you merely use the software, but kicksin
when you start redistributing verbatim copies of the software or your own modified
versions.

3.7. other licenses

FOSS or not, there are many kind of licenses on software. You should read and
understand them before using any software.

3.8. combination of software licenses

When you use several sourcesor wishesto redistributeyour software under adifferent
license, you need to verify whether all licenses are compatible. Some FOSS licenses
(such asBSD) are compatiblewith proprietary licenses, but most are not. If you detect
a license incompatibility, you must contact the author to negotiate different license
conditions or refrain from using the incompatible software.

Chapter 4. getting Linux at home

Table of Contents

4.1. download a LinuX CD IMAQEccceeveuerierieeieeseesieeseeseesseesse e e eeesseesseeneeens 11
LR 0 [0V a1 o T=o ANV AT £ (U= 1 oo)G 11
4.3. create a Vvirtual MAaChiNgoovei i 12
4.4, attaCh the CD IMAJEccoceeieee ettt re e 17
101 = | I I 1)G 20

This book assumes you have access to aworking Linux computer. Most companies
have one or more Linux servers, if you have already logged on to it, then you 're all
set (skip this chapter and go to the next).

Another option is to insert a Ubuntu Linux CD in a computer with (or without)
Microsoft Windows and follow the installation. Ubuntu will resize (or create)
partitions and setup a menu at boot time to choose Windows or Linux.

If you do not have access to a Linux computer at the moment, and if you are unable
or unsure about installing Linux on your computer, then this chapter proposes athird
option: installing Linux in avirtual machine.

Installation in a virtual machine (provided by Virtualbox) is easy and safe. Even
when you make mistakes and crash everything on the virtual Linux machine, then
nothing on the real computer is touched.

This chapter gives easy steps and screenshots to get a working Ubuntu server in a
Virtualbox virtual machine. The stepsare very similar to installing Fedoraor CentOS
or even Debian, and if you like you can also use VMWare instead of Virtualbox.

10

getting Linux at home

4.1. download a Linux CD image

Start by downloading a Linux CD image (an .1SO file) from the distribution of your
choice from the Internet. Take care selecting the correct cpu architecture of your
computer; choose 1386 if unsure. Choosing the wrong cpu type (like x86_64 when
you have an old Pentium) will almost immediately fail to boot the CD.

Home Ubuntu Business Cloud TV Download Support Project Community Partners Shop UbU ntue

Ubuntu Ubuntu Server Type to search)

Download Ubuntu Server I TlE

You can download Ubuntu Server now - it's completely free.

Download BuyCDs Ubuntu Server for ARM

Download Ubuntu Server

Click the big orange button to Download options

download the latest version of (- |

Ubuntu. You will need to create a i - Start d own |Oad
CD or USB stick to install Ubuntu. 2o o PESSS———EY Bl

Ubuntu Server 11.10
Our long-term support (LTS) 64-bit

releases are supported for five
years on the server. Perfect for
organisations that need more)
stability for larger deployments. Direct url For this dewnload

4.2. download Virtualbox

Step two (when the .1 SO file has finished downl oading) isto download Virtualbox. If
you are currently running Microsoft Windows, then download and install Virtualbox
for Windows!

<>

Irtudibox

Download VirtualBox

5 Here, you will find links to VirtualBox binaries and its source code.
About

Screenshots VirtualBox binaries

Downloads
By downloading, you agree to the terms and conditions of the respectiv

Documentation
+ VirtualBox platform packages. The binaries are released under

End-user docs o VirtualBox 4.1.8 for Windows hosts = x86/amd64
Technical docs o VirtualBox 4.1.8 for 0OS X hosts = x86/amd64
o VirtualBox 4.1.8 for Linux hosts
Contribute o VirtualBox 4.1.8 for Solaris hosts = xB6/amd64

11

getting Linux at home

4.3. create a virtual machine

Now start Virtualbox. Contrary to the screenshot below, your left pane should be
empty.

e el

Oracle VM VirtualBox Manager =

é:} Tl - Details Snapshots |

New Settings Start Discard

£ g e— At
4 —3 -

,r":-'? . e

Fl o= ———

. -_.--- B —————

‘d
'D'ﬂ—-. -~ > G
et e R

Click New to create anew virtual machine. Wewill walk together through the wizard.
The screenshots below are taken on Mac OSX; they will be dlightly different if you
are running Microsoft Windows.

Create New Virtual Machine

Welcome to the New Virtual Machine Wizard!

This wizard will guide you through the steps that are necessary to create a new
virtual machine for VirtualBox.

Use the Continue button to go to the next page of the wizard and the Go Back
button to return to the previous page. You can also press Esc if you want to
cancel the execution of this wizard.

_GoBack (Continue)

A

12

getting Linux at home

Name your virtual machine (and maybe select 32-bit or 64-bit).

Create New Virtual Machine

VM Name and OS Type

Enter a name for the new virtual machine and select the type of the guest
operating system you plan to install onto the virtual machine.

The name of the virtual machine usually indicates its software and hardware
configuration. It will be used by all VirtualBox components to identify your
virtual machine.

Name

mijnvirtuelemachine

05 Type
Operating System: | Linux B3 q’a‘
Version: [Ubuntu (64 bit) +

(" GoBack) (Continue)
Ve

Givethevirtual machine some memory (512MB if you have 2GB or more, otherwise
select 256MB).

Create New Virtual Machine

Memory

Select the amount of base memory (RAM) in megabytes to be allocated to the
virtual machine.

The recommended base memory size is 512 MB.

Base Memory Size

512 MB

4 MB 8192 MB

(" GoBack) (Continue)
Ve

13

getting Linux at home

Select to create a new disk (remember, thiswill be avirtual disk).

Create New Virtual Machine

Virtual Hard Disk

If you wish you can now add a start-up disk to the new machine. You can either

create a new virtual disk or select one from the list or from another location
using the folder icon.

If you need a more complex virtual disk setup you can skip this step and make
the changes to the machine settings once the machine is created.
The recommended size of the start-up disk is 8,00 GB.

E Start-up Disk

(*) Create new hard disk
() Use existing hard disk

) CentOS6.vdi (Normal, 16,00 GB) =

(" GoBack) (Continue)

4
If you get the question below, choose vdi.
Create New Virtual Disk
Welcome to the virtual disk creation wizard

This wizard will help you to create a new virtual disk for your
virtual machine.
Use the Continue button to go to the next page of the wizard and
the Go Back button to return to the previous page. You can also
press Esc if you want to cancel the execution of this wizard.
Please choose the type of file that you would like to use for the
new virtual disk. If you do not need to use it with other
virtualization software you can leave this setting unchanged.

File type

(=) VDI (VirtualBox Disk Image)

() VMDK (Virtual Machine Disk)

() VHD (Virtual Hard Disk)

() HDD (Parallels Hard Disk)

H
Co Back [Continue)
P

14

getting Linux at home

Choose dynamically allocated (fixed size is only useful in production or on really
old, slow hardware).

Create New Virtual Disk

Virtual disk storage details

Please choose whether the new virtual disk file should be allocated
as it is used or if it should be created fully allocated.

A dynamically allocated virtual disk file will only use space on
your physical hard disk as it fills up, although it will not shrink
again automatically when space on it is freed.

A fixed size virtual disk file may take longer to create on some
systems but is often faster to use.

Storage details

(=) Dynamically allocated
Y Eedls:
() Fixed size

(" GoBack) [Continue

P
Choose between 10GB and 16GB as the disk size.
Create New Virtual Disk
Virtual disk file location and size
Please type the name of the new virtual disk file into the box
below or click on the folder icon to select a different folder to
create the file in.
Location
mijnvirtuelemachine
Select the size of the virtual disk in megabytes. This size will be
reported to the Guest OS5 as the maximum size of this virtual disk.
Size
1 1 1 1 1 1 1 1 1 1 IOI 1 1 1 1 1 1 1 IOIOD GB
4,00 MB 2,00 TB
(" GoBack | [Continue
P

15

getting Linux at home

Click createto create the virtual disk.

Create New Virtual Disk

Summary

You are going to create a new virtual disk with the following
parameters:

File type: VDI (VirtualBox Disk Image) W

Details: Dynamically allocated storage

Location: fUsers/paul/VirtualBox VMs/mijnvirtuelemachine/mi 4
jnvirtuelemachine.vdi v

If the above settings are correct, press the Create button. Once
you press it the new virtual disk file will be created.

(" GoBack) [Create)
P

Click create to create the virtual machine.

Create New Virtual Machine
Summary

You are going to create a new virtual machine with the following parameters:

MName: mijnvirtuelemachine
0S Type: Ubuntu (64 bit)
Base Memary: 512 MB

Start-up Disk: mijnvirtuelemachine.vdi (Normal, 10,00 GB)
If the above is correct press the Create button. Once you press it, a new virtual
machine will be created.

Note that you can alter these and all other setting of the created virtual machine
at any time using the Settings dialog accessible through the menu of the main

window.

[GoBack) [Create)
4

16

getting Linux at home

4.4. attach the CD image

Before we start the virtual computer, let us take a look at some settings (click
Settings).

80O Oracle WM VirtualBox Manager =

£ Details Snapshots

IS mijnvirtuelemachine General
<) =l Gener

/@l © Powered Off
M Name: mijnvirtuelemachine

0S Type: Ubuntu (64 bit)

2 mijnvirtuelemachine
Base Memory: 512 MB
Boot Order: Floppy,

CD/DVD-ROM,

Hard Disk

Acceleration: VT-x/AMD-V,

Display

LR e g
. m Video Memory: 12 MB

Remote Desktop Server: Disabled

’ =. Storage

IDE Controller

’ L. IDE Secondary Master (CD/DVD): Empty

SATA Controller

SATA Port 0: mijnvirtuelemachine.vdi
—— -
n = (Normal, 10,00 GB)
n =-0—--- < P Audio 4
v | — - —— ———— By

Do not worry if your screen looks different, just find the button named stor age.

mijnvirtuelemachine - General

%D-ie—-{ Advanced = Description |

Name: |mijnvirtue|emachir|e I
Operating System: | Linux B! "%
I
Version: | Ubuntu (64 bit) 4

® (_ Cancel) E—OK—-)

17

getting Linux at home

Remember the .ISO file you downloaded? Connect this .1SO file to this virtual
machine by clicking on the CD icon next to Empty.

mijnvirtuelemachine - Storage

Storage Tree Attributes

|® IDE Controller | CD/DVD Drive: | IDE Secondary | 3| (&)
[] Live CD/DVD

42 SATA Controller

Information
) mijnvirtuelemachine.vdi
Type: -—-
Size: --
Location: --
Attached To: -—-

@ @ @
® CCancel) (—B'K—)

Now click on the other CD icon and attach your 1SO file to this virtual CD drive.

mijnvirtuelemachine - Storage

ral = Preview

mijnvirtuelemachine

Storage Tree Attributes : Ubuntu (64 bit)
@ IDE Controller CD/DVD Drive: | IDE Secondary | 5| &) |
[Live CD/DVD Choose a virtual CD:[D\J'D_dIS.k file...
ﬁ SATA Controller . - e et - &
Information T — - e
mijnvirtuelemachine.vdi Type: == - m— "
. - e vy B - -
Size: --
- -— R
Location: -- - S g R e -
Attached To: --

@ @ @ @
® E Port 0: mijnvirtuele

(Normal, 1C

18

getting Linux at home

Verify that your download is accepted. If Virtualbox complains at this point, then
you probably did not finish the download of the CD (try downloading it again).

mijnvirtuelemachine - Storage

A E 35S k@ e @

General System Display | Storage | Audio Network Ports Shared Folders
Storage Tree Attributes
> IDE Controller CD/DVD Drive: | IDE Secondary | (&)

(%) ubuntu-11.04-server-am...
42 SATA Controller

mijnvirtuelemachine.vdi

[l Live CD/DVD
Information
Type: Image
Size: 673,61 MB
Location: [Users/paul/ISO/ubu...
Attached To: --

® (Cancel) { OK)

It could be useful to set the network adapter to bridgeinstead of NAT. Bridged usually
will connect your virtual computer to the Internet.

mijnvirtuelemachine - Network

S H B & @ 2

General System Display Storage Audio Ports Shared Folders

[Adapter 1 | Adapter 2 Adapter 3 Adapter 4 1

Fﬂ Enable Network Adapter
Attached to: | NAT D-ﬂ

Name:

> Advanced

® (" Cancel) (0K)

19

getting Linux at home

4.5. install Linux

The virtual machine is now ready to start. When given achoice at boot, select install
and follow the instructions on the screen. When the installation is finished, you can
log on to the machine and start practising Linux!

20

Part Il. first steps on
the command line

Chapter 5. man pages

Table of Contents

oI R 0107= 0 TR o0 0 003 7= 1 23
5.2. MaN SCONFIGITE .oveurieeiicieeseese e 23
LRI 7= TR0 =< 01010) o [23
o 10T g T G =0 0] 00 1) USSR 23
SIS T LY] 7= 23
SN LY 1= (= 1R 24
T 1= == (o 24
5.8. MaN $SECHON BFlE ...ttt 24
Lo T 1072 0 T 17= o U OUPPPR 24
L0 L0 TR 01720 To [o SRR 25

This chapter will explain the use of man pages (also called manual pages) on your
Unix or Linux computer.

You will learn the man command together with related commands like whereis,
whatis and mandb.

Most Unix filesand commands have pretty good man pagesto explain their use. Man
pages also come in handy when you are using multiple flavours of Unix or severa
Linux distributions since options and parameters sometimes vary.

22

man pages

5.1. man $command

Type man followed by acommand (for which you want help) and start reading. Press
g to quit the manpage. Some man pages contain examples (near the end).

paul @ ai ka: ~$ man whoi s
Ref ormatti ng whoi s(1), please wait...

5.2. man $configfile

Most configuration files have their own manual.

paul @ ai ka: ~$ man sysl og. conf
Reformatting sysl og.conf(5), please wait...

5.3. man $daemon

Thisisalso true for most daemons (background programs) on your system..

paul @ ai ka: ~$ man sysl ogd
Reformatting syslogd(8), please wait...

5.4. man -k (apropos)
man -k (or apropos) shows alist of man pages containing a string.

paul @ ai ka: ~$ man -k sysl og

I msyslog-setup (8) - configure |laptop node to switch syslog.conf ...
| ogger (1) - a shell command interface to the syslog(3) ...
syslog-facility (8) - Setup and renpbve LOCALx facility for syskl ogd
sysl og. conf (5) - syslogd(8) configuration file

sysl ogd (8) - Linux systemlogging utilities.
syslogd-listfiles (8) - list systemlogfiles

5.5. whatis

To seejust the description of amanual page, use whatis followed by a string.

paul @810: ~$ whatis route
route (8) - show / manipulate the IP routing table

23

man pages

5.6. whereis

The location of a manpage can be revealed with whereis.

paul @ ai ka: ~$ whereis -m whoi s
whoi s: /usr/share/ man/ manl/ whoi s. 1. gz

Thisfileisdirectly readable by man.

paul @ ai ka: ~$ man /usr/shar e/ man/ manl/ whoi s. 1. gz

5.7. man sections

By now you will have noticed the numbers between the round brackets. man man
will explain to you that these are section numbers. Executable programs and shell
commands reside in section one.

Execut abl e prograns or shell commands

Systemcalls (functions provided by the kernel)

Library calls (functions within programlibraries)

Special files (usually found in /dev)

File formats and conventions eg /etc/passwd

Ganes

M scel | aneous (i ncluding nacro packages and conventions), e.g. man(7)
System admi ni strati on conmands (usually only for root)

Kernel routines [Non standard]

O©CoOoO~NOOUhWNERE

5.8. man $section $file

Therefor, when referring to the man page of the passwd command, you will see it
written as passwd(1); when referring to the passwd file, you will see it written as
passwd(5). The screenshot explains how to open the man pagein the correct section.

[paul @GRHEL52 ~]$ nan passwd # opens the first manual found
[paul @GRHEL52 ~]$ nan 5 passwd # opens a page from section 5

5.9. man man

If you want to know more about man, then Read The Fantastic Manua (RTFM).

Unfortunately, manual pages do not have the answer to everything...

paul @ ai ka: ~$ man wonan
No manual entry for wonan

24

man pages

5.10. mandb

Should you be convinced that a man page exists, but you can't access it, then try
running mandb.

root @ ai ka: ~# nmandb

0 man subdirectories contained newer nanual pages.
0 manual pages were added.

0 stray cats were added.

0 ol d database entries were purged.

25

Chapter 6. working with directories

Table of Contents

G300 I o 1o S 27
T o o SRRSO 27
6.3. absolute and relative Pathscccoveieieere e 28
6.4. Path COMPIELION ..o 29
G T SRS 29
G I G T 101 [ST 31
G A 11 1o SO PUPPRPRR 31
6.8. practice: working With dir€CtOriescccevveveiceeseese e 32
6.9. solution: working With dir€CLOriESccevveeeieere e 33

To explore the Linux file tree, you will need some basic tools.

This chapter is small overview of the most common commands to work with
directories: pwd, cd, Is, mkdir, rmdir. These commands are available on any Linux
(or Unix) system.

This chapter also discusses absolute and relative paths and path completion in the
bash shell.

26

working with directories

6.1. pwd

The you are here sign can be displayed with the pwd command (Print Working
Directory). Go ahead, try it: Open a command line interface (like gnome-terminal,
konsole, xterm, or atty) and type pwd. The tool displaysyour current directory.

paul @ ai ka: ~$ pwd
/ home/ paul

6.2. cd

Y ou can change your current directory with the cd command (Change Directory).

paul @ai ka$ cd /etc

paul @ ai ka$ pwd

/etc

paul @ ai ka$ cd /bin

paul @ ai ka$ pwd

/bin

paul @ ai ka$ cd /hone/ paul /
paul @ ai ka$ pwd

/ hone/ paul

cd ~

You can pull off atrick with cd. Just typing cd without a target directory, will put
you in your home directory. Typing cd ~ has the same effect.

paul @ai ka$ cd /etc
paul @ ai ka$ pwd
letc

paul @ ai ka$ cd

paul @ ai ka$ pwd

/ hone/ paul

paul @ ai ka$ cd ~
paul @ ai ka$ pwd

/ hone/ paul

cd ..

To go to the parent directory (the one just above your current directory in the
directory tree), typecd .. .

paul @ ai ka$ pwd

/ usr/ shar e/ ganes
paul @ai ka$ cd ..
paul @ ai ka$ pwd
/usr/share

To stay inthe current directory, type cd . ;-) Wewill see useful use of the . character
representing the current directory later.

27

working with directories

cd -

Another useful shortcut with cd isto just type cd - to go to the previous directory.

paul @ ai ka$ pwd

/ hone/ paul

paul @ai ka$ cd /etc
paul @ ai ka$ pwd
/etc

paul @ ai ka$ cd -

/ hone/ paul

paul @ ai ka$ cd -
/etc

6.3. absolute and relative paths

Y ou should be aware of absolute and relative pathsin thefile tree. When you type
a path starting with a slash (/), then the root of the file tree is assumed. If you don't
start your path with a slash, then the current directory is the assumed starting point.

The screenshot below first shows the current directory /home/paul. From within this
directory, you havetotype cd /homeinstead of cd hometo go to the/homedirectory.

paul @ ai ka$ pwd

/ hone/ paul

paul @ ai ka$ cd hone

bash: cd: home: No such file or directory
paul @ ai ka$ cd /hone

paul @ ai ka$ pwd

/ homre

When inside /home, you have to type cd paul instead of cd /paul to enter the
subdirectory paul of the current directory /home.

paul @ ai ka$ pwd

/ home

paul @ ai ka$ cd / paul

bash: cd: /paul: No such file or directory
paul @ ai ka$ cd paul

paul @ ai ka$ pwd

/ hone/ paul

In case your current directory is the root directory /, then both cd /home and cd
home will get you in the /home directory.

paul @ ai ka$ pwd

/

paul @ ai ka$ cd hone
paul @ ai ka$ pwd

/ home

paul @ ai ka$ cd /

paul @ai ka$ cd /hone
paul @ ai ka$ pwd

/ home

Thiswasthelast screenshot with pwd statements. From now on, the current directory
will often be displayed in the prompt. Later in thisbook wewill explain how the shell
variable $PS1 can be configured to show this.

28

working with directories

6.4. path completion

Thetab key can help you in typing a path without errors. Typing cd /et followed by
thetab key will expand the command lineto cd /etc/. When typing cd /Et followed by
the tab key, nothing will happen because you typed the wrong path (upper case E).

You will need fewer key strokes when using the tab key, and you will be sure your
typed path is correct!

6.5.1s

Is -l

Y ou can list the contents of adirectory with Is.

paul @asha: ~$ |Is
allfiles.txt dmesg.txt httpd.conf stuff sunmer.txt
paul @asha: ~$

A fregquently used option with Is is -a to show all files. Showing all files means
including the hidden files. When afile name on a Unix file system starts with a dot,
it is considered a hidden file and it doesn't show up in regular file listings.

paul @asha: ~$ I's
allfiles.txt dnesg.txt httpd.conf stuff sunmer.txt
paul @asha: ~$ Is -a

allfiles.txt .bash_profile dnmesg.txt .l esshst stuff
.bash_history .bashrc httpd. conf .ssh sunmer . t xt
paul @asha: ~$

Many times you will be using options with Isto display the contents of the directory
in different formats or to display different parts of the directory. Typing just Is gives
you alist of filesin the directory. Typing Is -l (that is aletter L, not the number 1)
givesyou along listing.

paul @asha: ~$ |'s -|

total 23992

-rwr--r-- 1 paul paul 24506857 2006-03-30 22:53 allfiles.txt
-rwr--r-- 1 paul paul 14744 2006-09-27 11:45 dnesg. txt
-rwr--r-- 1 paul paul 8189 2006-03-31 14: 01 httpd. conf
drwxr-xr-x 2 paul paul 4096 2007-01-08 12:22 stuff
-rwr--r-- 1 paul paul 0 2006-03-30 22:45 sumer. txt

29

working with directories

Is -Ih

Another frequently used Is option is -h. It shows the numbers (file sizes) in a more
human readable format. Also shown below is some variation in the way you can give
the options to Is. We will explain the details of the output later in this book.

paul @asha: ~$ Is -1 -h

total 24M

-rwr--r-- 1 paul paul 24M 2006-03-30 22:53 allfiles.txt
-rwr--r-- 1 paul paul 15K 2006-09-27 11:45 dnesg.txt
-rwr--r-- 1 paul paul 8.0K 2006-03-31 14:01 httpd. conf
drwxr-xr-x 2 paul paul 4.0K 2007-01-08 12:22 stuff

-rwr--r-- 1 paul paul 0 2006-03-30 22:45 summer. txt
paul @asha: ~$ Is -1h

total 24M

STWTr--r-- paul paul 24M 2006-03-30 22:53 allfiles.txt

1
-rwr--r-- 1 paul paul 15K 2006-09-27 11:45 dnesg.txt
-rwr--r-- 1 paul paul 8.0K 2006-03-31 14:01 httpd. conf
drwxr-xr-x 2 paul paul 4.0K 2007-01-08 12:22 stuff

1

STWTr--r-- paul paul 0 2006- 03-30 22: 45 sunmer. txt
paul @asha: ~$ I's -hl

total 24M

STWTr--r-- paul paul 24M 2006-03-30 22:53 allfiles.txt

1
-rwr--r-- 1 paul paul 15K 2006-09-27 11:45 dnesg.txt
-rwr--r-- 1 paul paul 8.0K 2006-03-31 14:01 httpd. conf
drwxr-xr-x 2 paul paul 4.0K 2007-01-08 12:22 stuff

1

STWTr--1-- paul paul 0 2006-03-30 22: 45 sunmmer. txt
paul @asha: ~$ I's -h -|

total 24M

STWTr--r-- paul paul 24M 2006-03-30 22:53 allfiles.txt

1
-rwr--r-- 1 paul paul 15K 2006-09-27 11:45 dnesg.txt
-rwr--r-- 1 paul paul 8.0K 2006-03-31 14:01 httpd. conf
drwxr-xr-x 2 paul paul 4.0K 2007-01-08 12:22 stuff

-rwr--r-- 1 paul paul 0 2006-03-30 22:45 sunmmer. txt

30

working with directories

6.6. mkdir

Walking around the Unix file treeis fun, but it is even more fun to create your own
directories with mkdir. Y ou have to give at |east one parameter to mkdir, the name
of the new directory to be created. Think before you type aleading / .

paul @ ai ka:
paul @ ai ka:
paul @ ai ka:

total 8
dr wxr - Xr-x
dr wxr - xr-x

paul @ ai ka:
paul @ ai ka:
paul @ ai ka:

total 8
dr wxr - xr-x
dr wxr - Xr-x

paul @ ai ka:

mkdir -p

~$ nkdir MyDir
~$ cd MDir
~/WDir$ Is -al

2 paul paul 4096 2007-01-10 21:13 .
39 paul paul 4096 2007-01-10 21:13 ..
~/MyDir$ nkdir stuff
~/MyDir$ nkdir otherstuff
~/MDir$ Is -I

4096 2007-01-10 21:14 otherstuff
4096 2007-01-10 21:14 stuff

2 paul paul
2 paul paul
~IMWDir$

When given the option -p, then mkdir will create parent directories as needed.

paul @ ai ka:
paul @ ai ka:
My Subdi r 2
paul @ ai ka:
Thr eeDeep
paul @ ai ka:

6.7. rmdir

When adirectory is empty, you can use rmdir to remove the directory.

rmdir

paul @ ai ka:
paul @ ai ka:
stuff

paul @ ai ka:
paul @ ai ka:
rdi r: MyDi
paul @ ai ka:
paul @ ai ka:

P

~$ nkdir -p MyDir2/ MySubdir 2/ Thr eeDeep
~$ |Is WDir2

~$ |'s MyDir2/ MySubdir?2

~$ |'s MyDir2/ MySubdi r 2/ Thr eeDeep/

~/MyDir$ rndir otherstuff
~/MWDir$ Is

~/MWDr$ cd ..

~$ rndir MyDir

r/: Directory not enpty
~$ rndir MyDir/stuff
~$ rndir MyDir

And similar to the mkdir -p option, you can also use rmdir to recursively remove

directories.

paul @ ai ka:
paul @ ai ka:
paul @ ai ka:

~$ nkdir -p dir/subdir/subdir2
~$ rndir -p dir/subdir/subdir2
~$

31

working with directories

6.8. practice: working with directories

1. Display your current directory.

2. Changeto the /etc directory.

3. Now change to your home directory using only three key presses.
4. Change to the /boot/grub directory using only eleven key presses.
5. Go to the parent directory of the current directory.

6. Go to the root directory.

7. List the contents of the root directory.

8. List along listing of the root directory.

9. Stay where you are, and list the contents of /etc.

10. Stay where you are, and list the contents of /bin and /shin.

11. Stay where you are, and list the contents of ~.

12. List dl thefiles (including hidden files) in your home directory.
13. List thefilesin /boot in a human readable format.

14. Create adirectory testdir in your home directory.

15. Changeto the /etc directory, stay here and create adirectory newdir in your home
directory.

16. Create in one command the directories ~/dirl/dir2/dir3 (dir3 is a subdirectory
from dir2, and dir2 is a subdirectory from dirl).

17. Remove the directory testdir.

18. If time permits (or if you are waiting for other students to finish this practice),
use and understand pushd and popd. Use the man page of bash to find information
about these commands.

32

working with directories

6.9. solution: working with directories

1. Display your current directory.
pwd
2. Changeto the /etc directory.

cd /etc

3. Now change to your home directory using only three key presses.

cd (and the enter key)

4. Change to the /boot/grub directory using only eleven key presses.

cd /boot/grub (use the tab key)

5. Go to the parent directory of the current directory.

cd .. (with space between cd and ..)

6. Go to the root directory.

cd /

7. List the contents of the root directory.

I's

8. List along listing of the root directory.

Is -1

9. Stay where you are, and list the contents of /etc.

Is /etc

10. Stay where you are, and list the contents of /bin and /shin.

I's /bin /sbin
11. Stay where you are, and list the contents of ~.

s ~

12. List dl thefiles (including hidden files) in your home directory.
I's -al ~

13. List the filesin /boot in a human readable format.

I's -1h /boot

14. Create adirectory testdir in your home directory.

nkdir ~/testdir

15. Changeto the /etc directory, stay here and create adirectory newdir in your home
directory.

33

working with directories

cd /etc ; nkdir ~/newdir

16. Create in one command the directories ~/dirl/dir2/dir3 (dir3 is a subdirectory
from dir2, and dir2 is a subdirectory from dirl).

nkdir -p ~/dirl/dir2/dir3

17. Remove the directory testdir.

rmdir testdir

18. If time permits (or if you are waiting for other students to finish this practice),
use and understand pushd and popd. Use the man page of bash to find information
about these commands.

man bash

The Bash shell has two built-in commands called pushd and popd. Both commands
work with acommon stack of previousdirectories. Pushd adds adirectory to the stack
and changes to anew current directory, popd removes a directory from the stack and
sets the current directory.

paul @ai ka:/etc$ cd /bin
paul @ ai ka: /bin$ pushd /1ib
/1ib /bin

paul @ai ka:/1ib$ pushd /proc
/proc /lib /bin

paul @ ai ka: / proc$

paul @ ai ka: / proc$ popd
/1ib /bin

paul @ ai ka:/1i b$

paul @ ai ka: /1i b$

paul @ ai ka:/1ib$ popd

/bin

paul @ ai ka: / bi n$

Chapter 7. working with files

Table of Contents

7.1. Al files are Case SENSITIVEcoeeiiieie e 36
7.2, eVerything 1S @ fIl€ ..ccieiiceeeiee e 36
4 T 11 = PP 36
4 (o 8 To o P TUPPRPRR 37
4% T 1 TSR PR PRSPPI 37
48 TR o T RSP RTRTPR 38
£ 1.1\ PO URTOTR PR 39
A< T (= 17101 OO RTRPRPR 40
7.9. practice: Working With fil€Scoceeiieiice e 41
7.10. solution: working With fil€Scccveiieceieeece e 42

In this chapter we learn how to recognise, create, remove, copy and move filesusing
commands like file, touch, rm, cp, mv and rename.

35

working with files

7.1. all files are case sensitive

Linux is case sensitive, thismeansthat FILE1 isdifferent from filel, and /etc/hosts
isdifferent from/etc/Hosts (thelatter one doesnot exist on atypical Linux computer).

This screenshot shows the difference between two files, one with upper case W, the
other with lower case w.

paul @ ai ka: ~/ Li nux$ Is

winter.txt Wnter.txt

paul @ ai ka: ~/ Li nux$ cat wi nter.txt
It is cold.

paul @ ai ka: ~/ Li nux$ cat Wnter.txt
It is very cold!

7.2. everything is afile

A directory is a specia kind of file, but it is still a (case sensitivel) file. Even a
terminal window (/dev/pts/4) or ahard disk (/dev/sdb) is represented somewhere in
the file system as afile. It will become clear throughout this course that everything
on Linux isafile.

7.3. file

Thefile utility determines the file type. Linux does not use extensions to determine
the file type. Y our editor does not care whether afile endsin .TXT or .DOC. Asa
system administrator, you should use the file command to determine the file type.
Here are some examples on atypical Linux system.

paul @ai ka: ~$ file pic33. png

pi c33. png: PNG i mage data, 3840 x 1200, 8-bit/color RGBA, non-interlaced
paul @ai ka: ~$ file /etc/passwd

/etc/passwd: ASCI| text

paul @ai ka: ~$ file HelloWwrld.c

Hel | oWorl d.c: ASCIl C programtext

The file command uses a magic file that contains patterns to recognise file types.
The magic file is located in /usr/share/file/magic. Type man 5 magic for more
information.

It isinteresting to point out file -sfor special files like thosein /dev and /proc.

root @ebi an6~# fil e /dev/sda

/ dev/ sda: bl ock speci al

root @ebi an6~# file -s /dev/sda

/ dev/ sda: x86 boot sector; partition 1: |1D=0x83, active, starthead...
root @ebi an6~# file /proc/cpuinfo

/ proc/ cpui nfo: enpty

root @ebi an6~# file -s /proc/cpuinfo

/ proc/ cpui nfo: ASCI| C++ programtext

36

working with files

7.4. touch

Oneeasy way to create afileiswithtouch. (Wewill see many other waysfor creating
fileslater in this book.)

paul @ai ka: ~/test$ touch filel

paul @ ai ka: ~/test$ touch file2

paul @ ai ka: ~/test$ touch fil eb55

paul @ai ka: ~/test$ Is -1

total O

-rwr--r-- 1 paul paul 0 2007-01-10 21:40 filel
-rwr--r-- 1 paul paul 0 2007-01-10 21:40 file2
-rwr--r-- 1 paul paul 0 2007-01-10 21:40 fil e555

touch -t

Of course, touch can do more than just create files. Can you determine what by
looking at the next screenshot? If not, check the manual for touch.

paul @ ai ka: ~/test$ touch -t 200505050000 Si nkoDeMayo
paul @ ai ka: ~/test$ touch -t 130207111630 BigBattle
paul @ai ka: ~/test$ Is -1

total O

-rwr--r-- 1 paul paul 0 1302-07-11 16:30 BigBattle
-rwr--r-- 1 paul paul 0 2005-05-05 00: 00 Si nkoDeMayo

7.5.rm

rm -i

When you no longer need a file, use rm to remove it. Unlike some graphical user
interfaces, the command line in genera does not have a waste bin or trash can to
recover files. When you usermto remove afile, thefileisgone. Therefore, be careful
when removing files!

paul @ai ka: ~/test$ |Is

Bi gBattl e Si nkoDeMayo

paul @ai ka: ~/test$ rmBigBattle
paul @ai ka: ~/test$ |Is

Si nkoDeMayo

To prevent yourself from accidentally removing afile, you can typerm -i.

paul @ ai ka: ~/ Li nux$ touch brel.txt

paul @ ai ka: ~/Li nux$ rm-i brel.txt

rm renove regular enpty file “brel.txt'? y
paul @ ai ka: ~/ Li nux$

37

working with files

rm -rf

By default, rm -r will not remove non-empty directories. However r m accepts several
options that will allow you to remove any directory. Therm -rf statement is famous
because it will erase anything (providing that you have the permissions to do so).
When you are logged on as root, be very careful with rm -rf (the f means force and
the r meansrecursive) since being root implies that permissions don't apply to you.
Y ou can literally erase your entire file system by accident.

paul @ai ka: ~$ Is test

Si nkoDeMayo
paul @ ai ka: ~$ rmtest
rm cannot renpbve ‘test': |Is a directory

paul @ai ka:~$ rm-rf test
paul @ai ka: ~$ Is test
I's: test: No such file or directory

7.6.cp

Cp -r

To copy afile, use cp with asource and atarget argument. If the target isadirectory,
then the source files are copied to that target directory.

paul @ ai ka: ~/test$ touch FileA
paul @ai ka: ~/test$ |Is

FileA

paul @ai ka: ~/test$ cp FileA FileB
paul @ai ka: ~/test$ |Is

FileA FileB

paul @ai ka: ~/test$ nkdir MyDir
paul @ai ka: ~/test$ |Is

FileA FileB MWD

paul @ai ka: ~/test$ cp FileA WDir/
paul @ai ka: ~/test$ Is MyDir/
FileA

To copy complete directories, use cp -r (the -r option forces recur sive copying of
al filesin all subdirectories).

paul @ai ka: ~/test$ Is

FileA FileB MDir

paul @ai ka: ~/test$ |Is MyDir/

FileA

paul @ai ka: ~/test$ cp -r M\Dir MyDirB
paul @ai ka: ~/test$ Is

FileA FileB MDr MWDTrB

paul @ai ka: ~/test$ Is MyDirB

FileA

38

working with files

cp multiple files to directory

You can also use cp to copy multiple files into a directory. In this case, the last
argument (a.k.a. the target) must be a directory.

cp filel file2 dirl/file3 dirl/fileb55 dir2

cp -i
To prevent cp from overwriting existing files, use the -i (for interactive) option.
paul @ai ka: ~/test$ cp fire water
paul @ai ka: ~/test$ cp -i fire water
cCp: overwite “water'? no
paul @ ai ka: ~/test$
cp -p
To preserve permissions and time stamps from source files, use cp -p.
paul @ ai ka: ~/ pernms$ cp file* cp
paul @ ai ka: ~/ pernms$ cp -p file* cpp
paul @ ai ka: ~/ pernms$ || *
STWX------ 1 paul paul 0 2008-08-25 13:26 file33
-rwxr-x--- 1 paul paul 0 2008-08-25 13:26 file42
cp:
total 0O
STWX------ 1 paul paul 0 2008-08-25 13:34 file33
-rwxr-x--- 1 paul paul 0 2008-08-25 13:34 file42
cpp:
total 0O
STWX------ 1 paul paul 0 2008-08-25 13:26 file33
-rwxr-x--- 1 paul paul 0 2008-08-25 13:26 file42
[.7. mv

Use mv to rename afile or to move the file to another directory.

paul @ ai ka: ~/test$ touch filel00

paul @ai ka: ~/test$ Is

filelOO

paul @ai ka: ~/test$ nv filel00 ABC. t xt
paul @ai ka: ~/test$ Is

ABC. t xt

paul @ ai ka: ~/test$

When you need to rename only one file then mv is the preferred command to use.

39

working with files

7.8. rename

The rename command can also be used but it has a more complex syntax to enable
renaming of many files at once. Below are two examples, the first switches all
occurrences of txt to png for al file names ending in .txt. The second example
switchesall occurrencesof upper case ABCinlower caseabc for al file namesending
in.png . Thefollowing syntax will work on debian and ubuntu (prior to Ubuntu 7.10).

paul @ai ka: ~/test$ |Is

123.txt ABC. txt

paul @ai ka: ~/test$ renanme 's/txt/png/' *.txt
paul @ai ka: ~/test$ |Is

123. png ABC. png

paul @ ai ka: ~/test$ renane 's/ABC/ abc/' *.png
paul @ai ka: ~/test$ |Is

123. png abc. png

paul @ ai ka: ~/test$

On Red Hat Enterprise Linux (and many other Linux distributions like Ubuntu 8.04),
the syntax of rename is a bit different. The first example below renames all *.conf
files replacing any occurrence of conf with bak. The second example renamesal (*)
files replacing one with ONE.

[paul @RHEL4a test]$ |s

one. conf two. conf

[paul @RHEL4a test]$ renanme conf bak *.conf
[paul @RHEL4a test]$ |s

one. bak two. bak

[paul @RHEL4a test]$ renane one ONE *

[paul @RHEL4a test]$ |s

ONE. bak two. bak

[paul @RHEL4a test]$

working with files

7.9. practice: working with files

1. List thefilesin the /bin directory
2. Display the type of file of /bin/cat, /etc/passwd and /usr/bin/passwd.

3a. Download wolf.jpg and LinuxFun.pdf from http://linux-training.be (wget http://
linux-training.be/files/studentfiles’wolf.jpg and wget http://linux-training.be/files/
books/LinuxFun.pdf)

3b. Display the type of file of wolf.jpg and LinuxFun.pdf

3c. Rename wolf.jpg to wolf.pdf (use mv).

3d. Display the type of file of wolf.pdf and LinuxFun.pdf.

4. Create adirectory ~/touched and enter it.

5. Create the files today.txt and yesterday.txt in touched.

6. Change the date on yesterday.txt to match yesterday's date.

7. Copy yesterday.txt to copy.yesterday.txt

8. Rename copy.yesterday.txt to kim

9. Create adirectory called ~/testbackup and copy all files from ~/touched into it.
10. Use one command to remove the directory ~/testbackup and all filesinto it.

11. Create adirectory ~/etcbackup and copy all *.conf filesfrom /etc into it. Did you
include all subdirectories of /etc ?

12. Use rename to rename all *.conf files to *.backup . (if you have more than one
distro available, try it on all!)

41

working with files

7.10. solution: working with files

1. List thefilesin the /bin directory

I's /bin

2. Display the type of file of /bin/cat, /etc/passwd and /usr/bin/passwd.

file /bin/cat /etc/passwd /usr/bin/passwd

3a. Download wolf.jpg and LinuxFun.pdf from http://linux-training.be (wget http://
linux-training.be/files/studentfiles’wolf.jpg and wget http://linux-training.be/files/
books/LinuxFun.pdf)

wget http://linux-training.be/files/studentfiles/wolf.jpg
wget http://linux-training.be/files/studentfiles/wolf.png
wget http://1inux-training.be/files/books/LinuxFun. pdf

3b. Display the type of file of wolf.jpg and LinuxFun.pdf

file wolf.jpg LinuxFun. pdf

3c. Rename wolf.jpg to wolf.pdf (use mv).

m/ wol f.jpg wol f.pdf

3d. Display the type of file of wolf.pdf and LinuxFun.pdf.

file wol f.pdf LinuxFun. pdf

4. Create a directory ~/touched and enter it.

nkdir ~/touched ; cd ~/touched

5. Create the files today.txt and yesterday.txt in touched.

touch today.txt yesterday.txt

6. Change the date on yesterday.txt to match yesterday's date.

touch -t 200810251405 yesterday.txt (substitute 20081025 with yesterday)

7. Copy yesterday.txt to copy.yesterday.txt

cp yesterday.txt copy.yesterday.txt

8. Rename copy.yesterday.txt to kim

nv copy.yesterday.txt kim

9. Create adirectory called ~/testbackup and copy all files from ~/touched into it.

nkdir ~/testbackup ; cp -r ~/touched ~/testbackup/

10. Use one command to remove the directory ~/testbackup and all filesinto it.

rm-rf ~/testbackup

11. Create adirectory ~/etcbackup and copy all *.conf filesfrom /etc into it. Did you
include all subdirectories of /etc ?

42

working with files

cp -r /etc/*.conf ~/etcbackup

Only *.conf files that are directly in /etc/ are copied.

12. Use rename to rename all *.conf files to *.backup . (if you have more than one
distro available, try it on all!)

On RHEL: touch 1.conf 2.conf ; rename conf backup *.conf

On Debi an: touch 1.conf 2.conf ; rename 's/conf/backup/' *.conf

Chapter 8. working with file contents

Table of Contents

S T £ 7= R RRTRR
S T2 - 11 O
SR o= |
G 2 = o PRSP
8.5. MOE AN ESS ...ttt et eeba e e ebe e e sbe e e sabeessnreeeas
B.6. SIINGS ..ottt ettt e e ae e te et e nreeneeneeareenne s
8.7. practiCe: file CONLENLSocveeiieeie e
8.8. SOIULION: fIlE CONLENLSeeeeeeeeceee e e

In this chapter wewill look at the contents of text fileswith head, tail, cat, tac, more,

lessand strings.

We will also get a glimpse of the possibilities of tools like cat on the command line.

working with file contents

8.1. head

Y ou can use head to display thefirst ten lines of afile.

paul @ ai ka: ~$ head /et c/ passwd

root: x:0:0:root:/root:/bin/bash
daenon: x: 1: 1: daenon: / usr/ shi n:/ bi n/ sh
bi n: x: 2: 2: bi n:/bin:/bin/sh

sys: x: 3: 3:sys:/dev:/bin/sh

sync: X: 4: 65534: sync: / bi n:/ bi n/ sync
ganes: x: 5: 60: ganes: / usr/ ganes: / bi n/ sh
nman: x: 6: 12: man: / var/ cache/ man: / bi n/ sh
I p:x:7:7:1p:/var/spool /| pd:/bin/sh
nai |l :x:8:8:mail:/var/mail:/bin/sh
news: x: 9: 9: news: / var/ spool / news: / bi n/ sh
paul @ ai ka: ~$

The head command can also display thefirst n lines of afile.

paul @ ai ka: ~$ head -4 /etc/passwd
root: x:0:0:root:/root:/bin/bash
daenon: x: 1: 1: daenon: / usr/ shi n:/ bi n/ sh
bi n: x: 2: 2: bin:/bin:/bin/sh

sys: x: 3: 3:sys:/dev:/bin/sh

Head can also display the first n bytes.

paul @ ai ka: ~$ head -c4 /etc/passwd
r oot paul @ ai ka: ~$

8.2. tail

Similar to head, the tail command will display the last ten lines of afile.

paul @ai ka: ~$ tail /etc/services

vboxd 20012/ udp

bi nkp 24554/ tcp # bi nkp fidonet protoco

asp 27374/ tcp # Address Search Protocol

asp 27374/ udp

csync2 30865/t cp # cluster synchronization too
di r cproxy 57000/ tcp # Det achabl e | RC Proxy

tfido 60177/ tcp # fidonet EMSI over tel net
fido 60179/ tcp # fidonet EMSI over TCP

Local services
paul @ ai ka: ~$

Y ou can give tail the number of lines you want to see.

$ tail -3 count.txt
Si x

seven

ei ght

The tail command has other useful options, some of which we will use during this
course.

working with file contents

8.3. cat

The cat command is one of the most universal tools. All it does is copy standard
input to standard output. In combination with the shell this can be very powerful and
diverse. Some examples will give a glimpse into the possibilities. The first example
issimple, you can use cat to display afile on the screen. If the file islonger than the
screen, it will scroll to the end.

paul @ ai ka: ~$ cat /etc/resolv.conf

naneserver 194.7.1.4
paul @ ai ka: ~$

concatenate

cat is short for concatenate. One of the basic uses of cat is to concatenate files into
abigger (or complete) file.

paul @ ai ka: ~$ echo one > partl
paul @ ai ka: ~$ echo two > part2
paul @ ai ka: ~$ echo three > part3
paul @ ai ka: ~$ cat partl part2 part3
one
t wo
three
paul @ ai ka: ~$
create files

Y ou can use cat to createflat text files. Typethe cat > winter.txt command as shown
in the screenshot below. Then type one or more lines, finishing each line with the
enter key. After the last line, type and hold the Control (Ctrl) key and press d.

> winter.txt

paul @ ai ka:
It is very
paul @ ai ka:
It is very
paul @ ai ka:

~/test$ cat
col d today!
~/test$ cat
col d today!
~/test$

w nter.txt

The Ctrl d key combination will send an EOF (End of File) to the running process

ending the cat command.

46

working with file contents

custom end marker

Y ou can choose an end marker for cat with << asis shown in this screenshot. This
construction is called a her e directive and will end the cat command.

paul @ai ka: ~/test$ cat > hot.txt <<stop
> |t is hot today!

> Yes it is sunmer.

> stop

paul @ai ka: ~/test$ cat hot.txt

It is hot today!

Yes it is sunmer.

paul @ ai ka: ~/test$

copy files

In the third example you will see that cat can be used to copy files. We will explain
in detail what happens here in the bash shell chapter.

paul @ai ka: ~/test$ cat winter.txt

It is very cold today!

paul @ai ka: ~/test$ cat winter.txt > cold. txt
paul @ai ka: ~/test$ cat cold.txt

It is very cold today!

paul @ ai ka: ~/test$

8.4. tac

Just one example will show you the purpose of tac (as the opposite of cat).

paul @ ai ka: ~/test$ cat count
one

t wo

three

f our

paul @ ai ka: ~/test$ tac count
f our

t hree

t wo

one

paul @ ai ka: ~/test$

47

working with file contents

8.5. more and less

The mor e command is useful for displaying files that take up more than one screen.
Morewill allow you to see the contents of the file page by page. Use the space bar to
see the next page, or g to quit. Some people prefer the less command to more.

8.6. strings

With the strings command you can display readable ascii strings found in (binary)
files. This example locates the Is binary then displays readable strings in the binary
file (output is truncated).

paul @ ai ka: ~$ which Is
/bin/ls

paul @ai ka: ~$ strings /bin/ls
/1ib/ld-1inux.so.2
librt.so.1

__gnon_start__

_Jv_Regi sterd asses

cl ock_gettine

libacl.so.1

working with file contents

8.7. practice: file contents

1. Display thefirst 12 lines of /etc/services.
2. Display the last line of /etc/passwd.

3. Use cat to create a file named count.txt that looks like this:
One

Two

Thr ee

Four
Five

4. Use cp to make a backup of thisfile to cnt.txt.

5. Use cat to make a backup of thisfile to catcnt.txt.

6. Display catent.txt, but with all linesin reverse order (the last line first).

7. Use more to display /var/log/messages.

8. Display the readable character strings from the /usr/bin/passwd command.
9. Uselsto find the biggest filein /etc.

10. Open two terminal windows (or tabs) and make sure you arein the same directory
in both. Type echo thisisthefirst line > tailing.txt in the first terminal, then issue
tail -f tailing.txt in the second terminal. Now go back to the first terminal and type
echo Thisisanother line >> tailing.txt (note the double >>), verify that the tail -f
in the second terminal shows both lines. Stop the tail -f with Ctrl-C.

11. Use cat to create afile named tailing.txt that contains the contents of tailing.txt
followed by the contents of /etc/passwd.

12. Use cat to create afile named tailing.txt that contains the contents of tailing.txt
preceded by the contents of /etc/passwd.

49

working with file contents

8.8. solution: file contents

1. Display thefirst 12 lines of /etc/services.

head -12 /etc/services

2. Display thelast line of /etc/passwd.

tail -1 /etc/passwd

3. Use cat to create afile named count.txt that looks like this:
cat > count.txt

One

Two

Thr ee

Four
Five (followed by Crl-d)

4. Use cp to make a backup of thisfileto cnt.txt.

cp count.txt cnt.txt

5. Use cat to make a backup of thisfile to catcnt.txt.

cat count.txt > catcnt.txt

6. Display catent.txt, but with all linesin reverse order (the last line first).

tac catcnt.txt

7. Use more to display /var/log/messages.

nore /var/ | og/ nessages

8. Display the readable character strings from the /usr/bin/passwd command.

strings /usr/bin/passwd

9. Uselsto find the biggest filein /etc.

Is -IrS /etc

10. Open two terminal windows (or tabs) and make sureyou arein the same directory
in both. Type echo thisisthefirst line > tailing.txt in the first terminal, then issue
tail -f tailing.txt in the second terminal. Now go back to the first terminal and type
echo Thisisanother line >> tailing.txt (note the double >>), verify that the tail -f
in the second terminal shows both lines. Stop the tail -f with Ctrl-C.

11. Use cat to create afile named tailing.txt that contains the contents of tailing.txt
followed by the contents of /etc/passwd.

cat /etc/passwd >> tailing.txt

12. Use cat to create afile named tailing.txt that contains the contents of tailing.txt
preceded by the contents of /etc/passwd.

my tailing.txt tnp.txt ; cat /etc/passwd tnp.txt > tailing.txt

50

Chapter 9. the Linux file tree

Table of Contents

9.1. filesystem hierarchy standardc.ccoeoveiieienieere e 52
0.2, MAN NEEE . ettt bt as 52
LS G I 1 SN (00 e [1= ox (o YA USRS 52
9.4. DINAIY IFECLOMES ...veveeeeee ettt sre e e neenreas 53
9.5. configuration Qir€CLOMESc.eeveeeeeieie et 55
O.6. dAlA QITECIOMIES ..ottt 57
S L 01 00 VA0 = ok (0] = 59
9.8. /usr UNiX SysStemM RESOUICEScceevieeieiierieeieseesieeie e sseessesseesseessesseesseenes 64
9.9. /var variable datacoeeeeieiiiere e 66
9.10. practice: file SYSTEM tre.c.eeve e 68
9.11. sOlUtioN: file SYStEM trEEoceeeeeeeee e 70

This chapter takes a look at the most common directories in the Linux file tree. It
also shows that on Unix everything isafile.

51

the Linux filetree

9.1. filesystem hierarchy standard

Many Linux distributions partially follow the Filesystem Hierarchy Standard. The
FHS may help make more Unix/Linux file system trees conform better in the future.
TheFHSisavailableonlineat http://www.pathname.com/fhs/ whereweread: "The
filesystem hierarchy standard has been designed to be used by Unix distribution
developers, package developers, and system implementers. However, it is primarily
intended to be a reference and is not a tutorial on how to manage a Unix filesystem
or directory hierarchy."

9.2. man hier

There are some differences in the filesystems between Linux distributions. For
help about your machine, enter man hier to find information about the file system
hierarchy. This manual will explain the directory structure on your computer.

9.3. the root directory /

All Linux systems have a directory structure that starts at the root directory. The
root directory is represented by a forward slash, like this: /. Everything that exists
on your Linux system can be found below this root directory. Let's take a brief 1ook
at the contents of the root directory.

[paul @GRHELV4u3 ~]$ Is /
bi n dev home nedia mt proc shin srv tftpboot usr
boot etc lib m sc opt root selinux sys tnp var

52

the Linux filetree

9.4. binary directories

/bin

other

/sbin

Binariesarefilesthat contain compiled source code (or machine code). Binaries can
be executed on the computer. Sometimes binaries are called executables.

The /bin directory contains binariesfor use by all users. According to the FHS the/
bin directory should contain /bin/cat and /bin/date (among others).

In the screenshot below you see common Unix/Linux commands like cat, cp, cpio,
date, dd, echo, grep, and so on. Many of these will be covered in this book.

paul @ai ka:~$ I's /bin

ar chdet ect egrep nt set upcon
autopartition fal se nt - gnu sh

bash fgconsol e nmv sh.distrib
bunzi p2 fagrep nano sl eep
bzcat fuser nc stralign
bzcmp f user nount nc. traditional stty
bzdi f f get _nmountoptions netcat su
bzegrep grep net st at sync
bzexe gunzip ntfs-3g sysfs
bzf grep gzexe nt f s- 3g. probe tailf
bzgrep gzip parted_devi ces tar

bzi p2 host nane parted_server tempfile
bzi p2recover hw det ect part man t ouch
bzl ess ip part man- conmi t true
bznore kbd_rode performrecipe ul ockngr
cat kill pi dof unmount

/bin directories

You can find a/bin subdirectory in many other directories. A user named serena
could put her own programs in /home/ser ena/bin.

Some applications, often when installed directly from source will put themselvesin
/opt. A samba server installation can use /opt/samba/bin to store its binaries.

/sbin contains binaries to configure the operating system. Many of the system
binaries requireroot privilege to perform certain tasks.

Below a screenshot containing system binariesto change the ip address, partition a
disk and create an ext4 file system.

paul @bul010:~$ I's -1 /sbin/ifconfig /sbin/fdisk /sbin/nkfs.ext4
-rwxr-xr-x 1 root root 97172 2011-02-02 09:56 /sbin/fdisk
-rwxr-xr-x 1 root root 65708 2010-07-02 09:27 /sbin/ifconfig
-rwxr-xr-x 5 root root 55140 2010-08-18 18:01 /sbin/ nkfs. ext4

53

the Linux filetree

/b

Binaries found in /bin and /shin often use shared librarieslocated in /lib. Below is
ascreenshot of the partial contents of /lib.

paul @ai ka: ~$ I's /lib/libc*

/1ib/libc-2.5.s0 [1ib/libcfont.so.0.0.0 /lib/libcomerr.so.2.1
/1ib/libcap.so.1 [1ib/libcidn-2.5.s0 /1ib/libconsole.so.0
/1ib/libcap.so.1.10 /lib/libcidn.so.1 /1ib/libconsole.so.0.0.0

/lib/libcfont.so.0 /lib/libcomerr.so.2 [lib/libcrypt-2.5.s0

/lib/modules

Typicaly, the Linux kernel loads kernel modules from /lib/modules/$kernel-
version/. Thisdirectory is discussed in detail in the Linux kernel chapter.

/lib32 and /lib64

/opt

We currently are in a transition between 32-bit and 64-bit systems. Therefore, you
may encounter directoriesnamed/lib32 and /lib64 which clarify theregister size used
during compilation time of the libraries. A 64-bit computer may have some 32-bit
binariesand librariesfor compatibility with legacy applications. This screenshot uses
thefile utility to demonstrate the difference.

paul @ai ka: ~$ file /1ib32/libc-2.5.5s0

/11b32/1ibc-2.5.s0: ELF 32-bit LSB shared object, Intel 80386, \
version 1 (SYSV), for GNU Linux 2.6.0, stripped

paul @ai ka: ~$ file /1ib64/1ibcap.so.1.10

/1ib64/1ibcap.so.1.10: ELF 64-bit LSB shared object, AMD x86-64, \
version 1 (SYSV), stripped

The ELF (Executable and Linkable Format) is used in almost every Unix-like
operating system since System V.

The purpose of /opt isto store optional software. In many casesthisis software from
outside the distribution repository. You may find an empty /opt directory on many
systems.

A large package can install all itsfilesin /bin, /lib, /etc subdirectories within /opt/
$packagename/. If for example the packageis called wp, then it installs in /opt/wp,
putting binaries in /opt/wp/bin and manpages in /opt/wp/man.

the Linux filetree

9.5. configuration directories

/boot

The /boot directory contains all files needed to boot the computer. These files don't
change very often. On Linux systems you typicaly find the /boot/grub directory
here. /boot/grub contains /boot/gr ub/grub.cfg (older systems may still have /boot/
grub/grub.conf) which defines the boot menu that is displayed before the kernel
starts.

letc
All of the machine-specific configur ation files should belocated in /etc. Historically
/etc stood for etcetera, today people often use the Editable Text Configuration
backronym.
Many times the name of a configuration files is the same as the application, daemon,
or protocol with .conf added as the extension.
paul @ai ka: ~$ Is /etc/*. conf
/ et ¢/ adduser . conf /etc/ld. so.conf /etcl/scroll keeper. conf
/etc/brltty. conf letc/Iftp.conf [etc/sysctl.conf
/etc/ccertificates.conf /etc/libao.conf / et c/ sysl og. conf
/ etc/cvs-cron. conf [etc/logrotate. conf /et c/ ucf. conf
/etc/ddclient.conf letcl/ltrace. conf /et c/ uni conf. conf
/ et ¢/ debconf . conf / et c/ mke2f s. conf / et c/ updat edb. conf
/ et c/ del user. conf / et c/ net scsi d. conf / etc/ uspl ash. conf
/ et c/ f dmount . conf / etc/ nsswitch. conf / et c/ uswsusp. conf
/ et ¢/ hdpar m conf / et ¢/ pam conf [etc/vnc. conf
/ et c/ host. conf [et ¢/ pnm2ppa. conf / et ¢/ wodi m conf
/etc/inetd. conf [et c/ povray. conf /et c/wdi al . conf
/ et c/ kernel -i ng. conf [etc/resol v. conf
paul @ ai ka: ~$
There is much more to be found in /etc.

letc/init.d/
A lot of Unix/Linux distributions have an /etc/init.d directory that contains scriptsto
start and stop daemons. Thisdirectory could disappear as Linux migrates to systems
that replace the old init way of starting all daemons.

letc/X11/

The graphical display (aka X Window System or just X) isdriven by software from
the X.org foundation. The configuration file for your graphical display is/etc/X11/
xor g.conf.

55

the Linux filetree

letc/skel/

The skeleton directory /etc/skel is copied to the home directory of a newly created
user. It usually contains hidden files like a .bashr c script.

/etc/sysconfig/

This directory, which is not mentioned in the FHS, contains a lot of Red Hat
Enterprise Linux configuration files. We will discuss some of them in greater
detail. The screenshot below is the /etc/sysconfig directory from RHELv4u4 with
everything installed.

paul @GRHELv4u4: ~$ |s /etc/sysconfig/

apnd firstboot i rda net wor k sasl aut hd
apmscripts grub i rgbal ance net wor ki ng sel i nux

aut hconfig hi dd keyboard nt pd spanassassin
autof s htt pd kudzu openi b. conf squid

bl uet oot h hwec onf | m sensors pand sysl og

cl ock i 18n nouse pcnci a sys-confi g-sec
consol e init nouse. B pgsql sys-config-users
crond installinfo named prelink sys- | ogvi ewer
deskt op i pmi net dump rawdevi ces t ux

di skdunp i ptables net dunp_i d_dsa rhn vncservers
dund i ptables-cfg netdunp_id_dsa.p sanba xinetd

paul @RHELv4u4: ~$

Thefile/etc/sysconfig/fir stboot tellsthe Red Hat Setup Agent not to run at boot time.
If you want to run the Red Hat Setup Agent at the next reboot, then ssmply remove
thisfile, and run chkconfig --level 5 firstboot on. The Red Hat Setup Agent allows
you to install the latest updates, create a user account, join the Red Hat Network and
more. It will then create the /etc/sysconfig/firstboot file again.

paul @RHELv4u4: ~$ cat /etc/sysconfig/firstboot
RUN_FI RSTBOOT=NO

The /etc/sysconfig/har ddisks file contains some parameters to tune the hard disks.
Thefile explains itself.

You can see hardware detected by kudzu in /etc/sysconfig/hweconf. Kudzu is
software from Red Hat for automatic discovery and configuration of hardware.

The keyboard type and keymap table are set in the /etc/sysconfig/keyboard file.
For more console keyboard information, check the manual pages of keymaps(5),
dumpkeys(1), loadkeys(1) and the directory /lib/kbd/keymaps/.

root @RHELv4u4: / et c/ sysconfi g# cat keyboard
KEYBOARDTYPE=" pc"
KEYTABLE="us"

We will discuss networking filesin this directory in the networking chapter.

56

the Linux filetree

9.6. data directories

/home

/root

/srv

Users can store persona or project data under /home. It is common (but not
mandatory by the fhs) practice to name the users home directory after the user name
in the format /home/$SUSERNAME. For example:

paul @ibu606: ~$ |'s /hone
geert annik sandra paul tom

Besidesgiving every user (or every project or group) alocation to store personal files,
thehomedirectory of auser also servesasalocation to storethe user profile. A typical
Unix user profile contains many hidden files (fileswhose file name starts with adot).
The hidden files of the Unix user profiles contain settings specific for that user.

paul @bu606: ~$ |s -d /hone/paul /.*

/ hone/ paul /. / hone/ paul / . bash_profile /hone/paul/.ssh

/ hone/ paul / .. / hone/ paul / . bashrc / hone/ paul /. vim nfo
/ hone/ paul / . bash_hi story /hone/paul /.| esshst

On many systems /root is the default location for personal data and profile of the
root user. If it does not exist by default, then some administrators create it.

You may use/srv for data that is served by your system. The FHS allows locating
cvs, rsync, ftp and www datain thislocation. The FHS also approves administrative
naming in /srv, like /srv/project55/ftp and /srv/sales'www.

On Sun Solaris (or Oracle Solaris) /export isused for this purpose.

/media

The /media directory serves as a mount point for removable media devices such as
CD-ROM's, digital cameras, and various ush-attached devices. Since/mediaisrather
new in the Unix world, you could very well encounter systems running without this
directory. Solaris 9 does not haveit, Solaris 10 does. Most Linux distributions today
mount all removable mediain /media.

paul @ebi an5: ~$ | s / nedi a/
cdrom cdronD usbdi sk

57

the Linux filetree

/mnt

tmp

The /mnt directory should be empty and should only be used for temporary mount
points (according to the FHS).

Unix and Linux administrators used to create many directories here, like /mnt/
something/. You likely will encounter many systems with more than one directory
created and/or mounted inside /mnt to be used for various local and remote
filesystems.

Applications and users should use /tmp to store temporary data when needed. Data
stored in /tmp may use either disk space or RAM. Both of which are managed by
the operating system. Never use /tmp to store data that is important or which you
wish to archive.

58

the Linux filetree

9.7.In memory directories

/dev

Devicefilesin/dev appear to be ordinary files, but are not actually located on the hard
disk. The/dev directory is populated with files asthe kernel is recognising hardware.

common physical devices

Common hardware such as hard disk devices are represented by devicefilesin /dev.
Below a screenshot of SATA device files on a laptop and then IDE attached drives
on adesktop. (The detailed meaning of these devices will be discussed later.)

#

SATA or SCSI or USB

#

paul @ ai ka: ~$ |'s /dev/sd*

/dev/sda /dev/sdal /dev/sda2 /[dev/sda3 /dev/sdb /dev/sdbl /dev/sdb2

#

| DE or ATAPI

#

paul @arry: ~$ |'s /dev/hd*

/dev/ hda /dev/hdal /dev/hda2 /dev/hdb /dev/hdbl /dev/hdb2 /dev/hdc

Besides representing physical hardware, some device files are special. These special
devices can be very useful.

/dev/tty and /dev/pts

For example, /dev/tty1 representsaterminal or consol e attached to the system. (Don't
break your head on the exact terminology of ‘termina’ or '‘consol€', what we mean
here is acommand line interface.) When typing commands in aterminal that is part
of agraphical interface like Gnome or KDE, then your terminal will be represented
as/dev/ptg/1 (1 can be another number).

/dev/null

On Linux you will find other special devices such as /dev/null which can be
considered a black hole; it has unlimited storage, but nothing can be retrieved from
it. Technically speaking, anything written to /dev/null will be discarded. /dev/null
can be useful to discard unwanted output from commands. /dev/null is not a good
location to store your backups ;-).

59

the Linux filetree

/proc conversation with the kernel

/proc is another specia directory, appearing to be ordinary files, but not taking up
disk space. It isactually aview of the kernel, or better, what the kernel manages, and
isameansto interact with it directly. /proc is aproc filesystem.

paul @GRHELv4u4: ~$ nmount -t proc
none on /proc type proc (rw

When listing the /proc directory you will see many numbers (on any Unix) and some

interesting files (on Linux)

mul @ai ka: ~$ |'s /proc

1 2339 4724 5418 6587 7201
10175 2523 4729 5421 6596 7204
10211 2783 4741 5658 6599 7206
10239 2975 4873 5661 6638 7214
141 29775 4874 5665 6652 7216
15045 29792 4878 5927 6719 7218
1519 2997 4879 6 6736 7223
1548 3 4881 6032 6737 7224
1551 30228 4882 6033 6755 7227
1554 3069 5 6145 6762 7260
1557 31422 5073 6298 6774 7267
1606 3149 5147 6414 6816 7275
180 31507 5203 6418 6991 7282
181 3189 5206 6419 6993 7298
182 3193 5228 6420 6996 7319
18898 3246 5272 6421 7157 7330
19799 3248 5291 6422 7163 7345
19803 3253 5294 6423 7164 7513
19804 3372 5356 6424 7171 7525
1987 4 5370 6425 7175 7529
1989 42 5379 6426 7188 9964
2 45 5380 6430 7189 acpi
20845 4542 5412 6450 7191 asound
221 46 5414 6551 7192 buddyinfo
2338 4704 5416 6568 7199 bus

cndl i ne
cpui nfo
crypto
devi ces

di skstats
dna

driver
execdonai ns
fb
filesystens
fs

i de
interrupts
i onem

i oports
irq
kal | syns
kcore
key-users
kmsg

| oadavg

| ocks

mem nfo

m sc

nodul es

nount s

mrr

net

paget ypei nfo
partitions
sched_debug
scsi

sel f

sl abi nfo

st at

swaps

Sys
sysrq-trigger
Sysvi pc
timer_list
timer_stats
tty

upti me
ver si on
version_signhature
vntore

vmmet

vinst at

zonei nfo

Let's investigate the file properties inside /proc. Looking at the date and time will
display the current date and time showing the files are constantly updated (a view

on the kernel).

paul @GRHELv4u4:
Mon Jan 29 18
paul @GRHELv4u4:
-r--r--r-- 1
paul @GRHELv4u4:
paul @GRHELv4u4:
paul @GRHELv4u4:
paul @GRHELv4u4:
Mon Jan 29 18
paul @GRHELv4u4:
-r--r--r-- 1

~$ date

06: 32 EST 2007

~$ I's -al /proc/cpuinfo
r oot
~$
~$
~$
~$ date

10: 00 EST 2007

~$ I's -al /proc/cpuinfo
r oot

...time passes..

root 0 Jan 29 18:06 /proc/cpuinfo

root 0 Jan 29 18:10 /proc/cpuinfo

60

the Linux filetree

Most files in /proc are O bytes, yet they contain data--sometimes a lot of data. You
can see this by executing cat on files like /pr oc/cpuinfo, which contains information
about the CPU.

paul @RHELv4u4: ~$ file /proc/cpuinfo
/ proc/ cpui nfo: enpty
paul @RHELv4u4: ~$ cat /proc/cpuinfo

processor 00

vendor _id : Aut henti cAMD

cpu famly ;15

nodel ;43

nodel name : AMD Athlon(tn) 64 X2 Dual Core Processor 4600+
st eppi ng 1

cpu Mz . 2398. 628

cache size . 512 KB

f di v_bug > no

hlt _bug : no

f 00f _bug : no

conma_bug > no

f pu . yes

f pu_exception . yes

cpuid | evel 1

wp :yes

flags : fpu vne de pse tsc nsr pae nte cx8 apic ntrr pge..
bogomi ps : 4803. 54

Just for fun, hereis/proc/cpuinfo on a Sun Sunblade 1000...

paul @asha: ~$ cat /proc/cpuinfo
cpu : TI UtraSparc Il (Cheetah)
fpu : UtraSparc Il integrated FPU
promib : Version 3 Revision 2
prom: 4.2.2

type @ sundu

ncpus probed : 2

ncpus active : 2

CpuOBogo : 498. 68

Cpu0Od kTck : 000000002ch41780
CpulBogo : 498. 68

Cpuld kTck : 000000002ch41780
MW Type : Cheetah

State:

CPUO: online

CPULl: online

Most of the filesin /proc are read only, some require root privileges, somefiles are
writable, and many filesin /proc/sys are writable. Let's discuss some of thefilesin/
proc.

61

the Linux filetree

/procl/interrupts

On the x86 architecture, /proc/inter rupts displays the interrupts.

paul @RHELv4u4: ~$ cat /proc/interrupts

CPWO
0: 13876877 | O APl C-edge tiner
1: 15 | O API G- edge i8042
8: 1 | O API C-edge rtc
9: 0 1O API C- | evel acpi
12: 67 | O API G- edge i8042
14: 128 | O APl C-edge ideO
15: 124320 | O API C-edge idel
169: 111993 IO APIC-level iocO
177: 2428 IO APIC-level ethO
NM : 0
LCC: 13878037
ERR: 0
M S: 0

On amachine with two CPU's, the file looks like this.

paul @ ai ka: ~$ cat /proc/interrupts

CPUO cPUL
0 860013 0 10 API G edge timer
1: 4533 0 10 API G edge i 8042
7: 0 0 1O APIC edge parportO
8: 6588227 0 1O APIC edge rtc
10: 2314 0 IO APICfasteoi acpi
12: 133 0 10 API G edge i 8042
14: 0 0 1O APIC edge i bata
15: 72269 0 1O APIC edge i bata
18: 1 0 IOCAPICfasteoi yenta
19: 115036 0 IO APICfasteoi ethO
20: 126871 0 IOAPICfasteoi |ibata, ohci 1394
21: 30204 0 IO APICfasteoi ehci_hcd:usbl, uhci_hcd: ush2
22: 1334 0 IO APICfasteoi saa7133[0], saa7133[0]
24: 234739 0 IOAPICfasteoi nvidia
NM : 72 42
LOC: 860000 859994
ERR: 0

/proc/kcore

The physical memory isrepresented in/proc/kcor e. Do not try to cat thisfile, instead
use a debugger. The size of /proc/kcore is the same as your physical memory, plus
four bytes.

paul @ai ka:~$ I's -1h /proc/kcore
R 1 root root 2.0G 2007-01-30 08:57 /proc/kcore
paul @ ai ka: ~$

62

the Linux filetree

/sys Linux 2.6 hot plugging

The /sys directory was created for the Linux 2.6 kernel. Since 2.6, Linux uses sysfs
to support usb and IEEE 1394 (FireWire) hot plug devices. See the manual pages
of udev(8) (the successor of devfs) and hotplug(8) for moreinfo (or visit http:/linux-
hotplug.sourceforge.net/).

Basically the /sys directory contains kernel information about hardware.

63

the Linux filetree

9.8. /usr Unix System Resources

Although /usr is pronounced like user, remember that it stands for Unix System
Resources. The /usr hierarchy should contain shareable, read only data. Some
people choose to mount /usr as read only. This can be done from its own partition
or from aread only NFS share.

/usr/bin

The /usr/bin directory contains alot of commands.

paul @eb508: ~$ I's /usr/bin | wc -I|
1395

(On Solaristhe /bin directory isasymbolic link to /usr/bin.)

/usr/include

The /usr/include directory contains general use include filesfor C.

paul @ibu1010: ~$ |I's /usr/incl ude/

aalib.h expat _config.h mat h. h search. h

af _vfs.h expat _external . h ncheck. h semaphore. h
aio.h expat. h menory. h setjnmp. h

AL fentl. h menu. h sgtty. h
aliases.h features.h mtent. h shadow. h

/usr/lib

The /usr/lib directory contains libraries that are not directly executed by users or
scripts.

paul @eb508: ~$ I's /usr/lib | head -7
4Suite

ao

apt

arj

aspel

avahi

bonobo

/usr/local

The /usr/local directory can be used by an administrator to install software locally.

paul @eh508: ~$ |'s /usr/local/

bin etc games include lib man sbin share src
paul @eh508: ~$ du -sh /usr/local/

128K /usr/local/

the Linux filetree

/usr/share

The/usr/shar e directory contains architecture independent data. Asyou can see, this
isafairly large directory.

paul @eb508: ~$ |'s /usr/share/ | we -I

263

paul @eb508: ~$ du -sh /usr/share/
1.3G /usr/share/

This directory typically contains /usr/share/man for manual pages.

paul @eb508: ~$ |'s /usr/share/ man
cs fr hu it.UTF-8 nan2 man6é pl.|1S08859-2 sv

de fr.1S08859-1 id ja man3 man7 pl.UTF-8 tr
es fr.UTF-8 it ko man4 man8 pt_BR zh_CN
fi gl it.lS08859-1 nanl man5 pl ru zh_TW

And it contains /usr/shar e/games for all static game data (so no high-scores or play
logs).

paul @bul010: ~$ | s /usr/share/ganes/
openttd wesnoth

/usr/src

The /usr/src directory is the recommended location for kernel source files.

paul @ehb508: ~$ |'s -1 /usr/src/

total 12

drwxr-xr-x 4 root root 4096 2011-02-01 14:43 |inux-headers-2.6.26-2-686
drwxr-xr-x 18 root root 4096 2011-02-01 14: 43 |inux-headers-2.6.26-2-conmmpn
drwxr-xr-x 3 root root 4096 2009-10-28 16:01 |inux-kbuild-2.6.26

65

the Linux filetree

9.9. /var variable data

Files that are unpredictable in size, such as log, cache and spool files, should be
located in /var.

/var/log

The /var/log directory serves as a central point to contain al log files.

[paul @RHEL4b ~]$ I's /var/log

acpid cron. 2 mai | | og. 2 guagga secure. 4
amanda cron. 3 mai | | og. 3 radi us spool er
anaconda. | og cron. 4 mai | | og. 4 r pnpkgs spooler.1
anaconda. sysl og cups mai | man rpnpkgs. 1 spool er. 2
anaconda. x| og drresg nessages r pnpkgs. 2 spool er. 3

audi t exim nmessages. 1 rpnpkgs.3 spool er. 4

boot . | og gdm nmessages. 2 rpnpkgs. 4 squi d

boot .l 0g. 1 ht t pd nmessages. 3 sa uucp

boot . | 0g. 2 iiim nmessages. 4 sanba vbox

boot. | og. 3 i ptraf nysql d.l og scroll keeper.|log vimare-t ool s-guestd
boot .| og. 4 | ast | og news secure wt mp

canna mai | pgsql secure. 1 wtnmp. 1

cron mai | | og ppp secure. 2 Xorg. 0.1 o0g
cron. 1 mai |l 1 og. 1 prelink.log secure.3 Xorg.0.lo0g.old

/var/llog/messages

A typical first file to check when troubleshooting on Red Hat (and derivatives) is
the /var/log/messages file. By default thisfile will contain information on what just
happened to the system. Thefileis called /var/log/syslog on Debian and Ubuntu.

[root @RHEL4b ~]# tail /var/l og/ messages

Jul 30 05:13:56 anacron: anacron startup succeeded

Jul 30 05:13:56 atd: atd startup succeeded

Jul 30 05:13:57 nessagebus: messagebus startup succeeded

Jul 30 05:13:57 cups-config-daenon: cups-config-daenon startup succeeded
Jul 30 05:13:58 hal daenon: hal daenon startup succeeded

Jul 30 05:14:00 fstab-sync[3560]: renoved all generated nount points

Jul 30 05:14:01 fstab-sync[3628]: added mount point /media/cdromfor...
Jul 30 05:14:01 fstab-sync[3646]: added nount point /medial/floppy for...
Jul 30 05:16:46 sshd(pam_uni x)[3662]: session opened for user paul by...
Jul 30 06:06: 37 su(pam.uni x)[3904]: session opened for user root by pau

/var/cache

The /var/cache directory can contain cache data for several applications.

paul @bul010: ~$ | s /var/cache/

apt di ctionari es-comon gdm man sof t war e- cent er
binfnts flashplugin-installer hald pmutils

cups fontconfig j ockey pppconfig

debconf fonts I dconfig sanba

66

the Linux filetree

/var/spool

The /var/spool directory typically contains spool directories for mail and cron, but
also serves as a parent directory for other spool files (for example print spool files).

/var/lib

The /var/lib directory contains application state information.

Red Hat Enterprise Linux for example keepsfilespertainingtorpm in/var/lib/rpm/.

/var/...

/var aso contains Process ID filesin /var/run (soon to be replaced with /run) and
temporary files that survive areboot in /var/tmp and information about file locks in
Ivar/lock. There will be more examples of /var usage further in this book.

67

the Linux filetree

9.10. practice: file system tree

1. Doesthefile /bin/cat exist ? What about /bin/dd and /bin/echo. What is the type
of thesefiles ?

2. What is the size of the Linux kernel file(s) (vmlinu*) in/boot ?

3. Create a directory ~/test. Then issue the following commands:
cd ~/test
dd i f=/dev/zero of =zeroes.txt count=1 bs=100

od zeroes.txt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file/
dev/zer o to ~/test/zeroes.txt. Can you describe the functionality of /dev/zero ?

4. Now issue the following command:

dd i f=/dev/random of =random t xt count=1 bs=100 ; od random t xt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /

dev/random to ~/test/random.txt. Can you describethefunctionality of /dev/random
?

5. Issue the following two commands, and look at the first character of each output
line.

Is -1 /dev/sd* /dev/hd*

I's -1 /dev/tty* /dev/input/nou*

Thefirst Iswill show block(b) devices, the second |s shows character(c) devices. Can
you tell the difference between block and character devices ?

6. Use cat to display /etc/hosts and /etc/resolv.conf. What is your idea about the
purpose of these files ?

7. Arethere any filesin /etc/skel/ ? Check also for hidden files.

8. Display /proc/cpuinfo. On what architecture is your Linux running ?

9. Display /proc/interrupts. What is the size of thisfile ? Where is thisfile stored ?
10. Can you enter the /root directory ? Are there (hidden) files ?

11. Areifconfig, fdisk, parted, shutdown and grub-install present in /sbin ? Why are
these binariesin /sbin and not in /bin ?

12. Is/var/log afile or adirectory ? What about /var/spool ?

13. Open two command prompts (Ctrl-Shift-T in gnome-terminal) or terminals (Ctrl-
Alt-F1, Ctrl-Alt-F2, ...) and issue thewho am i in both. Then try to echo aword from
one terminal to the other.

68

the Linux filetree

14. Read the man page of random and explain the difference between /dev/random
and /dev/urandom.

69

the Linux filetree

9.11. solution: file system tree

1. Doesthefile /bin/cat exist ? What about /bin/dd and /bin/echo. What is the type
of thesefiles ?

Is /bin/fcat ; file /bin/cat
Is /binfdd ; file /bin/dd

Is /binfecho ; file /bin/echo

2. What isthe size of the Linux kernel file(s) (vmlinu*) in /boot ?

I's -1h /boot/vnt

3. Create adirectory ~/test. Then issue the following commands:
cd ~/test
dd if=/dev/zero of =zeroes.txt count=1 bs=100

od zeroes.txt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /
dev/zer o to ~/test/zeroes.txt. Can you describe the functionality of /dev/zero ?

/dev/zero is a Linux specia device. It can be considered a source of zeroes. You
cannot send something to /dev/zer o, but you can read zeroes from it.

4. Now issue the following command:

dd i f=/dev/random of =random t xt count=1 bs=100 ; od random t xt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /

dev/random to ~/test/random.txt. Can you describethefunctionality of /dev/random
?

/dev/random acts as arandom number generator on your Linux machine.

5. Issue the following two commands, and look at the first character of each output
line.

I's -1 /dev/sd* [dev/hd*

I's -1 /dev/tty* /dev/input/nou*

Thefirst Iswill show block(b) devices, the second |s shows character(c) devices. Can
you tell the difference between block and character devices ?

Block devices are always written to (or read from) in blocks. For hard disks, blocks
of 512 bytes are common. Character devices act as a stream of characters (or bytes).
Mouse and keyboard are typical character devices.

6. Use cat to display /etc/hosts and /etc/resolv.conf. What is your idea about the
purpose of these files ?

70

the Linux filetree

/etc/hosts contains hostnames with their ip address

/etc/resolv.conf should contain the ip address of a DNS nane server.

7. Arethere any filesin /etc/skel/ ? Check also for hidden files.

Issue "Is -al /etc/skel/". Yes, there should be hidden files there.

8. Display /proc/cpuinfo. On what architecture is your Linux running ?

The file should contain at least one line with Intel or other cpu.
9. Display /proc/interrupts. What is the size of thisfile ? Whereisthisfile stored ?

The sizeis zero, yet the file contains data. It is not stored anywhere because /proc is
avirtua file system that allows you to talk with the kernel. (If you answered "stored
in RAM-memory, that is also correct...).

10. Can you enter the /root directory ? Are there (hidden) files ?

Try "cd /root". Yes there are (hidden) files there.

11. Areifconfig, fdisk, parted, shutdown and grub-install present in /sbin ? Why are
these binariesin /sbin and not in /bin ?

Because those files are only neant for system adninistrators.

12. Is/var/log afile or adirectory ? What about /var/spool ?

Both are directories.

13. Open two command prompts (Ctrl-Shift-T in gnome-terminal) or terminals (Ctrl-
Alt-F1, Ctrl-Alt-F2, ...) and issue thewho am i in both. Then try to echo aword from
one terminal to the other.

tty-ternminal: echo Hello > /dev/ttyl

pts-terminal: echo Hello > /dev/pts/1

14. Read the man page of random and explain the difference between /dev/random
and /dev/urandom.

man 4 random

71

Part Ill. shell expansion

Chapter 10. commands and arguments

Table of Contents

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.

< 0 USSP 74
2 (011010 01 TSRS 74
(0101010107210 3SR 76
BlIASES .o 77
displaying shell eXpanSioncccccceiieceieeni e 78
practice: commands and argUMENLSccceeveeeereeieeseereeree e e esee e 79
solution: commands and argUMENLSccccceeeereereeieesee e eeeseesee e 81

This chapter introduces you to shell expansion by taking aclose look at commands
and arguments. Knowing shell expansion is important because many commands
onyour Linux system are processed and most likely changed by the shell before they
are executed.

The command line interface or shell used on most Linux systems is called bash,
which stands for Bour ne again shell. The bash shell incorporates features from sh
(the original Bourne shell), csh (the C shell), and ksh (the Korn shell).

73

commands and arguments

10.1. echo

This chapter frequently uses the echo command to demonstrate shell features. The
echo command is very simple: it echoes the input that it receives.

paul @ ai ka: ~$ echo Burtonville
Burtonville

paul @ ai ka: ~$ echo Snurfs are bl ue
Smurfs are bl ue

10.2. arguments

One of the primary features of a shell is to perform a command line scan. When
you enter a command at the shell's command prompt and press the enter key, then
the shell will start scanning that line, cutting it up in arguments. While scanning the
line, the shell may make many changes to the arguments you typed. This process
is called shell expansion. When the shell has finished scanning and modifying that
line, then it will be executed.

white space removal

Parts that are separated by one or more consecutive white spaces (or tabs) are
considered separate ar guments, any white space is removed. The first argument is
the command to be executed, the other arguments are given to the command. The
shell effectively cuts your command into one or more arguments.

Thisexplainswhy thefollowing four different command lines are the same after shell
expansion.

[paul @GRHELV4u3 ~]$ echo Hello Wrld

Hello World

[paul @GRHELV4u3 ~]$ echo Hello World

Hello World

[paul @GRHELv4u3 ~]$ echo Hello World

Hello World

[paul @GRHELV4u3 ~]1$ echo Hel | o worl d
Hel o World

The echo command will display each argument it receives from the shell. The echo
command will also add a new white space between the argumentsiit received.

single quotes

Y ou can prevent the removal of white spaces by quoting the spaces. The contents of
the quoted string are considered as one argument. In the screenshot below the echo
receives only one argument.

[paul @GRHEL4b ~]1$ echo "A line with singl e quot es'
Aline with single quot es
[paul @GRHEL4b ~] $

74

commands and arguments

double quotes
You can aso prevent the removal of white spaces by double quoting the spaces.
Same as above, echo only receives one ar gument.
[paul @GRHEL4b ~]1$ echo "A line with doubl e quot es"

Aline with doubl e qguot es
[paul @GRHEL4b ~] $

Later in this book, when discussing variables we will see important differences
between single and double quotes.

echo and quotes

Quoted lines caninclude special escaped charactersrecognised by the echo command
(when using echo -e). The screenshot below shows how to use \n for a newline and
\t for atab (usually eight white spaces).

[paul @GRHEL4b ~]1$ echo -e "A line with \na newine"

Aline with

a newine

[paul @GRHEL4b ~]1$ echo -e "A line with \na newine'
Aline with

a newine

[paul @GRHEL4b ~]1$ echo -e "Aline with \ta tab"
Aline with a tab

[paul @GRHEL4b ~]1$ echo -e "Aline with \ta tab’
Aline with a tab

[paul @GRHEL4b ~]$

The echo command can generate more than white spaces, tabs and newlines. Look
in the man page for alist of options.

75

commands and arguments

10.3. commands

external or builtin commands ?

type

Not all commands are external to the shell, some are builtin. External commands
are programs that have their own binary and reside somewhere in the file system.
Many external commands are located in /bin or /sbin. Builtin commands are an
integral part of the shell program itself.

To find out whether a command given to the shell will be executed as an external
command or as abuiltin command, use the type command.

paul @ ai ka: ~$ type cd

cd is a shell builtin

paul @ ai ka: ~$ type cat
cat is /bin/cat

Asyou can see, the cd command is builtin and the cat command is exter nal.

Y ou can aso use this command to show you whether the command is aliased or not.

paul @ai ka: ~$ type |Is
Is is aliased to “Is --col or=auto'

running external commands

Some commands have both builtin and external versions. When one of these
commandsis executed, the builtin version takes priority. To run the external version,
you must enter the full path to the command.

paul @ ai ka: ~$ type -a echo

echo is a shell builtin

echo is /bin/echo

paul @ ai ka: ~$ / bi n/ echo Running the external echo command...
Runni ng the external echo conmand...

which

The which command will search for binaries in the $PATH environment variable
(variables will be explained later). In the screenshot below, it is determined that cd
isbuiltin, and Is, cp, rm, mv, mkdir, pwd, and which are external commands.

[root @RHEL4b ~]# which cp I's cd nkdir pwd

/'bin/cp

/bin/ls

/usr/bin/which: no cd in (/usr/kerberos/sbhin:/usr/kerberos/bin:...
/ bi n/ nkdi r

/ bi n/ pwd

76

commands and arguments

10.4. aliases

create an alias

The shell allows you to create aliases. Aliases are often used to create an easier to
remember name for an existing command or to easily supply parameters.

[paul @RHELV4u3 ~] $ cat count. txt
one

t wo

three

[paul @RHELv4u3 ~] $ al i as dog=t ac
[paul @RHELv4u3 ~] $ dog count. txt
three

t wo

one

abbreviate commands

An alias can also be useful to abbreviate an existing command.

paul @ai ka: ~$ alias II="Is -1h --col or=aut o'
paul @ ai ka: ~$ alias c='clear’
paul @ ai ka: ~$

default options

Aliases can be used to supply commands with default options. The example below
shows how to set the -i option default when typing rm.

[paul @GRHELV4u3 ~]$ rm-i w nter.txt

rm renove regular file "winter.txt'? no

[paul @GRHELv4u3 ~]$ rmwinter. txt

[paul @GRHELv4u3 ~]1$ |'s winter.txt

I's: winter.txt: No such file or directory

[paul @GRHELV4u3 ~] $ touch w nter.txt

[paul @GRHELV4u3 ~]$ alias rme rm-i’

[paul @GRHELv4u3 ~]$ rmwinter. txt

rm renove regular enpty file "winter.txt'? no
[paul @GRHELV4uU3 ~] $

Some distributions enable default aliases to protect users from accidentally erasing
files(rm-i', 'mv -i', 'cp -i)

viewing aliases

Y ou can provide one or more aliases as arguments to the alias command to get their
definitions. Providing no arguments gives a complete list of current aliases.

paul @ai ka: ~$ alias c |1
alias c='clear'
alias II="Is -1h --col or=aut o'

77

commands and arguments

unalias

10.5.

Y ou can undo an alias with the unalias command.

[paul @GRHEL4b ~]1$ which rm
/bin/rm
[paul @GRHEL4b ~]$ alias rm=" rm-i’
[paul @GRHEL4b ~]1$ which rm
alias rm¥" rm-i’'

/bin/rm
[paul @GRHEL4b ~]$ unalias rm
[paul @GRHEL4b ~]1$ which rm
/bin/rm
[paul @GRHEL4b ~] $

displaying shell expansion

Y ou can display shell expansion with set -x, and stop displaying it with set +x. You
might want to use this further on in this course, or when in doubt about exactly what
the shell is doing with your command.

[paul @GRHELV4u3 ~]$ set -x

++ echo -ne '\033]0; paul @GRHELv4u3: ~\ 007’
[paul @GRHELv4u3 ~]$ echo $USER

+ echo paul

paul

++ echo -ne '\033]0; paul @GRHELv4u3: ~\ 007’
[paul @GRHELV4u3 ~]$ echo \ $USER

+ echo ' $USER

$USER

++ echo -ne '\033]0; paul @GRHELv4u3: ~\ 007’
[paul @GRHELV4u3 ~]$ set +x

+ set +Xx

[paul @RHELv4u3 ~]$ echo $USER

paul

78

commands and arguments

10.6. practice: commands and arguments

1. How many arguments are in this line (not counting the command itself).

touch '/etc/cron/cron.allow 'file 42.txt' "file 33.txt"
2. Istac ashell builtin command ?
3. Isthere an existing aliasfor rm ?

4. Read the man page of rm, make sure you understand the -i option of rm. Create
and remove afileto test the -i option.

5. Execute: alias rm="rm -i' . Test your alias with a test file. Does this work as
expected ?

6. List al current aliases.

7a. Create an alias called 'city' that echoes your hometown.

7b. Use your diasto test that it works.

8. Execute set -x to display shell expansion for every command.

9. Test the functionality of set -x by executing your city and rm aliases.
10 Execute set +x to stop displaying shell expansion.

11. Remove your city alias.

12. What is the location of the cat and the passwd commands ?

13. Explain the difference between the following commands:
echo

/ bi n/ echo

14. Explain the difference between the following commands:
echo Hello

echo -n Hello
15. Display A B C with two spaces between B and C.

(optional) 16. Complete the following command (do not use spaces) to display exactly
the following output:

4+4 =8
10+14 =24

18. Use echo to display the following exactly:

?22\\

79

commands and arguments

Find two solutionswith single quotes, two with doubl e quotes and one without quotes
(and say thank you to René and Darioush from Google for this extra).

19. Use one echo command to display three words on three lines.

80

commands and arguments

10.7. solution: commands and arguments

1. How many arguments arein this line (not counting the command itself).
touch '/etc/cron/cron.allow 'file 42.txt' "file 33.txt"

answer: three

2. Istac a shell builtin command ?

type tac

3. Isthere an existing aliasfor rm ?

alias rm

4. Read the man page of rm, make sure you understand the -i option of rm. Create
and remove afileto test the -i option.

mn rm

touch testfile

rm-i testfile
5. Execute: alias rm="rm -i' . Test your alias with a test file. Does this work as
expected ?

touch testfile

rmtestfile (should ask for confirnmation)

6. List al current aliases.

alias

7a. Create an alias called 'city" that echoes your hometown.

alias city="echo Antwerp

7b. Useyour diasto test that it works.

city (it should display Antwerp)

8. Execute set -x to display shell expansion for every command.

set -x

9. Test the functionality of set -x by executing your city and rm aliases.

shell should display the resolved aliases and then execute the comand
paul @eh503: ~$ set -x

paul @eb503: ~$ city

+ echo antwerp
antwerp

10 Execute set +x to stop displaying shell expansion.

set +x

11. Remove your city alias.

81

commands and arguments

unalias city

12. What is the location of the cat and the passwd commands ?
whi ch cat (probably /bin/cat)

whi ch passwd (probably /usr/bin/passwd)

13. Explain the difference between the following commands:
echo

/ bi n/ echo

The echo command will be interpreted by the shell as the built-in echo command.
The /bin/echo command will make the shell execute the echo binary located in the
/bin directory.

14. Explain the difference between the following commands:
echo Hello

echo -n Hello

The-n option of the echo command will prevent echo from echoing atrailing newline.
echoHellowill echo six charactersintotal, echo -n hello only echoesfive characters.

(The -n option might not work in the Korn shell.)

15. Display A B C with two spaces between B and C.

echo "A B C'

16. Complete the following command (do not use spaces) to display exactly the
following output:

4+4 =8
10+14 =24

The solution is to use tabs with \t.

echo -e "4+4\t=8" ; echo -e "10+14\t=24"

18. Use echo to display the following exactly:

?22\\

echo ' ?2?2\\'

echo -e "' ?2?2\\\\'
echo "2?22\\\\"

echo -e "22\\\\\\"
echo ??2\\\\

Find two solutionswith single quotes, two with doubl e quotes and one without quotes
(and say thank you to René and Darioush from Google for this extra).

19. Use one echo command to display three words on three lines.

echo -e "one \ntwo \nthree"

82

Chapter 11. control operators

Table of Contents

11105 SEMICOION oo 84
R = 11110 < £ o S 84
11.3. $? dollar QUESLION MArKccvvveeieeieisieere e 84
11.4. && double ampersandccccevieceieere e 85
11.5. || double vertical barccooieieieeiice e 85
11.6. combiniNg & & AN || c.vevveereeeieeeee e 85
A= 2 o T o 1S T o S 86
11.8. \ escaping special CharaCtersocevveceieece e 86
11.9. practice: CONrOl OPEIALOISc.eceeeueerieeeesreesieeee e seeee s sre e e eee e 87
11.10. solution: CONIOl OPEIELOISc.cceerieeieseesieeiesee e eee e sre e sreeeeeneeneeas 88

In this chapter we put more than one command on the command line using contr ol
operators. We aso briefly discuss related parameters ($?) and similar special
characters(&).

83

control operators

11.1.

11.2.

11.3.

- semicolon

Y ou can put two or more commands on the same line separated by a semicolon ; .
The shell will scan the line until it reaches the semicolon. All the arguments before
this semicolon will be considered a separate command from all the arguments after
the semicolon. Both series will be executed sequentially with the shell waiting for
each command to finish before starting the next one.

[paul @RHELV4u3 ~]$ echo Hell o

Hel | o

[paul @GRHELV4u3 ~]$ echo Wrld

World

[paul @RHELV4u3 ~]$ echo Hello ; echo Wirld
Hel | o

World

[paul @GRHELV4u3

l

1$

& ampersand

When a line ends with an ampersand &, the shell will not wait for the command
to finish. You will get your shell prompt back, and the command is executed in
background. Y ou will get a message when this command has finished executing in
background.

[paul @RHELV4u3 ~]$ sleep 20 &

[1] 7925

[paul @GRHELV4u3 ~] $

...wait 20 seconds...

[paul @GRHELV4u3 ~] $

[1]+ Done sl eep 20

The technical explanation of what happens in this case is explained in the chapter
about processes.

$? dollar question mark

The exit code of the previous command is stored in the shell variable $?. Actually $?
isashell parameter and not a variable, since you cannot assign avalueto $?.

paul @ebi an5: ~/test$ touch filel
paul @lebi an5: ~/test$ echo $?

0

paul @ebi an5: ~/test$ rmfilel
paul @ebi an5: ~/test$ echo $?

0

paul @lebi an5: ~/test$ rmfilel
rm cannot renpve “filel': No such file or directory
paul @ebi an5: ~/test$ echo $?

1

paul @lebi an5: ~/test$

control operators

11.4. && double ampersand

11.5

11.6

The shell will interpret & & asalogical AND. Whenusing & & the second command
is executed only if the first one succeeds (returns a zero exit status).

paul @arry: ~$ echo first && echo second
first

second

paul @arry: ~$ zecho first && echo second
-bash: zecho: command not found

Another example of the same logical AND principle. This example starts with a
working cd followed by |s, then a non-working cd which is not followed by Is.

[paul @RHELV4u3 ~]$ cd gen && |'s

filel file3 File55 fileab FileAB fileabc
file2 Filed FileA Fileab fileab2

[paul @RHELv4u3 gen] $ cd gen && I's

-bash: cd: gen: No such file or directory

|| double vertical bar

The || represents alogical OR. The second command is executed only when the first
command fails (returns a non-zero exit status).

paul @arry: ~$ echo first || echo second ; echo third
first

third

paul @arry: ~$ zecho first || echo second ; echo third
- bash: zecho: command not found

second

third

paul @arry: ~$

Another example of the same logical OR principle.

[paul @RHELV4u3 ~]$ cd gen || Is

[paul @RHELv4u3 gen]$ cd gen || Is

-bash: cd: gen: No such file or directory
filel file3 File55 fileab FileAB fileabc
file2 Filed FileA Fileab fileab2

combining && and ||

You can use this logical AND and logical OR to write an if-then-else structure on
the command line. This example uses echo to display whether the rm command was
successful.

paul @ai ka: ~/test$ rmfilel & echo It worked! || echo It failed
It worked!

paul @ai ka: ~/test$ rmfilel &k echo It worked! || echo It failed
rm cannot renove filel': No such file or directory

It failed!

paul @ ai ka: ~/test$

85

control operators

11.7. # pound sign

Everything written after a pound sign (#) isignored by the shell. This is useful to
write a shell comment, but has no influence on the command execution or shell

expansion.

paul @ebi an4: ~$ nkdir test # we create a directory
paul @ebi an4: ~$ cd test #### we enter the directory
paul @ebi an4: ~/test$ |Is #is it enmpty ?

paul @lebi an4: ~/test$

11.8. \ escaping special characters

The backslash \ character enables the use of control characters, but without the shell
interpreting it, thisis called escaping characters.

[paul @RHELv4u3 ~]$ echo hello \; world

hello ; world

[paul @GRHELv4u3 ~]$ echo hello\ \ \ world

hell o wor | d

[paul @RHELV4u3 ~]$ echo escaping \\\ \# V& \"\ \'
escaping \ # & " '

[paul @GRHELv4u3 ~]$ echo escaping \\\ 2\ *\"\'
escaping \ ?2*"'

end of line backslash

Linesending in abackslash are continued on the next line. The shell doesnot interpret
the newline character and will wait on shell expansion and execution of the command
line until a newline without backslash is encountered.

[paul @RHEL4b ~]$ echo This command |ine \
> is split in three \

> parts

This command line is split in three parts
[paul @GRHEL4b ~]1 $

86

control operators

11.9. practice: control operators

0. Each question can be answered by one command line!
1. When you type passwd, which file is executed ?

2. What kind of fileisthat ?

3. Execute the pwd command twice. (remember 0.)

4. Execute |s after cd /etc, but only if cd /etc did not error.
5. Execute cd /etc after cd etc, but only if cd etc fails.

6. Echo it worked when touch test42 works, and echo it failed when the touch
failed. All on one command line as a normal user (not root). Test this line in your
home directory and in /bin/ .

7. Execute sleep 6, what is this command doing ?
8. Execute sleep 200 in background (do not wait for it to finish).

9. Write a command line that executes rm fileb5. Y our command line should print
'success if fileb5 isremoved, and print 'failed' if there was a problem.

(optional)10. Use echo to display "Hello World with strange' characters\ * [} ~\
\." (including all quotes)

87

control operators

11.10. solution: control operators

0. Each question can be answered by one command line!

1. When you type passwd, which file is executed ?

whi ch passwd

2. What kind of fileisthat ?

file /usr/bin/passwd

3. Execute the pwd command twice. (remember 0.)

pwd ; pwd

4. Execute Is after cd /etc, but only if cd /etc did not error.

cd /etc && I's

5. Execute cd /etc after cd etc, but only if cd etc fails.

cd etc || cd /etc

6. Echo it worked when touch test42 works, and echo it failed when the touch
failed. All on one command line as a normal user (not root). Test this line in your
home directory and in /bin/ .

paul @eb503: ~$ cd ; touch test42 && echo it worked || echo it failed

it worked

paul @eb503: ~$ cd /bin; touch test42 & & echo it worked || echo it failed

touch: cannot touch “test42': Perm ssion denied
it failed

7. Execute leep 6, what is this command doing ?

pausi ng for six seconds

8. Execute sleep 200 in background (do not wait for it to finish).

sl eep 200 &

9. Write a command line that executes rm file55. Y our command line should print
'success if fileb5 isremoved, and print 'failed' if there was a problem.

rmfileb5 & & echo success || echo failed

(optional)10. Use echo to display "Hello World with strange' characters\ * [} ~\
\." (including all quotes)
echo \"Hello Wirld with strange\' characters \\ * \[\} \~ \\\\ \ \"

or

echo \""Hello Wrld with strange' characters \ * [} ~\\ . "\"

88

Chapter 12. variables

Table of Contents

12.1. @DOUL VAITADIES ...ttt e enes 90
12.2. QUOLES ..ottt s s an e e 92
R T O 92
T 1 0. RSP 92
2T < 01 RSP 93
= o SRS OPRR 93
12.7. deliNEALe VAITADIESooeeveeeeee et 94
12.8. UNbOUND VANADIES ...t e 94
12.9. ShEll OPLIONS ... e 95
12.10. shell embeddingccocceiieece e s 96
12.11. practice: shell variables ..o 97
12.12. solution: ShEll VarabIESccueieieeeecee e 98

In this chapter we learn to manage environment variables in the shell. These
variables are often read by applications.

We also take a brief ook at child shells, embedded shells and shell options.

89

variables

12.1. about variables

$ dollar sign

Another important character interpreted by the shell is the dollar sign $. The shell
will look for an environment variable named like the string following the dollar
sign and replace it with the value of the variable (or with nothing if the variable does
not exist).

These are some examples using $HOSTNAME, $USER, $UID, $SHELL, and
$HOME.

[paul @RHELv4u3 ~]$ echo This is the $SHELL shel

This is the /bin/bash shel

[paul @RHELv4u3 ~]$ echo This is $SHELL on conputer $HOSTNAME
This is /bin/bash on conputer RHELv4u3.!| ocal dongin

[paul @RHELv4u3 ~]$ echo The userid of $USER is $U D

The userid of paul is 500

[paul @RHELv4u3 ~]$ echo My honedir is $HOVE

My horedir is /home/ pau

case sensitive

This example shows that shell variables are case sensitive!

[paul @RHELv4u3 ~]$ echo Hell o $USER
Hel | o pau

[paul GRHELv4u3 ~]1$ echo Hell o $user
Hel l o

$PS1

The $PS1 variable determines your shell prompt. You can use backslash escaped
special characterslike \u for the username or \w for the working directory. The bash
manual has a complete reference.

In this example we change the value of $PS1 a couple of times.

paul @eb503: ~$ PSl=pronpt

pr onpt

pronpt PS1=' pronpt '

pr onpt

pronpt PS1='>

>

> PS1="\u@h$ '

paul @eb503%

paul @eb503% PS1="\u@h:\ W'
paul @eb503: ~$

90

variables

To avoid unrecoverable mistakes, you can set normal user prompts to green and the
root prompt to red. Add the following to your .bashrc for a green user prompt:

col or pronpt by paul

RED="\[\033[01; 31m]"

VHI TE='\ [\ 033[01; 00m]

GREEN='\[\033[01; 32m]"'

BLUE='\[\033[01; 34m]'

export PS1="${debi an_chroot: +($debi an_chr oot)} SGREEN\ u$WHI TEGSBLUE\ h$\WHI TE\WA $ "

$PATH

The $PATH variable is determines where the shell is looking for commands to
execute (unless the command is builtin or aliased). This variable contains a list of
directories, separated by colons.

[[paul @RHEL4b ~]$ echo $PATH
/usr/ kerberos/bin:/usr/local/bin:/bin:/usr/bin:

The shell will not look in the current directory for commands to execute! (Looking
for executables in the current directory provided an easy way to hack PC-DOS
computers). If you want the shell to look in the current directory, then add a . at the
end of your $PATH.

[paul @GRHEL4b ~] $ PATH=$PATH: .

[paul @GRHEL4b ~]$ echo $PATH

[usr/ kerberos/bin:/usr/local/bin:/bin:/usr/bin:.
[paul @GRHEL4b ~] $

Y our path might be different when using su instead of su - because the latter will take
on the environment of the target user. The root user typically has /sbin directories
added to the $PATH variable.

[paul @GRHEL3 ~]$ su

Passwor d:

[root @RHEL3 paul] # echo $PATH
[usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin

[root @RHEL3 paul [# exit

[paul @GRHEL3 ~] $ su -

Passwor d:

[root @RHEL3 ~]# echo $PATH
[usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:
[root @GRHEL3 ~] #

creating variables

This example creates the variable $MyVar and sets its value. It then uses echo to
verify the value.

[paul @GRHELv4u3 gen] $ MyVar =555

[paul @RHELv4u3 gen] $ echo $MyVar
555

[paul @GRHELv4u3 gen] $

91

variables

12.2.

12.3.

12.4.

quotes

Notice that double quotes still allow the parsing of variables, whereas single quotes
prevent this.

[paul @RHELV4u3 ~]$ MyVar =555

[paul @RHELV4u3 ~]$ echo $MyVar
555

[paul @RHELV4u3 ~]$ echo "$MyVar"
555

[paul @RHELv4u3 ~]$ echo ' $MyVar'
$MyVar

The bash shell will replace variables with their value in double quoted lines, but not
in single quoted lines.

paul @ ai ka: ~$ city=Burtonville

paul @ ai ka: ~$ echo "W are in $city today."

We are in Burtonville today.

paul @ ai ka: ~$ echo 'W are in $city today."'
We are in $city today.

set

Y ou can use the set command to display alist of environment variables. On Ubuntu
and Debian systems, the set command will aso list shell functions after the shell
variables. Use set | mor e to see the variables then.

unset

Use the unset command to remove a variable from your shell environment.

[paul @GRHEL4b ~]$ MyVar =8472
[paul @RHEL4b ~1$ echo $MyVar
8472

[paul @RHEL4b ~]$ unset MyVar
[paul @RHEL4b ~]1$ echo $MyVar

[paul @GRHEL4b ~] $

92

variables

12.5. env

12.6.

The env command without options will display a list of exported variables. The
difference with set with options is that set lists all variables, including those not
exported to child shells.

But env can aso be used to start a clean shell (a shell without any inherited
environment). The env -i command clears the environment for the subshell.

Notice in this screenshot that bash will set the $SHEL L variable on startup.

[paul @RHEL4b ~]$ bash -c 'echo $SHELL $HOVE $USER

/ bi n/ bash / homre/ paul paul

[paul @RHEL4b ~]$ env -i bash -c 'echo $SHELL $HOVE $USER
/ bi n/ bash

[paul @GRHEL4b ~]1 $

You can use the env command to set the $LANG, or any other, variable for just
one instance of bash with one command. The example below uses this to show the
influence of the 3L ANG variable on file globbing (see the chapter on file globbing).

[paul @RHEL4b test]$ env LANG=C bash -c 'Is File[a-2z]"

Filea Fileb

[paul @GRHEL4b test]$ env LANG=en_US. UTF-8 bash -c¢ 'Is File[a-z]'
Filea FileA Fileb FileB

[paul @GRHEL4b test]$

export

Y ou can export shell variables to other shells with the export command. This will
export the variable to child shells.

[paul @GRHEL4b ~]$ var 3=t hree

[paul @RHEL4b ~]$ var 4=f our

[paul @GRHEL4b ~]1$ export var4

[paul @GRHEL4b ~]1$ echo $var3 $var4
three four

[paul @RHEL4b ~]$ bash

[paul @GRHEL4b ~]1$ echo $var3 $var4
f our

But it will not export to the parent shell (previous screenshot continued).

[paul @GRHEL4b ~]$ export var5=five

[paul @RHEL4b ~]$ echo $var3 $var4 $varb
four five

[paul @GRHEL4b ~]$ exit

exit

[paul @RHEL4b ~]$ echo $var3 $var4 $varb
three four

[paul @GRHEL4b

1

1$

93

variables

12.7. delineate variables

12.8

Until now, we have seen that bash interprets a variable starting from a dollar sign,
continuing until the first occurrence of a non-alphanumeric character that is not an
underscore. In some situations, this can be a problem. Thisissue can be resolved with
curly braces like in this example.

[paul @RHEL4b ~] $ prefi x=Super

[paul @RHEL4b ~]$ echo Hell o $prefixman and $prefixgirl

Hello and

[paul @RHEL4b ~] $ echo Hello ${prefix}man and ${prefix}girl

Hel | o Supernman and Supergirl
[paul @GRHEL4b ~]1 $

unbound variables

The example below tries to display the value of the $MyVar variable, but it fails
because the variable does not exist. By default the shell will display nothing when a
variable is unbound (does not exist).

[paul @RHELv4u3 gen] $ echo $MyVar

[paul @GRHELv4u3 gen] $

There is, however, the nounset shell option that you can use to generate an error
when avariable does not exist.

paul @ ai ka: ~$ set -u

paul @ ai ka: ~$ echo $Myvar

bash: Myvar: unbound variable

paul @ ai ka: ~$ set +u
paul @ ai ka: ~$ echo $Myvar

paul @ ai ka: ~$

In the bash shell set -u isidentical to set -0 nounset and likewise set +u isidentical
to set +0 nounset.

94

variables

12.9. shell options

Both set and unset are builtin shell commands. They can be used to set options of
the bash shell itself. The next example will clarify this. By default, the shell will treat
unset variables as a variable having no value. By setting the -u option, the shell will
treat any reference to unset variables as an error. See the man page of bash for more
information.

[paul @RHEL4b ~]$ echo $var123

[paul @GRHEL4b ~]$ set -u

[paul @RHEL4b ~]$ echo $var123
-bash: var123: unbound vari abl e
[paul @GRHEL4b ~]$ set +u

[paul @RHEL4b ~]$ echo $var123

[paul @GRHEL4b ~] $

To list al the set options for your shell, use echo $-. The noclobber (or -C) option
will be explained later in this book (in the I/O redirection chapter).

[paul @GRHEL4b ~]$ echo $-

hi nBH

[paul GRHEL4b ~]$ set -C; set -u
[paul @GRHEL4b ~]$ echo $-

hi muBCH

[paul @GRHEL4b ~]$ set +C ; set +u
[paul @GRHEL4b ~]$ echo $-

hi nBH

[paul @GRHEL4b ~]1$

When typing set without options, you get alist of all variables without function when
the shell is on posix mode. Y ou can set bash in posix mode typing set -0 posix.

95

variables

12.10. shell embedding

Shells can be embedded on the command line, or in other words, the command line
scan can spawn new processes containing a fork of the current shell. You can use
variables to prove that new shells are created. In the screenshot below, the variable
$varl only existsin the (temporary) sub shell.

[paul @RHELv4u3 gen] $ echo $varl

[paul @RHELv4u3 gen] $ echo $(var 1=5; echo $varl)
5
[paul @RHELv4u3 gen] $ echo $varl

[paul @GRHELv4u3 gen] $

Y ou can embed a shell in an embedded shell, this is called nested embedding of
shells.

This screenshot shows an embedded shell inside an embedded shell.

paul @ehbh503: ~$ A=shel |
paul @eb503: ~$ echo CB$A $(B=sub; echo CB$A; echo $(C=sub; echo CB$A))
shell subshell subsubshell

backticks

Single embedding can be useful to avoid changing your current directory. The
screenshot below uses backticks instead of dollar-bracket to embed.

[paul @RHELv4u3 ~]$ echo “cd /etc; |Is -d * | grep pass’
passwd passwd- passwd. OLD
[paul @GRHELV4u3 ~]1$

Y ou can only use the $() notation to nest embedded shells, backticks cannot do this.

backticks or single quotes

Pacing the embedding between backticks uses one character less than the dollar
and parenthesis combo. Be careful however, backticks are often confused with single
guotes. The technical difference between ' and " is significant!

[paul @RHELv4u3 gen] $ echo “var 1=5; echo $varl’
5

[paul @RHELv4u3 gen] $ echo 'var 1=5; echo $varl'
var 1=5; echo $varl

[paul @GRHELv4u3 gen] $

96

variables

12.11. practice: shell variables

1. Use echo to display Hello followed by your username. (use a bash variable!)
2. Create avariable answer with avalue of 42.

3. Copy the value of SLANG to SMyLANG.

4. List al current shell variables.

5. List al exported shell variables.

6. Do the env and set commands display your variable ?

6. Destroy your answer variable.

7. Find the list of shell options in the man page of bash. What is the difference
between set -u and set -0 nounset?

8. Create two variables, and export one of them.
9. Display the exported variable in an interactive child shell.

10. Create avariable, giveit the value'Dumb’, create another variable with value 'do'.
Use echo and the two variables to echo Dumbledore.

11. Activate nounset in your shell. Test that it shows an error message when using
non-existing variables.

12. Deactivate nounset.

13. Find the list of backslash escaped charactersin the manual of bash. Add the time
to your PS1 prompt.

14. Execute cd /var and Isin an embedded shell.

15. Create the variable embvar in an embedded shell and echo it. Does the variable
exist in your current shell now ?

16. Explain what "set -x" does. Can this be useful ?

(optional)17. Given the following screenshot, add exactly four characters to that
command line so that the total output is FirstMiddleL ast.

[paul @RHEL4b ~]$ echo First; echo Mddle; echo Last

18. Display along listing (Is-I) of the passwd command using the which command
inside back ticks.

97

variables

12.12. solution: shell variables

1. Use echo to display Hello followed by your username. (use a bash variable!)

echo Hell o $USER

2. Create avariable answer with avalue of 42.

answer =42

3. Copy the value of SLANG to SMyLANG.

MyLANG=$LANG

4. List al current shell variables.

set

set | nore on Ubunt u/ Debi an

5. List all exported shell variables.

env

6. Do the env and set commands display your variable ?

env | nore
set | nore

6. Destroy your answer variable.

unset answer

7. Find the list of shell options in the man page of bash. What is the difference
between set -u and set -0 nounset?

read the manual of bash (man bash), search for nounset -- both mean the same thing.

8. Create two variables, and export one of them.

var 1=1; export var2=2

9. Display the exported variable in an interactive child shell.

bash
echo $var2

10. Create avariable, giveit the value'Dumb’, create another variable with value'do'.
Use echo and the two variables to echo Dumbledore.
var x=Dunb; vary=do

echo ${varx}le${vary}re
solution by Yves fromDexia : echo $varx'le $vary're
solution by Erwin from Tel enet : echo "$varx"le"$vary"re

11. Activate nounset in your shell. Test that it shows an error message when using
non-existing variables.

98

variables

set -u
OoR
set -0 nounset

Both these lines have the same effect.

12. Deactivate nounsset.
set +u

R
set +0 nounset

13. Find the list of backslash escaped charactersin the manual of bash. Add the time
to your PS1 prompt.

PS1="\t \u@h \W '

14. Execute cd /var and Isin an embedded shell.

echo $(cd /var ; Is)

The echo command is only needed to show the result of the Is command. Omitting
will result in the shell trying to execute the first file as a command.

15. Create the variable embvar in an embedded shell and echo it. Does the variable
exist in your current shell now ?

$(enbvar =enb; echo $enbvar) ; echo $enbvar (the last echo fails).

$enbvar does not exist in your current shel

16. Explain what "set -x" does. Can this be useful ?

It displays shell expansion for troubl eshooting your comrand.

(optional)17. Given the following screenshot, add exactly four characters to that
command line so that the total output is FirstMiddleL ast.

[paul @RHEL4b ~]$ echo First; echo Mddle; echo Last

echo -n First; echo -n Mddle; echo Last

18. Display along listing (Is -I) of the passwd command using the which command
inside back ticks.

I's -1 “which passwd’

99

Chapter 13. shell history

Table of Contents

13.1. repeating the [ast commandcccoveeieeiiceeceee e 101
13.2. repeating other COMMEANGScceveeiieiesiere e 101
TG T 011 (o] Y 101
20 o SRS 101
T T O 1 1 ST 102
13.6. BHISTSIZE ..ottt 102
13.7. BHISTFILE oot 102
13.8. FHISTFILESIZEcooeeeieieeeeeece sttt 102
13.9. (optional)regular EXPrESSIONScccccueieereeriereerreeeeseesseeseeseesseeseesseesseenees 103
13.10. (optional)repeating commands iN KSNccccceveeiveieneere e 103
13.11. practice: shell NISLOrY ..o e 104
13.12. solution: ShEll NISLOrYccveceeeceee e 105

The shell makesit easy for usto repeat commands, this chapter explains how.

100

shell history

13.1. repeating the last command

To repeat the last command in bash, type !!. Thisis pronounced as bang bang.

paul @ebi an5: ~/test42$ echo this will be repeated > fil ed42.txt
paul @lebi an5: ~/test 42$!!

echo this will be repeated > file42.txt

paul @lebi an5: ~/t est 42$

13.2. repeating other commands

Y ou can repeat other commands using one bang followed by one or more characters.
The shell will repeat the last command that started with those characters.

paul @lebi an5: ~/test 42$ touch file42
paul @lebi an5: ~/test42$ cat filed2
paul @lebi an5: ~/test42$!to

touch file42

paul @lebi an5: ~/ t est 42$%

13.3. history

To see older commands, use history to display the shell command history (or use
history n to see the last n commands).

paul @ebi an5: ~/test$ history 10

38 nkdir test

39 «cd test

40 touch filel

41 echo hello > file2

42 echo It is very cold today > winter.txt

43 |Is

44 |s -I

45 cp winter.txt sunmer.txt
46 |s -1

47 history 10

13.4.In

When typing ! followed by the number preceding the command you want repeated,
then the shell will echo the command and execute it.

paul @lebi an5: ~/test$!43
I's
filel file2 sumrer.txt wnter.txt

101

shell history

13.5.

13.6.

13.7.

13.8.

Ctrl-r

Another option isto use ctrl-r to search in the history. In the screenshot below i only
typed ctr-r followed by four charactersapti and it findsthe last command containing
these four consecutive characters.

paul @ebi an5: ~$
(reverse-i-search) apti': sudo aptitude install screen

SHISTSIZE

The $HISTSIZE variable determines the number of commands that will be
remembered in your current environment. Most distributions default this variable to
500 or 1000.

paul @ebi an5: ~$ echo $HI STSI ZE
500

Y ou can change it to any value you like.
paul @ebi an5: ~$ H STSI ZE=15000

paul @ebi an5: ~$ echo $H STSI ZE
15000

SHISTFILE

The $HISTFILE variable points to the file that contains your history. The bash shell
defaults thisvalue to ~/.bash_history.

paul @ebi an5: ~$ echo $H STFI LE
/ home/ paul /. bash_hi story

A session history is saved to this file when you exit the session!

Closing a gnome-terminal with the mouse, or typing reboot as root will NOT save
your terminal’s history.

SHISTFILESIZE

The number of commands kept in your history file can be set using $HISTFILESIZE.

paul @ebi an5: ~$ echo $HI STFI LESI ZE
15000

102

shell history

13.9. (optional)regular expressions

It is possible to use regular expressions when using the bang to repeat commands.
The screenshot below switches 1 into 2.

paul @lei anb5: ~/test$ cat filel
paul @lebi an5: ~/test$!c:s/1/2
cat file2

hell o

paul @lebi an5: ~/test$

13.10. (optional)repeating commands in ksh

Repeating acommand in the Korn shell isvery similar. The Korn shell aso hasthe
history command, but usesthe letter r to recall lines from history.

This screenshot shows the history command. Note the different meaning of the
parameter.

$ history 17
17 clear

18 echo hoi
19 history 12
20 echo world
21 history 17

Repeating with r can be combined with the line numbers given by the history
command, or with the first few letters of the command.

$r e

echo world
wor | d

$ cd /etc
$r

cd /etc

$

103

shell history

13.11. practice: shell history

1. Issue the command echo The answer to the meaning of life, the universe and
everythingis42.

2. Repeat the previous command using only two characters (there are two solutions!)
3. Display the last 5 commands you typed.

4. Issue the long echo from question 1 again, using the line numbers you received
from the command in question 3.

5. How many commands can be kept in memory for your current shell session ?
6. Where are these commands stored when exiting the shell ?

7. How many commands can be written to the history file when exiting your current
shell session ?

8. Make sure your current bash shell remembers the next 5000 commands you type.

9. Open more than one console (press Ctrl-shift-t in gnome-terminal) with the same
user account. When is command history written to the history file ?

104

shell history

13.12. solution: shell history

1. Issue the command echo The answer to the meaning of life, the universe and
everythingis42.

echo The answer to the neaning of life, the universe and everything is 42

2. Repeat the previous command using only two characters (there are two solutions!)

le

3. Display the last 5 commands you typed.
paul @ibul1010: ~$ history 5

52 Is -

53 Is

54 df -h | grep sda

55 echo The answer to the neaning of life, the universe and everything is 42
56 history 5

Y ou will receive different line numbers.

4. Issue the long echo from question 1 again, using the line numbers you received
from the command in question 3.

paul @bu1010: ~$! 56

echo The answer to the neaning of life, the universe and everything is 42
The answer to the nmeaning of life, the universe and everything is 42

5. How many commands can be kept in memory for your current shell session ?

echo $H STSI ZE

6. Where are these commands stored when exiting the shell ?

echo $H STFI LE

7. How many commands can be written to the history file when exiting your current
shell session ?

echo $HI STFI LESI ZE

8. Make sure your current bash shell remembers the next 5000 commands you type.

HI STSI ZE=5000

9. Open more than one console (press Ctrl-shift-t in gnome-terminal) with the same
user account. When is command history written to the history file ?

when you type exit

105

Chapter 14. file globbing

Table of Contents

= S (= 1 PSRRI 107
14.2. 2 QUESHION MAK ...ooeeeiece et nnn 107
14.3. [] SQUAIE DraCKeLSc.cceeiieeeiiee e 107
14.4. &Z AN 0-9 FANGESeoiveeveeee e sieereesee e te e sreesee e seeteeseesreesseeneesneesens 108
14.5. SLANG and square braCketsccoveevreenenerisieienserese s 108
14.6. preventing file globbing ... 109
14.7. practice: shell globbingccovevveece e 110
14.8. solution: shell globbingccccvieiiiec e 111

The shell isalso responsiblefor file globbing (or dynamic filename generation). This
chapter will explain file globbing.

106

file globbing

14.1.

14.2.

14.3.

* asterisk

The asterisk * is interpreted by the shell as a sign to generate filenames, matching
the asterisk to any combination of characters (even none). When no path is given,
the shell will use filenamesin the current directory. See the man page of glob(7) for
more information. (Thisis part of LPI topic 1.103.3.)

[paul @GRHELv4u3 gen]$ I's

filel file2 file3 Filed File55 FileA fileab Fileab FileAB fileabc
[paul @GRHELvV4u3 gen]$ |Is File*

Filed File55 FileA Fileab FileAB
[paul @GRHELV4u3 gen]$ Is file*

filel file2 file3 fileab fileabc
[paul @GRHELv4u3 gen]$ I's *ile55

Fi | e55

[paul @GRHELv4u3 gen]$ I's F*ileb5

Fi | e55

[paul @GRHELv4u3 gen]$ |'s F*55

Fi | e55

[paul @GRHELv4u3 gen] $

? question mark

Similar to the asterisk, the question mark ? is interpreted by the shell as a sign to
generate filenames, matching the question mark with exactly one character.

[paul @GRHELv4u3 gen]$ I's

filel file2 file3 Filed Fileb5 FileA fileab Fileab FileAB fileabc
[paul @GRHELv4u3 gen]$ Is File?
Filed FileA

[paul @GRHELV4u3 gen]$ Is Fil 74
File4

[paul @GRHELv4u3 gen]$ Is Fil ??
Filed FileA

[paul @GRHELv4u3 gen]$ I's File??
File55 Fileab FileAB

[paul @GRHELv4u3 gen] $

[] square brackets

The square bracket [is interpreted by the shell as a sign to generate filenames,
matching any of the characters between [and the first subsequent]. The order in this
list between the bracketsis not important. Each pair of bracketsisreplaced by exactly
one character.

[paul @GRHELv4u3 gen]$ I's

filel file2 file3 Filed File55 FileA fileab Fileab FileAB fileabc
[paul @GRHELv4u3 gen]$ |'s Fil e[5A]

FileA

[paul @GRHELv4u3 gen]$ |'s Fil e[A5]

Fil eA

[paul @RHELv4u3 gen]$ |'s Fil e[A5][5b]

Fi | e55

[paul @RHELv4u3 gen]$ |I's File[a5][5b]

File55 Fileab

107

file globbing

14.4.

14.5.

[paul @RHELv4u3 gen]$ |I's File[a5][5b][abcdefghijkln

I's: File[a5][5b][abcdefghijklm: No such file or directory
[paul @RHELv4u3 gen]$ Is file[a5][5b][abcdefghijkln
fileabc

[paul @GRHELv4u3 gen] $

You can aso exclude characters from a list between sguare brackets with the
exclamation mark . And you are allowed to make combinations of thesewild cards.

[paul @GRHELV4u3 gen]$ I's

filel file2 file3 Filed4d Fileb5 FileA fileab Fileab FileAB fileabc
[paul @GRHELv4u3 gen]$ Is file[a5][!Z]

fileab

[paul GRHELvV4u3 gen]$ Is file[!5]*

filel file2 file3 fileab fileabc

[paul @GRHELv4u3 gen]$ Is file[!5]?

fileab

[paul @GRHELvV4u3 gen] $

a-z and 0-9 ranges

The bash shell will a'so understand ranges of characters between brackets.

[paul @RHELv4u3 gen] $ |'s

filel file3 Fileb55 fileab FileAB fileabc
file2 Filed FileA Fileab fileab2

[paul @RHELV4u3 gen]$ Is file[a-z]*

fileab fileab2 fileabc

[paul @RHELv4u3 gen]$ Is file[0-9]

filel file2 file3

[paul @RHELv4u3 gen]$ |Is file[a-z][a-2z][0-9]*
fileab2

[paul @GRHELV4u3 gen] $

$SLANG and square brackets

But, don't forget the influence of the LANG variable. Some languages include lower
case lettersin an upper case range (and vice versa).

paul @GRHELv4u4: ~/test$ Is [A-Z]ile?
filel file2 file3 File4d

paul @GRHELv4u4: ~/test$ |s [a-z]ile?
filel file2 file3 File4d

paul @RHELv4u4: ~/test$ echo $LANG
en_US. UTF- 8

paul @RHELv4u4: ~/test$ LANG=C

paul @RHELv4u4: ~/test$ echo $LANG
C

paul @GRHELv4u4: ~/test$ |s [a-z]ile?
filel file2 file3

paul @GRHELv4u4: ~/test$ Is [A-Z]ile?
File4d

paul @RHELv4u4: ~/test $

108

file globbing

14.6. preventing file globbing

The screenshot below should be no surprise. The echo * will echo a* when in an
empty directory. And it will echo the names of al files when the directory is not
empty.

paul @ibu1010: ~$ nkdir test42

paul @ibul1010: ~$ cd test42
paul @ibu1010: ~/ t est 42$ echo *
*

paul @ibul1010: ~/test42$ touch filed42 fil e33

paul @ibu1010: ~/ t est 42$ echo *
file33 file42

Globbing can be prevented using quotes or by escaping the special characters, as
shown in this screenshot.

paul @bul1010: ~/ t est 42$ echo *
file33 file42

paul @bu1010: ~/t est 42$% echo *
paul @bul1010: ~/t est 42$ echo ' *'

paul @bul1010: ~/t est 42$ echo "*"

109

file globbing

14.7. practice: shell globbing

1. Create atest directory and enter it.

2. Create filesfilel filelO filell file2 File2 File3 file33 fileAB fileafileA fileAAA
file(file 2 (the last one has 6 characters including a space)

3. List (with Is) all files starting with file

4. List (with Is) al files starting with File

5. List (with Is) all files starting with file and ending in a number.

6. List (with Is) all files starting with file and ending with a letter

7. List (with Is) al files starting with File and having a digit as fifth character.

8. List (with Is) all files starting with File and having a digit as fifth character and
nothing else.

9. List (with Is) all files starting with aletter and ending in a number.
10. List (with Is) all files that have exactly five characters.
11. List (with Is) all filesthat start with f or F and end with 3 or A.

12. List (with Is) al files that start with f have i or R as second character and end
in anumber.

13. List all filesthat do not start with the letter F.
14. Copy the value of 3LANG to SMYLANG.
15. Show the influence of SLANG in listing A-Z or a-z ranges.

16. You receive information that one of your servers was cracked, the cracker
probably replaced the Is command. Y ou know that the echo command is safe to use.
Can echo replace Is ? How can you list the files in the current directory with echo ?

17. Isthere another command besides cd to change directories ?

110

file globbing

14.8. solution: shell globbing

1. Create atest directory and enter it.

nkdir testdir; cd testdir

2. Create filesfilel filelO filell file2 File2 File3 file33 fileAB fileafileA fileAAA
file(file 2 (the last one has 6 characters including a space)

touch filel filelO filell file2 File2 File3

touch file33 fileAB filea fileA fil eAAA

touch "file("
touch "file 2"

3. List (with |s) all files starting with file

Is file*

4. List (with Is) al files starting with File

I's File*

5. List (with |s) al files starting with file and ending in a number.

I's file*[0-9]

6. List (with Is) all files starting with file and ending with a letter

Is file*[a-z]

7. List (with Is) al files starting with File and having a digit as fifth character.
Is File[0-9]*

8. List (with Is) all files starting with File and having a digit as fifth character and
nothing else.

I's File[0-9]
9. List (with Is) all files starting with aletter and ending in a number.
Is [a-z]*[0-9]

10. List (with Is) all files that have exactly five characters.

|'s 27?277

11. List (with Is) all files that start with f or F and end with 3 or A.

I's [fF]*[3A]

12. List (with Is) al files that start with f have i or R as second character and end
in anumber.

I's f[iR*[0-9]

13. List all filesthat do not start with the letter F.

I's ['F]*

111

file globbing

14. Copy the value of $LANG to SMyLANG.

My LANG=SLANG

15. Show the influence of SLANG in listing A-Z or a-z ranges.

see exanpl e in book

16. You receive information that one of your servers was cracked, the cracker
probably replaced the Is command. Y ou know that the echo command is safe to use.
Can echo replace Is ? How can you list the files in the current directory with echo ?

echo *

17. Isthere another command besides cd to change directories ?

pushd popd

112

Part IV. pipes and commands

Chapter 15. redirection and pipes

Table of Contents

15.1. stdin, Stdout, and SHAEITcceieiireeeeee e 115
15.2. OULPUL FEUITECLIONcuveeeeieee ettt nne e 115
(RSN (o g = o [= oi (o] ISR 117
15.4. INPUL FEAITECLION ...o.eeeieeecec et 118
15.5. confusiNg redir@CLIONcceeiieeieeiierie e 119
15.6. QUICK TIl@ ClEAI ...c.eeeeeee e 119
15.7. swapping stdout and SEAEITccceeeeieieceere e 119
G381 o= 120
15.9. practice: redirection and PIPESeeveveereeieeieseere e 121
15.10. solution: redirection and PIPEScccveveeieereereere e 122

One of the powers of the Unix command line is the use of redirection and pipes.

This chapter first explains redirection of input, output and error streams. It then
introduces pipes that consist of several commands.

114

redirection and pipes

15.1. stdin, stdout, and stderr

The shell (and almost every other Linux command) takes input from stdin (stream
0) and sends output to stdout (stream 1) and error messagesto stderr (stream 2) .

The keyboard often serves as stdin, stdout and stderr both go to the display. The
shell allows you to redirect these streams.

15.2. output redirection

> stdout

stdout can be redirected with agreater than sign. While scanning the line, the shell
will see the > sign and will clear thefile.

[paul @RHELV4u3 ~]$ echo It is cold today!

It is cold today!

[paul @RHELV4u3 ~]$ echo It is cold today! > winter.txt
[paul @RHELV4u3 ~]$ cat winter.txt

It is cold today!

[paul @GRHELV4u3 ~]1$

Note that the > notation is in fact the abbreviation of 1> (stdout being referred to
as stream 1.

output file is erased

To repeat: While scanning the line, the shell will see the > sign and will clear the
file! This means that even when the command fails, the file will be cleared!

[paul @GRHELV4u3 ~]$ cat winter.txt

It is cold today!

[paul @RHELV4u3 ~]$ zcho It is cold today! > winter.txt
-bash: zcho: command not found

[paul @GRHELV4u3 ~]$ cat winter.txt

[paul @GRHELV4u3 ~]$

noclobber

Erasing afile while using > can be prevented by setting the noclobber option.

[paul @GRHELv4u3 ~]$ cat winter.txt

It is cold today!

[paul @GRHELvV4u3 ~]$ set -0 nocl obber

[paul @GRHELv4u3 ~]1$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwite existing file

[paul @GRHELvV4u3 ~]$ set +o nocl obber

[paul @GRHELV4uU3 ~] $

115

redirection and pipes

overruling noclobber

The noclobber can be overruled with >|.

[paul @GRHELvV4u3 ~]$ set -0 nocl obber

[paul @GRHELv4u3 ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwite existing file

[paul @GRHELv4u3 ~]$ echo It is very cold today! > winter.txt
[paul @GRHELv4u3 ~]$ cat winter.txt

It is very cold today!

[paul @GRHELV4uU3 ~] $

>> append

Use >> to append output to afile.

[paul @GRHELV4u3 ~]$ echo It is cold today! > winter.txt

[paul @GRHELV4u3 ~]$ cat winter.txt

It is cold today!

[paul @GRHELV4u3 ~]$ echo Where is the summer ? >> winter.txt
[paul @GRHELV4u3 ~]$ cat winter.txt

It is cold today!

Wiere is the sumer ?

[paul @GRHELV4u3 ~]$

116

redirection and pipes

15.3. error redirection

2> stderr

Redirecting stderr isdonewith 2>. Thiscan be very useful to prevent error messages
from cluttering your screen. The screenshot below shows redirection of stdout to a
file, and stderr to /dev/null. Writing 1> is the same as >.

[paul @RHELV4u3 ~]$ find / > allfiles.txt 2> /dev/null
[paul @GRHELV4u3 ~]1$

2>&1

To redirect both stdout and stderr to the samefile, use 2>& 1.

[paul GRHELv4u3 ~]$ find / > allfiles_and_errors.txt 2>&1
[paul @GRHELV4uU3 ~] $

Note that the order of redirectionsis significant. For example, the command

Is > dirlist 2>&1

directs both standard output (file descriptor 1) and standard error (file descriptor 2)
to the file dirlist, while the command

Ils 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard error made a copy
of the standard output before the standard output was redirected to dirlist.

117

redirection and pipes

15.4. input redirection

< stdin

Redirecting stdin is done with < (short for 0<).

[paul @GRHEL4b ~]$ cat < text.txt

one

t wo

[paul @GRHEL4b ~]$ tr 'onetw 'ONEZZ' < text.txt
ONE

Z2Z0

[paul @GRHEL4b ~]1$

<< here document

The here document (sometimes called here-is-document) is a way to append input
until acertain sequence (usually EOF) isencountered. The EOF marker can be typed
literally or can be called with Ctrl-D.

[paul GRHEL4b ~]$ cat <<EOF > text.txt
> one

> two

> EOF

[paul @RHEL4b ~]$ cat text.txt

one

t wo

[paul @GRHEL4b ~]$ cat <<brol > text.txt
> brel

> brol

[paul @GRHEL4b ~]$ cat text.txt

br el

[paul @GRHEL4b ~]1 $

<<< here string

The here string can be used to directly pass strings to a command. The result is the
same as using echo string | command (but you have one less process running).

paul @bull10~$ base64 <<< |inux-training.be

bd udXgt dHIhaWspbntuYmJK

paul @ibul1110~$ base64 -d <<< bQd udXgt dHJhaWspbncuYniK
I'i nux-training. be

See rfc 3548 for more information about base64.

118

redirection and pipes

15.5.

15.6.

15.7.

confusing redirection

The shell will scan the whole line before applying redirection. The following
command lineis very readable and is correct.

cat winter.txt > snow. txt 2> errors.txt

But thisoneis aso correct, but less readable.

2> errors.txt cat winter.txt > snow. txt

Even thiswill be understood perfectly by the shell.

< winter.txt > snow. txt 2> errors.txt cat

quick file clear

So what is the quickest way to clear afile ?

>f 0o

And what is the quickest way to clear afile when the noclobber optionis set ?

>| bar

swapping stdout and stderr

When filtering an output stream, e.g. through a regular pipe (|) you only can filter
stdout. Say you want to filter out some unimportant error, out of the stderr stream.
This cannot be done directly, and you need to 'swap’ stdout and stderr. This can be
done by using a 4th stream referred to with number 3:

3>&1 1>&2 2>&3

This Tower Of Hanoi like construction uses atemporary stream 3, to be able to swap
stdout (1) and stderr (2). The following is an example of how to filter out all lines
in the stderr stream, containing $error.

$command 3>&1 1>&2 2>&3 | grep -v $error 3>&1 1>&2 2>&3

But in this example, it can be done in a much shorter way, by using a pipe on
STDERR:

[usr/ bi n/ $sonecommand | & grep -v $error

119

redirection and pipes

15.8. pipes
One of the most powerful advantages of Linux isthe use of pipes.

A pipe takes stdout from the previous command and sends it as stdin to the next
command. All commands in a pipe run simultaneously.

| vertical bar

Consider the following example.

paul @lebi an5: ~/test$ Is /etc > etcfiles.txt
paul @ebi an5: ~/test$ tail -4 etcfiles.txt
X11

xdg

xm

xpdf

paul @lebi an5: ~/test$

This can be written in one command line using a pipe.

paul @ebi an5: ~/test$ Is /etc | tail -4
X11

xdg

xm

xpdf

paul @lebi an5: ~/test$

The pipeisrepresented by avertical bar | between two commands.

multiple pipes

One command line can use multiple pipes. All commands in the pipe can run at the
sametime.

paul @eb503: ~/test$ Is /etc | tail -4 | tac
xpdf

xm

xdg

X11

120

redirection and pipes

15.9. practice: redirection and pipes

1. Use Isto output the contents of the /etc/ directory to afile called etc.txt.

2. Activate the noclobber shell option.

3. Verify that nocclobber is active by repeating your Ison /etc/.

4. When listing all shell options, which character represents the noclobber option ?
5. Deactivate the noclobber option.

6. Make sure you have two shells open on the same computer. Create an empty
tailing.txt file. Then typetail -f tailing.txt. Use the second shell to append aline of
text to that file. Verify that the first shell displaysthisline.

7. Create afile that contains the names of five people. Use cat and output redirection
to create the file and use a her e document to end the input.

121

redirection and pipes

15.10. solution: redirection and pipes

1. Use Isto output the contents of the /etc/ directory to afile called etc.txt.

|s /etc > etc.txt

2. Activate the noclobber shell option.

set -0 nocl obber

3. Verify that nocclobber is active by repeating your Ison /etc/.

Is /etc > etc.txt (should not work)

4. When listing all shell options, which character represents the noclobber option ?

echo $- (noclobber is visible as O

5. Deactivate the noclobber option.

set +0 nocl obber

6. Make sure you have two shells open on the same computer. Create an empty
tailing.txt file. Then typetail -f tailing.txt. Use the second shell to append aline of
text to that file. Verify that the first shell displaysthisline.

paul @eb503: ~$ > tailing.txt

paul @eb503: ~$ tail -f tailing.txt
hel | o

wor | d

in the other shell:
paul @eb503: ~$ echo hello >> tailing.txt
paul @eb503: ~$ echo world >> tailing.txt

7. Create afile that contains the names of five people. Use cat and output redirection
to create the file and use a her e document to end the input.

paul @eb503: ~$ cat > tennis.txt << ace
Justine Henin

Venus WIIians

Serena WIIlians

Martina H ngis
Kimdijsters

> ace

paul @eb503: ~$ cat tennis.txt
Justine Henin

Venus WIIlians

Serena WIIlians

Martina H ngis

Kimdijsters

paul @eb503: ~$

VVVYVYV

122

Chapter 16. filters

Table of Contents

G o7 OSSO PT PRSPPSO 124
16,2, LB ittt bt bbb a e 124
TS T o (= o TSSO ST RSP 124
G oL | PR PR 126
G T | SO PRRR 126
L6.6. WC ..ottt sttt b ettt b e bbb 127
16,7, SOMT ettt bbbttt b et bbbt 128
G20 T oo S 129
16.9. COMIM .o s e e ene e 129
G0 0 o o PSSPV 130
16.10. SBA ..ottt bbbttt bbb nae s 131
16.12. PIPE EXAMPIESeeveeieeie e e et e et e et ae e e teeaesreeaeeneenreenes 132
16.13. PractiCe: fIITErS ..ooiiiiee e ae s 133
16.14. SOIULION: THEENS .o e 134

Commands that are created to be used with a pipe are often called filters. These
filters are very small programs that do one specific thing very efficiently. They can
be used as building blocks.

This chapter will introduce you to the most common filters. The combination of
simple commands and filtersin along pipe allows you to design elegant solutions.

123

filters

16.1. cat

16.2.

16.3

When between two pipes, the cat command does nothing (except putting stdin on
stdout.

[paul @GRHEL4b pipes]$ tac count.txt | cat | cat | cat | cat | cat
five

f our

three

t wo

one

[paul @GRHEL4b pi pes] $

tee

Writing long pipesin Unix isfun, but sometimesyou might want intermediate results.
Thisiswere tee comesin handy. The tee filter puts stdin on stdout and also into a
file. So teeis amost the same as cat, except that it has two identical outputs.

[paul @GRHEL4b pipes]$ tac count.txt | tee tenp.txt | tac
one

t wo

three

four

five

[paul @GRHEL4b pi pes]$ cat tenp.txt
five

four

three

t wo

one

[paul @GRHEL4b pi pes] $

grep

The grep filter is famous among Unix users. The most common use of grep is to
filter lines of text containing (or not containing) a certain string.

[paul @RHEL4b pi pes] $ cat tennis.txt

Anel i e Mauresno, Fra

Kimdijsters, BEL

Justine Henin, Bel

Serena WIIliams, usa

Venus WIIlianms, USA

[paul @RHEL4b pi pes]$ cat tennis.txt | grep WIIlians
Serena WIIliams, usa

Venus WIIlianms, USA

Y ou can write this without the cat.

[paul @GRHEL4b pi pes]$ grep Wllians tennis.txt
Serena WIlians, usa
Venus WIlians, USA

One of the most useful options of grep is grep -i which filtersin a case insensitive
way.

124

filters

[paul @GRHEL4b pi pes]$ grep Bel tennis.txt
Justine Henin, Bel

[paul @GRHEL4b pipes]$ grep -i Bel tennis.txt
Kimdijsters, BEL

Justine Henin, Bel

[paul @GRHEL4b pi pes] $

Another very useful option is grep -v which outputs lines not matching the string.

[paul @GRHEL4b pi pes]$ grep -v Fra tennis.txt
Kimdijsters, BEL

Justine Henin, Bel

Serena WIlians, usa

Venus WIlians, USA

[paul @GRHEL4b pi pes] $

And of course, both options can be combined to filter al lines not containing a case
insensitive string.

[paul @GRHEL4b pi pes]$ grep -vi usa tennis.txt
Anel i e Mauresno, Fra

Kimdijsters, BEL

Justine Henin, Bel

[paul @GRHEL4b pi pes] $

With grep -Al oneline after the result is also displayed.

paul @ebi an5: ~/ pi pes$ grep -Al Henin tennis.txt
Justine Henin, Bel
Serena WIIians, usa

With grep -B1 one line befor e the result is also displayed.

paul @ebi an5: ~/ pi pes$ grep -Bl Henin tennis.txt
Kimdijsters, BEL
Justine Henin, Bel

With grep -C1 (context) one line before and one after are also displayed. All three
options (A,B, and C) can display any number of lines (using e.g. A2, B4 or C20).

paul @ebi an5: ~/ pi pes$ grep -Cl Henin tennis.txt
Kimdijsters, BEL

Justine Henin, Bel

Serena WIIlians, usa

125

filters

16.4.

16.5.

cut

The cut filter can select columns from files, depending on a delimiter or a count of
bytes. The screenshot below uses cut to filter for the username and userid in the /etc/
passwd file. It uses the colon as a delimiter, and selects fields 1 and 3.

[[paul @RHEL4b pipes]$ cut -d: -f1,3 /etc/passwd | tail -4
Fi go: 510

Pfaff:511

Harry: 516

Her m one: 517

[paul @GRHEL4b pi pes] $

When using a space as the delimiter for cut, you have to quote the space.

[paul @RHEL4b pi pes]$ cut -d" " -f1 tennis.txt
Anelie

Ki m

Justi ne

Ser ena

Venus

[paul @GRHEL4b pi pes] $

This example uses cut to display the second to the seventh character of /etc/passwd.

[paul @GRHEL4b pi pes]$ cut -c2-7 /etc/passwd | tail -4
i go: x:

faff:x

arry: x

erm on

[paul @GRHEL4b pi pes] $

tr

You can transate characters with tr. The screenshot shows the trandation of all
occurrences of eto E.

[paul @GRHEL4b pi pes]$ cat tennis.txt | tr 'e" 'FE
AnEl i E Maur Esnmo, Fra

KimdijstErs, BEL

Justi nE HEni n, BEl

SErEna WIlians, usa

VEnus W I Ilians, USA

Here we set all letters to uppercase by defining two ranges.

[paul @RHEL4b pipes]$ cat tennis.txt | tr 'a-z' '"A-Z
AVELI E MAURESMO, FRA

KI'M CLI JSTERS, BEL

JUSTI NE HENI N, BEL

SERENA W LLI AMS, USA

VENUS W LLI AMS, USA

[paul @GRHEL4b pi pes] $

Here we trandate all newlines to spaces.

[paul @RHEL4b pi pes]$ cat count. txt
one

126

filters

16.6.

t wo

three

f our

five

[paul @GRHEL4b pi pes]$ cat count.txt | tr "\n'
one two three four five [paul GRHEL4b pipes] $

Thetr -sfilter can also be used to squeeze multiple occurrences of acharacter to one.

[paul @GRHEL4b pi pes] $ cat spaces.txt
one t wo t hree
four five six
[paul @GRHEL4b pi pes]$ cat spaces.txt | tr -s ' '
one two three
four five six
[paul @GRHEL4b pi pes] $

You can aso usetr to ‘encrypt’ texts with rot13.

[paul @GRHEL4b pipes]$ cat count.txt | tr "a-z' 'nopqrstuvwxyzabcdef ghij kil ni
bar

gjb

guerr

sbhe

svir

[paul @GRHEL4b pi pes]$ cat count.txt | tr '"a-z' 'n-za-ni
bar

gjb

guerr

sbhe

svir

[paul @GRHEL4b pi pes] $

Thislast example usestr -d to delete characters.

paul @lebi an5: ~/ pi pes$ cat tennis.txt | tr -d e
Ar i Maursno, Fra

Kimdijstrs, BEL

Justin Hnin, Bl

Srna WIlians, usa

Vnus W1 lians, USA

wC_C

Counting words, lines and charactersis easy with wc.

[paul @GRHEL4b pi pes]$ wc tennis. txt

5 15 100 tennis.txt
[paul @GRHEL4b pipes]$ wc -1 tennis.txt
5 tennis. txt
[paul @GRHEL4b pi pes]$ wc -w tennis. txt
15 tennis.txt
[paul @GRHEL4b pi pes]$ wc -c tennis.txt
100 tennis.txt
[paul @GRHEL4b pi pes] $

127

filters

16.7. sort

The sort filter will default to an alphabetical sort.

paul @ebi an5: ~/ pi pes$ cat nusi c. t xt
Queen

Bre

Led Zeppelin

Abba

paul @ebi an5: ~/ pi pes$ sort nusic. txt
Abba

Bre

Led Zeppelin

Queen

But the sort filter has many options to twesak its usage. This example shows sorting
different columns (column 1 or column 2).

[paul @RHEL4b pi pes]$ sort -k1 country.txt
Bel gi um Brussels, 10

France, Paris, 60

Germany, Berlin, 100

Iran, Teheran, 70

Italy, Rome, 50

[paul @RHEL4b pi pes]$ sort -k2 country.txt
Germany, Berlin, 100

Bel gi um Brussels, 10

France, Paris, 60

Italy, Rome, 50

Iran, Teheran, 70

The screenshot below shows the difference between an alphabetical sort and a
numerical sort (both on the third column).

[paul @GRHEL4b pi pes] $ sort -k3 country.txt
Bel gi um Brussels, 10

Germany, Berlin, 100

Italy, Rome, 50

France, Paris, 60

Iran, Teheran, 70

[paul @RHEL4b pi pes]$ sort -n -k3 country. txt
Bel gi um Brussels, 10

Italy, Rome, 50

France, Paris, 60

Iran, Teheran, 70

Germany, Berlin, 100

128

filters

16.8. uniq

With uniqg you can remove duplicates from a sorted list.

paul @ebi an5: ~/ pi pes$ cat nusi c. t xt
Queen

Bre

Queen

Abba

paul @ebi an5: ~/ pi pes$ sort nusic. txt
Abba

Bre

Queen

Queen

paul @ebi an5: ~/ pi pes$ sort nusic.txt |uniq
Abba

Bre

Queen

uniq can also count occurrences with the -c option.

paul @ebi an5: ~/ pi pes$ sort nusic.txt |uniq -c
1 Abba
1 Brel
2 Queen

16.9. comm

Comparing streams (or files) can be done with the comm. By default comm will
output three columns. In this example, Abba, Cure and Queen arein both lists, Bowie
and Sweet are only in thefirst file, Turner isonly in the second.

paul @ebi an5: ~/ pi pes$ cat > |istl. txt
Abba
Bowi e
Cure
Queen
Sweet
paul @ebi an5: ~/ pi pes$ cat > |ist2.txt
Abba
Cure
Queen
Tur ner
paul @ebi an5: ~/ pi pes$ comm listl.txt |ist2. txt
Abba
Bowi e
Cure
Queen
Sweet
Tur ner

129

filters

The output of comm can be easier to read when outputting only asingle column. The
digits point out which output columns should not be displayed.

paul @lebi an5: ~/ pi pes$ conm -12 listl.txt |ist2. txt
Abba

Cure

Queen

paul @lebi an5: ~/ pi pes$ comm -13 listl.txt list2.txt
Tur ner

paul @lebi an5: ~/ pi pes$ conm -23 listl.txt list2. txt
Bowi e

Sweet

16.10. od

European humansliketowork with ascii characters, but computersstorefilesin bytes.
The example below creates a simple file, and then uses od to show the contents of
the filein hexadecimal bytes

paul @ai ka: ~/test$ cat > text.txt

abcdefg

1234567

paul @ai ka: ~/test$ od -t x1 text.txt

0000000 61 62 63 64 65 66 67 Oa 31 32 33 34 35 36 37 Oa
0000020

The same file can a so be displayed in octal bytes.

paul @ai ka: ~/test$ od -b text.txt
0000000 141 142 143 144 145 146 147 012 061 062 063 064 065 066 067 012
0000020

And hereisthefilein ascii (or backslashed) characters.

paul @ai ka: ~/test$ od -c text.txt
0000000 a b c d e f g \n 1 2 3 4 5 6 7 \n
0000020

130

filters

16.11. sed

The stream editor sed can perform editing functions in the stream, using regular
expressions.

paul @ebi an5: ~/ pi pes$ echo level 5 | sed 's/5/42/"

| evel 42

paul @ebi an5: ~/ pi pes$ echo level5 | sed 's/level/junp/'
j unp5

Add g for global replacements (all occurrences of the string per line).

paul @ebi an5: ~/ pi pes$ echo level5 level 7 | sed 's/level/junp/'
junmp5 level 7

paul @ebi an5: ~/ pi pes$ echo level5 level 7 | sed 's/level/junp/g
junp5 junp?

With d you can remove lines from a stream containing a character.

paul @ebi an5: ~/test42$ cat tennis.txt
Venus WIIlianms, USA

Martina H ngis, SU

Justine Henin, BE

Serena willianms, USA

Kimdijsters, BE

Yani na W ckmayer, BE

paul @lebi an5: ~/test42$ cat tennis.txt | sed '/BE/d
Venus WIIlianms, USA

Martina H ngis, SU

Serena willianms, USA

131

filters

16.12. pipe examples

who | wc

How many users arelogged on to this system ?

[paul @GRHEL4b pi pes] $ who

r oot ttyl Jul 25 10:50

paul pts/ 0 Jul 25 09:29 (Il aika)
Harry pts/1 Jul 25 12:26 (barry)
paul pts/2 Jul 25 12:26 (pasha)
[paul @RHEL4b pi pes]$ who | wec -|

4

who | cut | sort

Display asorted list of logged on users.

[paul @GRHEL4b pi pes]$ who | cut -d" ' -f1 | sort
Harry

paul

paul

r oot

Display a sorted list of logged on users, but every user only once.

[paul @RHEL4b pipes]$ who | cut -d" ' -fl1 | sort | uniq
Harry

paul

root

grep | cut

Display a list of all bash user accounts on this computer. Users accounts are
explained in detail later.

paul @ebi an5: ~$ grep bash /etc/passwd

root: x:0:0:root:/root:/bin/bash

paul : x: 1000: 1000: paul , ,, : / hone/ paul : / bi n/ bash
serena: x: 1001: 1001: : / hone/ ser ena: / bi n/ bash

paul @ebi an5: ~$ grep bash /etc/passwd | cut -d: -f1l
r oot

paul

serena

132

filters

16.13. practice: filters

1. Put asorted list of all bash usersin bashusers.txt.

2. Put asorted list of all logged on usersin onlineusers.txt.

3. Make alist of all filenamesin /etc that contain the string samba.

4. Make asorted list of all filesin /etc that contain the case insensitive string samba.

5. Look at the output of /shin/ifconfig. Write aline that displays only ip address and
the subnet mask.

6. Write aline that removes all non-letters from a stream.
7. Write aline that receives atext file, and outputs all words on a separate line.

8. Write a spell checker on the command line. (There might be a dictionary in /usr/
share/dict/ .)

133

filters

16.14. solution: filters

1. Put asorted list of all bash users in bashusers.txt.

grep bash /etc/passwd | cut -d: -fl | sort > bashusers.txt

2. Put asorted list of all logged on usersin onlineusers.txt.

who | cut -d" ' -fl | sort > onlineusers.txt

3. Makealist of all filenamesin /etc that contain the string samba.

Is /etc | grep sanba

4. Make asorted list of al filesin /etc that contain the case insensitive string samba.

Is /etc | grep -i sanba | sort

5. Look at the output of /shin/ifconfig. Write aline that displays only ip address and
the subnet mask.

/sbin/ifconfig | head -2 | grep 'inet ' | tr -s ' ' | cut -d ' -f3,5

6. Write aline that removes all non-letters from a stream.

paul @eb503: ~$ cat text

This is, yes really! , a text with ?& too many str$ange# characters ;-)
paul @eb503: ~$ cat text | tr -d ',!$?2.*&%@()-"

This is yes really a text with too many strange characters

7. Write aline that receives atext file, and outputs all words on a separate line.

paul @eb503: ~$ cat text2
it is very cold today w thout the sun

paul @eb503: ~$ cat text2 | tr " " "\n'
it

is

very

cold

t oday

wi t hout

t he

sun

8. Write a spell checker on the command line. (There might be a dictionary in /usr/
share/dict/ \)

paul @hel ~$ echo "The zun is shining today" > text

paul @hel ~$ cat > DICT
is

shi ni ng

sun

t he

t oday

134

filters

paul @hel ~$ cat text | tr "A-Z' "a-z\n'" | sort | unig | conm-23 - DICT
zun

Y ou could also add the solution from question number 6 to remove non-letters, and
tr -s' ' to remove redundant spaces.

135

Chapter 17. basic Unix tools

Table of Contents

0 T 1 o O 137
A o o= (= R 138
R T o = T 138
o= | 139
T 1= = o OSSR 139
0 1 1T 139
A A0 41 o T o 11 V.4 | o SRR 140
RS R (o7 | B4 0 110 (= PRSP 140
RS I 741 ¢ 2R o0 1 0 7.4 1 o 2SS 141
A O T o (o= R o 4 1 110 (XU 141
17.11. practice: basiC UNiX t00IScccueveriieiieriee e eee e 142
17.12. solution: basic UNiX tOOIScccueeeiiieciiiecree et 143

This chapter introduces commands to find or locate files and to compress files,
together with other common tools that were not discussed before. While the tools
discussed here are technically not considered filter s, they can be used in pipes.

136

basic Unix tools

17.1. find

Thefind command can bevery useful at the start of apipeto search for files. Hereare
some examples. Y ou might want to add 2>/dev/null to the command lines to avoid
cluttering your screen with error messages.

Find al filesin /etc and put the list in etcfiles.txt

find /etc > etcfil es.txt

Find all files of the entire system and put the list in allfiles.txt

find / > allfiles.txt

Find filesthat end in .conf in the current directory (and all subdirs).

find . -nane "*.conf"

Find files of typefile (not directory, pipe or etc.) that end in .conf.

find . -type f -nane "*.conf"

Find files of type directory that end in .bak .

find /data -type d -nane "*.bak"

Find files that are newer than filed42.txt

find . -newer filed2. txt

Find can also execute another command on every file found. This example will look
for *.odf files and copy them to /backup/.

find /data -nane "*.odf" -exec cp {} /backup/ \;

Find can also execute, after your confirmation, another command on every file found.
This example will remove *.odf filesif you approve of it for every file found.

find /data -nane "*.o0df" -ok rm{} \;

137

basic Unix tools

17.2.

17.3.

locate

Thelocatetool isvery different from find in that it uses anindex to locatefiles. This
is alot faster than traversing all the directories, but it also means that it is always
outdated. If the index does not exist yet, then you have to create it (as root on Red
Hat Enterprise Linux) with the updatedb command.

[paul @RHEL4b ~]$ | ocate Sanba

war ni ng: | ocate: could not open database: /var/lib/slocate/slocate.db:...
war ni ng: You need to run the 'updatedb' comand (as root) to create th...
Pl ease have a | ook at /etc/updatedb.conf to enable the daily cron job.

[paul @RHEL4b ~] $ updat edb

fatal error: updatedb: You are not authorized to create a default sloc...
[paul @RHEL4b ~]$ su -

Passwor d:

[root @RHEL4b ~]# updat edb

[root @RHEL4b ~]#

Most Linux distributions will schedule the updatedb to run once every day.

date

The date command can display the date, time, time zone and more.

paul @ hel 55 ~$ date
Sat Apr 17 12:44:30 CEST 2010

A date string can be customised to display the format of your choice. Check the man
page for more options.

paul @ hel 55 ~$ date + %A %d- %m %Y
Sat urday 17-04-2010

Time on any Unix is calculated in number of seconds since 1969 (the first second
being the first second of the first of January 1970). Use date +%s to display Unix
time in seconds.

paul @ hel 55 ~$ date +%
1271501080

When will this seconds counter reach two thousand million ?

paul @ hel 55 ~$ date -d '1970-01-01 + 2000000000 seconds'
Wed May 18 04:33:20 CEST 2033

138

basic Unix tools

17.4.

17.5.

17.6.

cal

The cal command displays the current month, with the current day highlighted.

paul @ hel 55 ~$ ca

April 2010
Su Mo Tu W& Th Fr Sa
1 2 3

4 5 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

Y ou can select any month in the past or the future.

paul @ hel 55 ~$ cal 2 1970
February 1970
Su Mo Tu W Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

sleep

The sleep command is sometimes used in scripts to wait a number of seconds. This
example shows afive second sleep.

paul @hel 55 ~$ sleep 5
paul @ hel 55 ~$

time
The time command can display how long it takes to execute a command. The date
command takes only alittle time.

paul @hel 55 ~$ tine date
Sat Apr 17 13:08:27 CEST 2010

real 0on0D. 014s
user OnD. 008s
Sys OnD. 006s

The sleep 5 command takes five real seconds to execute, but consumes little cpu
time.

paul @hel 55 ~$ tinme sleep 5

real Onb. 018s
user 0m0. 005s
Sys Oon0. 011s

139

basic Unix tools

This bzip2 command compresses afile and uses alot of cpu time.

paul @hel 55 ~$ tine bzip2 text.txt

real on2. 368s
user 0m0. 847s
Sys On0. 539s

17.7

gzip - gunzip

Users never have enough disk space, so compression comes in handy. The gzip
command can make files take up less space.

paul @hel 55 ~$ |I's -1 h text.txt

-rwrwr-- 1 paul paul 6.4M Apr 17 13:11 text.txt
paul @hel 55 ~$ gzip text.txt

paul @hel 55 ~$ |Is -l h text.txt.gz

-rwrwr-- 1 paul paul 760K Apr 17 13:11 text.txt.gz

Y ou can get the original back with gunzip.

paul @ hel 55 ~$ gunzip text.txt.gz
paul @hel 55 ~$ I's -1 h text.txt
-rwrwr-- 1 paul paul 6.4M Apr 17 13:11 text.txt

17.8. zcat - zmore

Text files that are compressed with gzip can be viewed with zcat and zmore.

paul @hel 55 ~$ head -4 text.txt

/

/ opt

/ opt/ VBoxCGuest Addi ti ons-3.1.6

/ opt / VBoxCGuest Addi ti ons-3. 1. 6/ routines. sh
paul @hel 55 ~$ gzip text.txt

paul @hel 55 ~$ zcat text.txt.gz | head -4
/

/ opt

/ opt/ VBoxCGuest Addi ti ons-3.1.6

/ opt / VBoxCGuest Addi ti ons-3. 1. 6/ routines. sh

140

basic Unix tools

17.9. bzip2 - bunzip?2

Files can also be compressed with bzip2 which takes a little more time than gzip,
but compresses better.

paul @ hel 55 ~$ bzi p2 text.txt
paul @hel 55 ~$ Is -1 h text.txt.bz2
-rwrwr-- 1 paul paul 569K Apr 17 13:11 text.txt.bz2

Files can be uncompressed again with bunzip2.

paul @ hel 55 ~$ bunzi p2 text.txt.bz2
paul @hel 55 ~$ |Is -1 h text.txt
-rwrwr-- 1 paul paul 6.4M Apr 17 13:11 text.txt

17.10. bzcat - bzmore

And in the same way bzcat and bzmor e can display files compressed with bzip2.

paul @hel 55 ~$ bzi p2 text.txt

paul @ hel 55 ~$ bzcat text.txt.bz2 | head -4
/

/ opt

/ opt / VBoxGuest Addi tions-3.1.6

/ opt / VBoxGuest Addi ti ons-3. 1. 6/ routines. sh

141

basic Unix tools

17.11. practice: basic Unix tools

1. Explain the difference between these two commands. This question is very
important. If you don't know the answer, then look back at the shell chapter.

find /data -nane "*.txt"

find /data -nane *.txt

2. Explain the difference between these two statements. Will they both work when
there are 200 .odf filesin /data ? How about when there are 2 million .odf files ?

find /data -name "*.odf" > data_odf.txt

find /data/*. odf > data_odf.txt

3. Write afind command that finds all files created after January 30th 2010.
4. Write afind command that finds all *.odf files created in September 20009.
5. Count the number of *.conf filesin /etc and all its subdirs.

6. Two commands that do the same thing: copy *.odf files to /backup/ . What would
be areason to replace the first command with the second ? Again, thisisan important
guestion.

cp -r /datal/*.odf /backup/

find /data -nane "*.odf" -exec cp {} /backup/ \;

7. Create afile called loctest.txt. Can you find this file with locate ? Why not ? How
do you make locate find thisfile ?

8. Usefind and -exec to rename all .htm filesto .html.
9. Issue the date command. Now display the datein YYYY/MM/DD format.

10. Issue the cal command. Display a calendar of 1582 and 1752. Notice anything
special ?

142

basic Unix tools

17.12. solution: basic Unix tools

1. Explain the difference between these two commands. This question is very
important. If you don't know the answer, then look back at the shell chapter.

find /data -nane "*.txt"

find /data -nane *.txt

When *.txt is quoted then the shell will not touch it. The find tool will look in the
/datafor al filesending in .txt.

When *.txt is not quoted then the shell might expand this (when one or more files
that endsin .txt exist in the current directory). The find might show adifferent result,
or can result in a syntax error.

2. Explain the difference between these two statements. Will they both work when
there are 200 .odf filesin /data ? How about when there are 2 million .odf files ?
find /data -nane "*.odf" > data_odf.txt

find /data/*.odf > data_odf.txt

The first find will output al .odf filenamesin /data and all subdirectories. The shell
will redirect thisto afile.

The second find will output al files named .odf in /data and will also output al files
that exist in directories named *.odf (in /data).

With two million files the command line would be expanded beyond the maximum
that the shell can accept. The last part of the command line would be lost.
3. Write afind command that finds all files created after January 30th 2010.

touch -t 201001302359 narker_date
find . -type f -newer narker_date

There is another solution :
find . -type f -newerat "20100130 23:59: 59"

4. Write afind command that finds all *.odf files created in September 2009.
touch -t 200908312359 narker_start

touch -t 200910010000 marker _end
find . -type f -nane "*.odf" -newer narker_start ! -newer narker_end

The exclamation mark ! -newer can be read as not newer .
5. Count the number of *.conf filesin /etc and all its subdirs.
find /etc -type f -nane '*.conf' | wc -|

6. Two commands that do the same thing: copy *.odf filesto /backup/ . What would
be areason to replace the first command with the second ? Again, thisisan important
guestion.

cp -r /data/*.odf /backup/

143

basic Unix tools

find /data -nane "*.odf" -exec cp {} /backup/ \;

The first might fail when there are too many filesto fit on one command line.

7. Create afile called loctest.txt. Can you find thisfile with locate ? Why not ? How
do you make locate find thisfile ?
Y ou cannot locate this with locate because it is not yet in the index.

updat edb

8. Usefind and -exec to rename all .htm filesto .html.

paul @hel 55 ~$ find . -nanme '*. htni

./one. htm

./two. htm

paul @hel 55 ~$ find . -name '*.htm -exec mv {} {}I \;
paul @hel 55 ~$ find . -nanme '*.htn¥'

./one. htnl

./two. htnl

9. Issue the date command. Now display the datein YYYY/MM/DD format.

date +%v/ %m %

10. Issue the cal command. Display a calendar of 1582 and 1752. Notice anything
special ?

cal 1582

The calendars are different depending on the country. Check http://linux-training.be/
files/studentfiles/dates.txt

144

Part V. vi

Chapter 18. Introduction to vi

Table of Contents

18.1. command mode and iNSErt MOEccevuerererirererieeee s 147
18.2. start typing (A A 1 1 0 O) oo 147
18.3. replace and delete a character (I X X) cvoeeeece e 148
(RS VTaTo o JF= 010 I g= o= A (11 S 148
18.5. cut, copy and paste aline (dd YY P P) cocveoeeeeriee e 148
18.6. cut, copy and paste [iNeS (3dd 2YY) ...ccceeeereererriere e 149
18.7. start and end of aline (0 or ™ @Nd $) ...ccveveerreiririireree e 149
18.8. join two 1iNES (J) @Nd MOTEoveerieeeeeee e 149
18.9. WOrdS (W D) e 150
18.10. save (or not) and eXit (W iQ 10!) coevveereeiereere e 150
18.11. SEArChING (/ ?) weveeeeeeeeieeeese ettt 151
18.12. replace al (:1,$ SFO0/DANTG) woovveeeeeeeeeeee et 151
18.13. reading files (:r :r 1emMd) ...ooveeeeeee e 151
18.14. tEXE DUTENS ..o 152
18.15. MUILIPIE FIIES ..ttt s 152
18.16. GDDrEVIBLIONScoueieeiesierie s 152
18.17. KEY MAPPINGS ...eveeveeieitiesieeieeeesteeeesseesseeessseesseeseesseesseessessesssesssssseesseans 153
18.18. SEHliNG OPLIONSveeveeieeieeie et ettt esaeesaesreennenneens 153
ST L o = o Lo S V1 (1) S 154
ST = o) 1U (o) BV () S 155

The vi editor isinstalled on ailmost every Unix. Linux will very often install vim (vi
improved) whichissimilar. Every system administrator should know vi(m), because
it isan easy tool to solve problems.

Thevi editor isnot intuitive, but onceyou get to know it, vi becomes avery powerful
application. Most Linux distributions will include the vimtutor which isa45 minute
lesson in vi(m).

146

Introduction to vi

18.1. command mode and insert mode

18.2.

Thevi editor startsin command mode. In command mode, you can type commands.
Some commands will bring you into insert mode. In insert mode, you can type text.

The escape key will return you to command mode.

Table 18.1. getting to command mode
key |action
Esc |set vi(m) in command mode.

start typing (@A ilo O)

The difference between a A i | 0 and O is the location where you can start typing.
awill append after the current character and A will append at the end of the line. i
will insert before the current character and | will insert at the beginning of the line.
o will put you in a new line after the current line and O will put you in a new line

before the current line.

Table 18.2. switch to insert mode
command|action
a start typing after the current character
A start typing at the end of the current line
i start typing before the current character
I start typing at the start of the current line
0 start typing on a new line after the current line
@) start typing on a new line before the current line

147

Introduction to vi

18.3. replace and delete a character (r x X)

When in command mode (it doesn't hurt to hit the escape key more than once) you
can usethe x key to delete the current character. The big X key (or shift x) will delete
the character left of the cursor. Also when in command mode, you can use ther key
to replace one single character. The r key will bring you in insert mode for just one
key press, and will return you immediately to command mode.

Table 18.3. replace and delete

command |action
X delete the character below the cursor
X delete the character before the cursor
r replace the character below the cursor
p paste after the cursor (here the last deleted character)
Xp switch two characters

18.4. undo and repeat (u .)

18.5.

When in command mode, you can undo your mistakes with u. You can do your
mistakes twice with . (in other words, the . will repeat your last command).

Table 18.4. undo and repeat

command|action

u undo the last action
repeat the last action

cut, copy and paste aline (dd yy p P)

When in command mode, dd will cut the current line. yy will copy the current line.
Y ou can paste the last copied or cut line after (p) or before (P) the current line.

Table 18.5. cut, copy and pastealine

command|action

dd cut the current line

yy (yank yank) copy the current line

p paste after the current line

P paste before the current line

148

Introduction to vi

18.6. cut, copy and paste lines (3dd 2yy)

18.7.

18.8.

When in command mode, before typing dd or yy, you can type a number to repeat
the command a number of times. Thus, 5dd will cut 5 lines and 4yy will copy (yank)
4 lines. That last one will be noted by vi in the bottom left corner as "4 line yanked".

Table 18.6. cut, copy and paste lines

command|action

3dd cut threelines

4dyy |copy four lines

start and end of aline (0O or » and $)

When in command mode, the 0 and the caret * will bring you to the start of the current
line, whereasthe $will put the cursor at the end of the current line. Y ou can add 0 and
$ to the d command, dO will delete every character between the current character and
the start of the line. Likewise d$ will delete everything from the current character till
the end of theline. Similarly yO and y$ will yank till start and end of the current line.

Table 18.7. start and end of line

command|action

0 jump to start of current line

A jump to start of current line

$ jump to end of current line
do delete until start of line
ds delete until end of line

join two lines (J) and more

When in command mode, pressing J will append the next line to the current line.
With yyp you duplicate aline and with ddp you switch two lines.

Table 18.8. join two lines

command|action

J jointwo lines

YYp duplicate aline

ddp |switchtwolines

149

Introduction to vi

18.9. words (w b)

When in command mode, w will jump to the next word and b will move to the
previous word. w and b can also be combined with d and y to copy and cut words
(dw db yw yb).

Table 18.9. words

command|action

w forward one word

b back one word

3w forward three words

dw delete one word

yw |yank (copy) one word

5yb |yank five words back

7dw |delete seven words

18.10. save (or not) and exit (:w :q :q!)

Pressing the colon : will allow you to give instructions to vi (technically speaking,
typing the colon will open the ex editor). :w will write (save) the file, :q will quit an
unchanged file without saving, and :g! will quit vi discarding any changes. :wq will
save and quit and isthe same astyping ZZ in command mode.

Table 18.10. save and exit vi

command |action

W save (write)

‘w fname |save asfname
:q quit
‘w(save and quit

ZZ save and quit
q quit (discarding your changes)
‘w! save (and write to non-writable file!)

The last one is a bit special. With :w! vi will try to chmod the file to get write
permission (this works when you are the owner) and will chmod it back when the
write succeeds. This should always work when you are root (and the file system is
writable).

150

Introduction to vi

18.11. Searching (/ ?)

When in command mode typing / will allow you to search in vi for strings (can be
a regular expression). Typing /foo will do a forward search for the string foo and
typing ?bar will do a backward search for bar.

Table 18.11. searching

command |action

/string forward search for string
?string |backward search for string

n go to next occurrence of search string

/"string |forward search string at beginning of line

/string$ |forward search string at end of line
/br[aeio]l |search for bral brel bril and brol
N\<heé\> |search for the word he (and not for here or the)

18.12. replace all (:1,% s/foo/bar/g)

To replace al occurrences of the string foo with bar, first switch to ex mode with : .
Then tell vi which linesto use, for example 1,$ will do the replace all from the first
to the last line. You can write 1,5 to only process the first five lines. The s/foo/bar/
g will replace all occurrences of foo with bar.

Table 18.12. replace

command action
:4,8 sffoo/bar/g |replace foo with bar onlines4 to 8
:1,$ g/foo/bar/g |replace foo with bar on al lines

18.13. reading files (:r :r lcmd)

When in command mode, :r foo will read the file named foo, :r !foo will execute the
command foo. The result will be put at the current location. Thus :r !Is will put a
listing of the current directory in your text file.

Table 18.13. read filesand input

command|action

:r fname |(read) file fname and paste contents

:rlemd | execute cmd and paste its output

151

Introduction to vi

18.14. text buffers

There are 36 buffersin vi to store text. Y ou can use them with the" character.

Table 18.14. text buffers

command|action

"add |delete current line and put text in buffer a

"g7yy |copy seven linesinto buffer g

"ap |paste from buffer a

18.15. multiple files

Y ou can edit multiple files with vi. Here are some tips.

Table 18.15. multiplefiles

command action
vi filel file2 file3 |start editing threefiles
.args lists files and marks active file
‘n start editing the next file
e toggle with last edited file
rew rewind file pointer to first file

18.16. abbreviations

With :ab you can put abbreviationsin vi. Use :unato undo the abbreviation.

Table 18.16. abbreviations

command action

:abstrlong string | abbreviate str to be 'long string'

:una str un-abbreviate str

152

Introduction to vi

18.17. key mappings

Similarly to their abbreviations, you can use mappingswith : map for command mode
and :map! for insert mode.

This example shows how to set the F6 function key to toggle between set number
and set nonumber. The <bar> separates the two commands, set number! toggles
the state and set number ? reports the current state.

:map <F6> :set nunber! <bar>set nunber ?<CR>

18.18. setting options

Some options that you can set in vim.

:set nunber (also try :se nu)
:set nonunber

:syntax on

:syntax off

:set all (list all options)
:set tabstop=8

iset tx (CR/LF styl e endings)
:set notx

You can set these options (and much more) in ~/.vimrc for vim or in ~/.exrc for
standard vi.

paul @arry: ~$ cat ~/.vinrc

set nunber

set tabstop=8

set textw dt h=78

map <F6> :set nunber! <bar>set nunber ?<CR>
paul @arry: ~$

153

Introduction to vi

18.19. practice: vi(m)

1. Start the vimtutor and do some or all of the exercises. You might need to run
aptitudeinstall vim on xubuntu.

2. What 3 key combination in command mode will duplicate the current line.

3. What 3 key combination in command mode will switch two lines place (line five
becomes line six and line six becomes line five).

4. What 2 key combination in command mode will switch a character's place with
the next one.

5. vi can understand macro's. A macro can be recorded with g followed by the name
of the macro. So ga will record the macro named a. Pressing g again will end the
recording. Y ou can recall the macro with @ followed by the name of the macro. Try
thisexample: i 1 'Escape Key' gayyp 'Ctrl & g 5@a (Ctrl awill increase the number
with one).

6. Copy /etc/passwd to your ~/passwd. Open the last one in vi and press Ctrl v. Use
the arrow keys to select a Visual Block, you can copy this with y or delete it with
d. Try pasting it.

7. What does dwwP do when you are at the beginning of aword in a sentence ?

154

Introduction to vi

18.20. solution: vi(m)

1. Start the vimtutor and do some or all of the exercises. You might need to run
aptitudeinstall vim on xubuntu.

vi nt ut or

2. What 3 key combination in command mode will duplicate the current line.
yyp

3. What 3 key combination in command mode will switch two lines place (line five
becomes line six and line six becomes line five).

ddp

4. What 2 key combination in command mode will switch a character's place with
the next one.

Xp

5. vi can understand macro's. A macro can be recorded with g followed by the name
of the macro. So ga will record the macro named a. Pressing g again will end the
recording. Y ou can recall the macro with @ followed by the name of the macro. Try
thisexample: i 1 'Escape Key' gayyp 'Ctrl & g 5@a (Ctrl awill increase the number
with one).

6. Copy /etc/passwd to your ~/passwd. Open the last one in vi and press Ctrl v. Use
the arrow keys to select a Visual Block, you can copy this with y or delete it with
d. Try pasting it.

cp /etc/passwd ~
vi passwd
(press Crl-V)

7. What does dwwP do when you are at the beginning of aword in a sentence ?

dwwP can switch the current word with the next word.

155

Part VI. scripting

Chapter 19. scripting introduction

Table of Contents

S I o= o [0S] (=SS 158
19.2. NEHO WOITA ... 158
S G T = o o SRS 158
19.4. COMMENT ... e e n e e ere e 159
195, VANTADIES ... 159
19.6. SOUICING @ SCIIPL weeuveeeeesieeieeiesieeseeeeesteeseeseeste e tesreesreesesseesseeaesneesseesesseens 159
19.7. troubleshOOoting @ SCHPL ..vcveieeceeeeciere e 160
19.8. prevent setuid root SPOOFINGccveeeereereeieseere e 160
19.9. practice: introduction tO SCHPLING ..ccvvevveeeereeee e eee e 161
19.10. solution: introduction tO SCHPLINGccveviereeeeeere e e 162

Shellslikebash and K or n have support for programming constructsthat can be saved
as scripts. These scripts in turn then become more shell commands. Many Linux
commands are scripts. User profile scripts are run when a user logs on and init
scripts are run when adaemon is stopped or started.

This means that system administrators also need basic knowledge of scripting to
understand how their servers and their applications are started, updated, upgraded,
patched, maintained, configured and removed, and also to understand how a user
environment is built.

The goal of this chapter is to give you enough information to be able to read and
understand scripts. Not to become awriter of complex scripts.

157

scripting introduction

19.1.

19.2.

19.3.

prerequisites

Y ou should have read and understood part |11 shell expansion and part 1V pipes
and commands before starting this chapter.

hello world

Just like in every programming course, we start with a ssmple hello_world script.
The following script will output Hello World.

echo Hello World

After creating this simple script in vi or with echo, you'll have to chmod +x
hello_world to make it executable. And unless you add the scripts directory to your
path, you'll have to type the path to the script for the shell to be able to find it.

[paul @RHEL4a ~]$ echo echo Hello World > hello_world
[paul @RHEL4a ~]$ chnmod +x hello_world
[paul @RHEL4a ~]1$./hello_world

Hello World
[paul @RHEL4a ~] $
she-bang

Let's expand our example a little further by putting #!/bin/bash on the first line of
the script. The #! is called a she-bang (sometimes called sha-bang), where the she-
bang isthe first two characters of the script.

#!/ bi n/ bash
echo Hello Worl d

Y ou can never be sure which shell auser isrunning. A script that works flawlessly
in bash might not work in ksh, csh, or dash. To instruct a shell to run your script in
a certain shell, you can start your script with a she-bang followed by the shell it is
supposed to run in. This script will run in a bash shell.

#!/ bi n/ bash

echo -n hello
echo A bash subshell “echo -n hello’

This script will runin aKorn shell (unless/bin/ksh isahard link to /bin/bash). The
/etc/shellsfile contains alist of shells on your system.
#!/ bi n/ ksh

echo -n hello
echo a Korn subshell “echo -n hello’

158

scripting introduction

19.4. comment

Let's expand our example alittle further by adding comment lines.

#!/ bi n/ bash

#

Hello World Script
#

echo Hello World

19.5. variables

Hereis asimple example of avariable inside a script.

#!1/ bi n/ bash

#

sinmple variable in script
#

var 1=4

echo varl = $varl

Scripts can contain variables, but since scriptsarerun in their own shell, the variables
do not survive the end of the script.

[paul @RHEL4a ~]$ echo $varl

[paul @RHEL4a ~]1$./vars
varl = 4
[paul @RHEL4a ~]$ echo $varl

[paul @GRHEL4a ~] $

19.6. sourcing a script

Luckily, you can forceascript to runinthe same shell; thisiscalled sour cing a script.

[paul @RHEL4a ~]$ source ./vars
varl = 4

[paul @RHEL4a ~]$ echo $varl

4

[paul @RHEL4a ~]1 $

The aboveisidentical to the below.

[paul @RHEL4a ~1$. ./vars
varl = 4

[paul @RHEL4a ~]$ echo $varl
4

[paul @GRHEL4a ~] $

159

scripting introduction

19.7.

19.8.

troubleshooting a script

Another way to run a script in a separate shell is by typing bash with the name of
the script as a parameter.

paul @ebi an6~/test$ bash runne
42

Expanding thisto bash -x allows you to see the commands that the shell is executing
(after shell expansion).

paul @ebi an6~/test$ bash -x runne
+ var4=42

+ echo 42

42

paul @ebi an6~/test$ cat runne

the runne script

var 4=42

echo $var4

paul @lebi an6~/test$

Notice the absence of the commented (#) line, and the replacement of the variable
before execution of echo.

prevent setuid root spoofing

Some user may try to perform setuid based script root spoofing. Thisis arare but
possibleattack. To improve script security and to avoid interpreter spoofing, you need
to add -- after the #!/bin/bash, which disables further option processing so the shell
will not accept any options.

#!/ bi n/ bash -
or
#!/ bi n/ bash --

Any arguments after the -- are treated as filenames and arguments. An argument of
- isequivaent to --.

160

scripting introduction

19.9. practice: introduction to scripting

0. Give each script a different name, keep them for later!

1. Write a script that outputs the name of acity.

2. Make sure the script runs in the bash shell.

3. Make sure the script runsin the Korn shell.

4. Create a script that defines two variables, and outputs their value.

5. The previous script does not influence your current shell (the variables do not exist
outside of the script). Now run the script so that it influences your current shell.

6. |sthere a shorter way to sour ce the script ?

7. Comment your scripts so that you know what they are doing.

161

scripting introduction

19.10. solution: introduction to scripting

0. Give each script a different name, keep them for later!

1. Write a script that outputs the name of acity.
$ echo 'echo Antwerp' > first.bash
$ chnod +x first. bash

$./first.bash
Ant wer p

2. Make sure the script runs in the bash shell.
$ cat first.bash

#!1/ bi n/ bash
echo Antwerp

3. Make sure the script runsin the Korn shell.
$ cat first.bash

#! / bi n/ ksh
echo Antwerp

Notethat whilefirst.bash will technically work asaKorn shell script, the nameending
in .bash is confusing.

4. Cresate a script that defines two variables, and outputs their value.

$ cat second. bash
#! / bi n/ bash

var 33=300
var 42=400

echo $var 33 $var42

5. The previous script does not influence your current shell (the variables do not exist
outside of the script). Now run the script so that it influences your current shell.

source second. bash

6. Isthere a shorter way to sour ce the script ?

. ./second. bash

7. Comment your scripts so that you know what they are doing.

$ cat second. bash
#1/ bi n/ bash
script to test variables and sourcing

define two variabl es
var 33=300
var 42=400

out put the value of these variables
echo $var 33 $var 42

162

Chapter 20. scripting loops

Table of Contents

20.1.
20.2.
20.3.
20.4.
20.5.
20.6.
20.7.
20.8.

1= A SRS 164
1T TheN EISE .o 165
I ENEN @I e 165
0] g [0 o o S 165
1V 1= oo o S 166
801 o o o OSSR 166
practice: scripting tests and 100PScccvveeereereee e 167
solution: scripting tests and 100PSccvveereere e 168

163

scripting loops

20.1. test []

The test command can test whether something is true or false. Let's start by testing
whether 10 is greater than 55.

[paul @RHEL4b ~]$ test 10 -gt 55 ; echo $?
1

[paul @GRHEL4b ~] $

The test command returns 1 if the test fails. And as you see in the next screenshot,
test returns O when atest succeeds.

[paul @RHEL4b ~]$ test 56 -gt 55 ; echo $?
0
[paul @GRHEL4b ~]$

If you prefer true and false, then write the test like this.

[paul @RHEL4b ~]$ test 56 -gt 55 && echo true || echo false
true
[paul @RHEL4b ~]$ test 6 -gt 55 & echo true || echo false
fal se

The test command can also be written as square brackets, the screenshot below is
identical to the one above.

[paul @RHEL4b ~]1$ [56 -gt 55] && echo true || echo false
true
[paul @RHEL4b ~]$ [6 -gt 55] && echo true || echo false
fal se

Below are some example tests. Take alook at man test to see more options for tests.

[-d foo] Does the directory foo exist ?

[-e bar] Does the file bar exist ?

["/etc' = $PWD] Is the string /etc equal to the variable $PWD ?
[$1 !'= "secret'] Is the first parameter different fromsecret ?
[55 -1t $bar] Is 55 less than the value of $bar ?

[$foo -ge 1000] I's the value of $foo greater or equal to 1000 ?
["abc" < $bar] Does abc sort before the value of $bar ?

[-f foo] Is foo a regular file ?

[-r bar] Is bar a readable file ?

[foo -nt bar] Is file foo newer than file bar ?

[-0 nounset] Is the shell option nounset set ?

Tests can be combined with logical AND and OR.

paul @GRHEL4b: ~$ [66 -gt 55 -a 66 -1t 500] && echo true || echo false

true
paul @RHEL4b: ~$ [66 -gt 55 -a 660 -1t 500] && echo true || echo false
fal se
paul @RHEL4b: ~$ [66 -gt 55 -0 660 -1t 500] && echo true || echo false
true

164

scripting loops

20.2.

20.3

20.4.

If then else

The if then else construction is about choice. If a certain condition is met, then
execute something, else execute something else. The example below tests whether a
fileexists, and if the file exists then a proper message is echoed.

#! / bi n/ bash

if [-f isit.txt]

then echo isit.txt exists!

el se echo isit.txt not found!
f

If we name the above script 'choice’, then it executes like this.

[paul @RHEL4a scripts]$./choice
isit.txt not found!

[paul @RHEL4a scripts]$ touch isit.txt
[paul @RHEL4a scripts]$./choice
isit.txt exists!

[paul @RHEL4a scripts]$

If then elif

You can nest anew if inside an else with €lif. Thisis asimple example.

#! / bi n/ bash
count =42
if [$count -eq 42]
t hen
echo "42 is correct."
elif [$count -gt 42]
t hen
echo "Too nmuch."
el se
echo "Not enough.™"
f

for loop

The example below shows the syntax of a classical for loop in bash.

for i inl1l24
do

echo $i
done

An example of afor loop combined with an embedded shell.

#!/ bi n/ ksh

for counter in “seq 1 20°

do
echo counting from1 to 20, now at $counter
sleep 1

done

165

scripting loops

The same exampl e as above can be written without the embedded shell using the bash
{from..to} shorthand.

#!/ bi n/ bash

for counter in {1..20}

do
echo counting from1l to 20, now at $counter
sleep 1

done

This for loop uses file globbing (from the shell expansion). Putting the instruction
on the command line has identical functionality.

kahl an@ol expl1$ Is

count . ksh go. ksh

kahl an@ol expl1l$ for file in *.ksh ; do cp $file $file.backup ; done
kahl an@ol expl1$ |Is

count. ksh count. ksh. backup go. ksh go. ksh. backup

20.5

while loop

Below a simple example of awhile loop.

i =100;

while [$i -ge 0]

do
echo Counting down, from 100 to O, now at $i
let i--;

done

Endless loops can be made with while true or while : , where the colon is the
equivalent of no operation in the Korn and bash shells.

#! / bi n/ ksh
endl ess | oop
while :
do
echo hello
sleep 1
done

20.6. until loop

Below a simple example of an until loop.

let i=100;

until [$i -1e 0] ;

do
echo Counting down, from100 to 1, now at $i
let i--;

done

166

scripting loops

20.7. practice: scripting tests and loops

1. Write a script that uses afor loop to count from 3to 7.

2. Write a script that uses afor loop to count from 1 to 17000.

3. Write a script that uses awhile loop to count from 3to 7.

4. Write a script that uses an until loop to count down from 8 to 4.

5. Write ascript that counts the number of filesending in .txt in the current directory.

6. Wrap an if statement around the script so it isalso correct when there are zero files
ending in .txt.

167

scripting loops

20.8. solution: scripting tests and loops

1. Write ascript that uses afor loop to count from 3to 7.

#!/ bi n/ bash
for i in34567
do
echo Counting from3 to 7, now at $i
done

2. Write a script that uses afor loop to count from 1 to 17000.

#!/ bi n/ bash
for i in “seq 1 17000
do
echo Counting from1l to 17000, now at $i
done

3. Write a script that uses awhile loop to count from 3to 7.

#!/ bi n/ bash

i=3

while [$i -le 7]

do

echo Counting from3 to 7, now at $i
let i=i+1

done

4. Write a script that uses an until loop to count down from 8 to 4.
#!/ bi n/ bash

i=8

until [$i -1t 4]

do

echo Counting down from8 to 4, now at $
let i=i-1

done

5. Write ascript that counts the number of filesending in .txt in the current directory.
#!/ bi n/ bash

let i=0
for file in *. txt
do
let i++
done
echo "There are $i files ending in .txt"

6. Wrap an if statement around the script so it isalso correct when there are zero files
ending in .txt.

#!'/ bi n/ bash

Is *. txt > /dev/null 2>&1
if [$? -ne 0]

168

scripting loops

then echo "There are 0 files ending in .txt"

el se
let i=0
for file in *.txt
do
let i++
done

echo "There are $i files ending in .txt"
f

169

Chapter 21. scripting parameters

Table of Contents

21.1.
21.2.
21.3.
21.4.
21.5.
21.6.
21.7.
21.8.

SCHIPL PAFAIMELENSeeveeieeeesieeie et e e e e ee e e e sre et e sreesteeeesseesreensesneensens 171
shift through ParameLerscccvceiecce e 172
FUNEIME TNPUL ..ot esne e e e enee e 172
sSourcing & CoNfig fil@ v 173
get script optionNs With QEtOPLScccvvveerieieseere e 174
get shell options With ShOPLcccveiirececeee e 175
practice: parameters and OPLIONScceveererieeseereeiee e 176
solution: parameters and OPLIONScccvecverieererieesieereere e e e seeseesreeneeas 177

170

scripting parameters

21.1. script parameters

A bash shell script can have parameters. The numbering you see in the script below
continues if you have more parameters. Y ou also have special parameters containing
the number of parameters, astring of all of them, and also the processid, and the last
return code. The man page of bash hasafull list.

#1/ bi n/ bash

echo The first argument is $1
echo The second argunent is $2
echo The third argument is $3

echo \$ $$ PID of the script
echo \# $# count argunents

echo \? $? last return code
echo * $* all the argunents

Below isthe output of the script above in action.

[paul @RHEL4a scripts]$./pars one two three
The first argunment is one

The second argunent is two

The third argunment is three

$ 5610 PID of the script

3 count argunents

? 0 last return code

* one two three all the argunents

Once more the same script, but with only two parameters.

[paul @RHEL4a scripts]$./pars 1 2
The first argunment is 1

The second argunent is 2

The third argument is

$ 5612 PID of the script

2 count argunents

? 0 last return code

* 1 2 all the argunents

[paul @RHEL4a scripts] $

Here is another example, where we use $0. The $0 parameter contains the name of
the script.

paul @ebi an6~$ cat nynane

echo this script is called $0
paul @ebi an6~$./ nynane

this script is called ./nyname
paul @ebi an6~$% nmv nynane test42
paul @ebi an6~$./test42

this script is called ./test42

171

scripting parameters

21.2. shift through parameters

The shift statement can parse all parameter s one by one. Thisis a sample script.

kahl an@ol expll$ cat shift.ksh

#! / bi n/ ksh

if ["$# == "0"]

t hen
echo You have to give at |east one paraneter.
exit 1

f

while (($#))
do
echo You gave nme $1
shi ft
done

Below is some sample output of the script above.

kahl an@ol expll$./shift.ksh one

You gave ne one

kahl an@ol expll$./shift.ksh one two three 1201 "33 42"
You gave ne one

You gave ne two

You gave ne three

You gave ne 1201

You gave ne 33 42

kahl an@ol expll$./shift. ksh

You have to give at |east one paraneter

21.3. runtime input

Y ou can ask the user for input with the read command in a script.

#!/ bi n/ bash
echo -n Enter a nunber:
read nunber

172

scripting parameters

21.4. sourcing a config file

The sour ce (as seen in the shell chapters) can be used to source a configuration file.

Below a sample configuration file for an application.

[paul @RHEL4a scripts]$ cat nyApp. conf
The config file of nyApp

Enter the path here
nmy AppPat h=/ var / ny App

Enter the nunber of quines here
qui nes=5

And her an application that uses thisfile.

[paul @RHEL4a scripts]$ cat nyApp. bash
#!1/ bi n/ bash

#

Wel cone to the nmyApp application

#

. myApp. conf

echo There are $qui nes qui nes

The running application can use the values inside the sourced configuration file.

[paul @RHEL4a scripts]$./ nmyApp. bash
There are 5 qui nes

[paul @RHEL4a scripts] $

173

scripting parameters

21.5. get script options with getopts

The getoptsfunction allows you to parse options given to acommand. Thefollowing
script allows for any compination of the options a, f and z.

kahl an@ol expll$ cat options. ksh
#! / bi n/ ksh

while getopts ":afz" option;
do
case $option in
a)
echo received -a

f)
echo received -f

z)
echo received -z

*)

echo "invalid option - $OPTARG'
esac
done

This is sample output from the script above. First we use correct options, then we
enter twice an invalid option.

kahl an@ol expll$./ options. ksh

kahl an@ol expll$./options. ksh -af
received -a

received -f

kahl an@ol expll$./options. ksh -zfg
received -z

received -f

invalid option -g

kahl an@ol expll$./options.ksh -a -b -z
received -a

invalid option -b

received -z

174

scripting parameters

21.6

Y ou can also check for options that need an argument, as this example shows.

kahl an@ol expll$ cat argoptions. ksh
#! / bi n/ ksh

while getopts ":af:z
do

case $option in

a)

echo received -a

opti on;

f)
echo received -f with $OPTARG

z)

echo received -z

)

echo "option -$OPTARG needs an argunent”

*)

echo "invalid option -$OPTARG'
esac
done

Thisis sample output from the script above.

kahl an@ol expll$./argoptions.ksh -a -f hello -z
received -a

received -f with hello

received -z

kahl an@ol expll$./argoptions. ksh -zaf 42
received -z

received -a

received -f with 42

kahl an@ol expl1l$./argoptions. ksh - zf
received -z

option -f needs an argunent

get shell options with shopt

Y ou can toggle the values of variables controlling optional shell behaviour with the
shopt built-in shell command. The example below first verifies whether the cdspell
option is set; it is not. The next shopt command sets the value, and the third shopt
command verifies that the option really is set. You can now use minor spelling
mistakes in the cd command. The man page of bash has a complete list of options.

paul @ ai ka: ~$ shopt -q cdspell ; echo $?
1

paul @ ai ka: ~$ shopt -s cdspel
paul @ ai ka: ~$ shopt -q cdspell ; echo $?
0

paul @ai ka: ~$ cd /Etc

/etc

175

scripting parameters

21.7. practice: parameters and options

1. Write a script that receives four parameters, and outputs them in reverse order.

2. Write a script that receives two parameters (two filenames) and outputs whether
those files exist.

3. Write ascript that asks for afilename. Verify existence of thefile, then verify that
you own the file, and whether it iswritable. If not, then make it writable.

4. Make aconfiguration file for the previous script. Put alogging switch in the config
file, logging means writing detailed output of everything the script doesto alog file
in /tmp.

176

scripting parameters

21.8. solution: parameters and options

1. Write a script that receives four parameters, and outputs them in reverse order.

echo $4 $3 $2 $1

2. Write a script that receives two parameters (two filenames) and outputs whether
those files exist.

#! / bi n/ bash

if [-f $1]

t hen echo $1 exi sts!

el se echo $1 not found!
fi

if [-f $2]

t hen echo $2 exi sts!

el se echo $2 not found!
fi

3. Write ascript that asks for afilename. Verify existence of thefile, then verify that
you own the file, and whether it iswritable. If not, then make it writable.

4. Make aconfiguration filefor the previous script. Put alogging switch in the config
file, logging means writing detailed output of everything the script doesto alog file
in/tmp.

177

Chapter 22. more scripting

Table of Contents

221, BVAl ettt st es 179
72 2 () SRS 179
7 T = SRS 180
P v = PSR SSS 181
22.5. SNEll TUNCLIONS ...ttt 182
22.6. Practice : MOIe SCrPLING ..c.eevveeeieieerieeie e eee e e se e sreeste e sree e eesreees 183
22.7. SOIULION : MOFE SCHPLING .veeuveeveereeeeeseesreeeeseeseeeeseesseeeesseesseeeesreessesneens 184

178

more scripting

22.1.

22.2.

eval

eval reads arguments as input to the shell (the resulting commands are executed).
This alows using the value of avariable as avariable.

paul @eb503: ~/t est 42$ answer =42

paul @eb503: ~/t est 42$ wor d=answer

paul @eb503: ~/test 42$ eval x=\$$word ; echo $x
42

Both in bash and K or n the arguments can be quoted.

kahl an@ol expll$ answer =42

kahl an@ol expll$ wor d=answer

kahl an@ol exp11$ eval "y=\$$word" ; echo $y
42

Sometimes the eval is needed to have correct parsing of arguments. Consider this
example where the date command receives one parameter 1 week ago.

paul @ebi an6~$ date --date="1 week ago"
Thu Mar 8 21:36:25 CET 2012

When we set this command in a variable, then executing that variable fails unless
we use eval.

paul @ebi an6~$ | ast week="date --date="1 week ago"'
paul @ebi an6~$ $I ast week

date: extra operand "ago"'

Try “date --help' for nore information.

paul @ebi an6~$ eval $I astweek

Thu Mar 8 21:36:39 CET 2012

()

The (()) allowsfor evaluation of numerical expressions.

paul @eb503: ~/test42$ ((42 > 33)) && echo true || echo false
true

paul @eb503: ~/test42$ ((42 > 1201)) && echo true || echo false
fal se

paul @eb503: ~/ t est 42$ var 42=42

paul @eb503: ~/test42$ ((42 == var42)) && echo true || echo fal se
true

paul @eb503: ~/test42$ ((42 == $var42)) && echo true || echo false
true

paul @eb503: ~/t est 42$ var 42=33

paul @eb503: ~/test42$ ((42 == var42)) && echo true || echo fal se
fal se

179

more scripting

22.3. let

Thelet built-in shell functioninstructsthe shell to perform an evaluation of arithmetic
expressions. It will return O unless the last arithmetic expression evaluatesto 0.

[paul GRHEL4b ~]1$ let x="3 + 4" ; echo $x
2

[paul @RHEL4b ~]1$ let x="10 + 100/10" ; echo $x

20
[paul @RHEL4b ~]$ | et x="10-2+100/10" ; echo $x
18
[paul @RHEL4b ~]1$ | et x="10*2+100/10" ; echo $x
30

The shdll can also convert between different bases.

[paul @GRHEL4b ~]1$ et x="OxFF" ; echo $x

fEZuI@RHEL4b ~]$ let x="0xC0" ; echo $x
?2§U|@RHEL4b ~]$ let x="0xA8" ; echo $x
?ggul@RHEL4b ~]$ let x="8#70" ; echo $x
?gaul @RHEL4b ~]$ let x="8#77" ; echo $x
?3aul@RHEL4b ~]1$ let x="16#c0" ; echo $x
192

There is a difference between assigning a variable directly, or using let to evaluate
the arithmetic expressions (even if it isjust assigning avalue).

kahl an@ol expll$ dec=15 ; oct=017 ; hex=0x0f

kahl an@ol expll$ echo $dec $oct $hex

15 017 0OxOf

kahl an@ol expll$ |l et dec=15 ; let oct=017 ; |et hex=0x0f
kahl an@ol expll$ echo $dec $oct $hex

15 15 15

180

more scripting

22.4. case

Y ou can sometimes simplify nested if statements with a case construct.

[paul @RHEL4b ~]1$./help
VWhat aninmal did you see ? lion
You better start running fast!
[paul @GRHEL4b ~1$./help
What animal did you see ? dog
Don't worry, give it a cookie.
[paul @RHEL4b ~]$ cat help
#1/ bi n/ bash
#
WIld Animal s Hel pdesk Advice
#
echo -n "What aninmal did you see ? "
read ani mal
case $animal in

“lion" | "tiger")

echo "You better start running fast!"

1

"cat")

echo "Let that nouse go..."
"dog")

echo "Don't worry, give it a cookie."
"chi cken" | "goose" | "duck")

echo "Eggs for breakfast!"
"liger")

echo "Approach and say 'Ah you big fluffy kitty...'
"babel fish")

echo "Did it fall out your ear ?"
)

echo "You di scovered an unknown animal, nane it!"

1

esac
[paul @GRHEL4b ~]1 $

181

more scripting

22.5. shell functions

Shell functions can be used to group commandsin alogica way.

kahl an@ol expll$ cat funcs. ksh
#! / bi n/ ksh

function greetings {
echo Hello Worl d!
echo and hello to $USER to!

}

echo W will now call a function
greetings
echo The end

Thisis sample output from this script with afunction.

kahl an@ol expll$./funcs. ksh
W will now call a function
Hell o Worl d!

and hello to kahlan to!

The end

A shell function can also receive parameters.

kahl an@ol expll$ cat addfunc. ksh
#!/ bi n/ ksh

function plus {

let result="%$1 + $2"
echo $1 + $2 = $result
}

plus 3 10
plus 20 13
plus 20 22

This script produces the following outpui.

kahl an@ol expll$./ addfunc. ksh

3 + 10 = 13
20 + 13 = 33
20 + 22 = 42

182

more scripting

22.6. practice : more scripting

1. Write a script that asks for two numbers, and outputs the sum and product (as
shown here).

Enter a nunber: 5
Ent er anot her nunber: 2

7
10

Sum 5+ 2
Pr oduct : 5x 2

2. Improve the previous script to test that the numbers are between 1 and 100, exit
with an error if necessary.

3. Improve the previous script to congratul ate the user if the sum equals the product.

4. Write a script with a case insensitive case statement, using the shopt nocasematch
option. The nocasematch option isreset to the value it had before the scripts started.

5. If time permits (or if you are waiting for other students to finish this practice),
take a look at linux system scripts in /etc/init.d and /etc/rc.d and try to understand
them. Where does execution of ascript start in/etc/init.d/sasmba? There are also some
hidden scriptsin ~, we will discuss them later.

183

more scripting

22.7. solution : more scripting

1. Write a script that asks for two numbers, and outputs the sum and product (as
shown here).

Enter a nunber: 5
Ent er anot her nunber: 2

Sum 5+2 =17
Pr oduct : 5x 2 =10
#!/ bi n/ bash

echo -n "Enter a nunber
read nl

echo -n "Enter another nunber
read n2

l et sum="$nl+$n2"
l et pro="$nl*$n2"

echo -e "Sumt: $nl + $n2 = $sunf
echo -e "Product\t: $nl * $n2 = $pro”

2. Improve the previous script to test that the numbers are between 1 and 100, exit
with an error if necessary.

echo -n "Enter a nunber between 1 and 100 : "
read nl

if [$n1 -1t 1 -0 $nl -gt 100]
t hen
echo Wong nunber. ..
exit 1
f

3. Improve the previous script to congratul ate the user if the sum equals the product.

if [$sum-eq $pro]
t hen echo Congratul ati ons $sum == $pro
f

4. Write a script with a case insensitive case statement, using the shopt nocasematch
option. The nocasematch option isreset to the value it had before the scripts started.

#!'/ bi n/ bash

#

WIld Animal s Case Insensitive Hel pdesk Advice
#

if shopt -q nocasematch; then
nocase=yes;

el se
nocase=no
shopt -s nocasemnat ch;

f

echo -n "What aninmal did you see ? "
read ani ma

184

more scripting

case $aninmal in
"lion" | "tiger")
echo "You better start running fast!"”
"cat")
echo "Let that nouse go..."

"dog")

echo "Don't worry, give it a cookie.”
"chi cken" | "goose" | "duck")

echo "Eggs for breakfast!"

"liger")
echo "Approach and say 'Ah you big fluffy kitty.""
"babel fish")
echo "Did it fall out your ear ?"
S
echo "You di scovered an unknown animal, nane it!"
esac

if [nocase = yes] ; then
shopt -s nocasemat ch;
el se
shopt -u nocasemat ch;
fi

5. If time permits (or if you are waiting for other students to finish this practice),
take a look at linux system scripts in /etc/init.d and /etc/rc.d and try to understand
them. Where does execution of ascript start in/etc/init.d/sasmba? There are also some
hidden scriptsin ~, we will discuss them later.

185

Part VII. local user management

Chapter 23. users

Table of Contents

23.1. identify YOUISEITcceieeeee e 188
23.2. USEN'S .eetiiiitieesitee ettt e et e e st e e st e e st e st e st e e e eaee e aa e e ha e e e ne e e e ba e e re e e nre e nnres 189
PG TR 0= xS Yoo S 191
23.4. NOME AIFECLOMESveeieeeieceeeie ettt e e e st e e e te e e sneenneeneas 196
23.5. USEE SNEIL e 197
23.6. SWITCH USEIS WIth SU ..c.vecieceicecece e 198
23.7. run @ program as anOtNEN USESccccceevereerieeieeseesieeeeseeseeseesseensesseessens 199
23.8. PraCliCEl USEF'S ..ecvieeeiteeieeeesieesseeseesseesteseesseesseasessseessesseesseessesnsesseessessensnes 201
23.9. SOIULION: USENS ...veeveeieeeeesteeteeeesteesseeaesseesseeseesseessesssesseesseesessseessesnsesseessens 202
23.10. Shell eNVIFONMENLccccceeieceeseere e es 204

187

users

23.1. identify yourself

whoami

The whoami command tells you your username.

[root @RHELS ~] # whoami

r oot

[root @RHELS ~]# su - paul
[paul @GRHEL5 ~] $ whoami
paul

who
The who command will give you information about who islogged on the system.
[paul @GRHEL5 ~]1$ who
r oot ttyl 2008-06-24 13: 24
sandra pts/0 2008- 06-24 14:05 (192.168. 1. 34)
paul pts/1 2008-06-24 16:23 (192.168.1.37)
who am i
With who am i the who command will display only the line pointing to your current
session.
[paul @GRHEL5 ~]$ who ami
paul pts/1 2008- 06- 24 16:23 (192.168. 1. 34)
W
The w command shows you who is logged on and what they are doing.
$w
05:13:36 up 3 nmin, 4 users, |oad average: 0.48, 0.72, 0.33
USER TTY FROM LOGN@ |IDLE JCPU PCPU WHAT
r oot ttyl - 05:11 2.00s 0.32s 0.27s find / -name shad
i nge pts/0 192.168.1.33 05:12 0.00s 0.02s 0.02s -ksh
paul pts/2 192.168.1.34 05:13 25.00s 0.07s 0.04s top
id

Theid command will giveyou your user id, primary group id, and alist of the groups
that you belong to.

root @ai ka: ~# id

ui d=0(root) gi d=0(root) groups=0(root)

root @ai ka: ~# su - brel

brel @ai ka: ~$ id

ui d=1001(brel) gi d=1001(brel) groups=1001(brel), 1008(chanson), 11578(wol f)

188

users

23.2. users

user management

User management on any Unix can be done in three complimentary ways. Y ou can
use the graphical tools provided by your distribution. These tools have a look and
feel that depends on the distribution. If you are a hovice Linux user on your home
system, then use the graphical tool that is provided by your distribution. This will
make sure that you do not run into problems.

Another optionisto usecommand linetoolslike useradd, usermod, gpasswd, passwd
and others. Server administrators are likely to use these tools, since they are familiar
and very similar across many different distributions. This chapter will focus on these
command line tools.

A third and rather extremist way isto edit thelocal configuration filesdirectly using
vi (or vipw/vigr). Do not attempt this as a novice on production systems!

/etc/passwd

root

Thelocal user database on Linux (and on most Unixes) is/etc/passwd.

[root @RHELS ~]# tail /etc/passwd

i nge: x: 518: 524: art deal er:/ home/i nge:/ bi n/ ksh

ann: x: 519: 525: fl ute pl ayer:/ home/ ann:/ bi n/ bash
frederik:x:520: 526: r ubi us poet:/home/frederik:/bin/bash
steven: x: 521: 527: roman enperor:/ hone/ st even:/ bi n/ bash
pascal e: x: 522: 528: arti st:/home/ pascal e: / bi n/ ksh
geert: x: 524:530: kernel devel oper:/home/ geert:/bin/bash
wi m x: 525: 531: master danuti:/hone/w m/bin/bash

sandr a: x: 526: 532: radi sh stresser:/hone/ sandra:/bi n/ bash
annel i es: x: 527: 533: sword fighter:/home/annelies:/bin/bash
| aura: x: 528: 534: art deal er:/ home/ | aura:/bi n/ ksh

Asyou can see, this file contains seven columns separated by a colon. The columns
contain the username, an x, the user id, the primary group id, a description, the name
of the home directory, and the login shell.

Theroot user aso called the superuser isthe most powerful account on your Linux
system. This user can do aimost anything, including the creation of other users. The
root user always has userid O (regardless of the name of the account).

[root @GRHEL5 ~]# head -1 /etc/passwd
root: x:0:0:root:/root:/bin/bash

189

users

useradd

Y ou can add users with the useradd command. The example below shows how to
add a user named yanina (last parameter) and at the same time forcing the creation
of the home directory (-m), setting the name of the home directory (-d), and setting
adescription (-c).

[root @GRHEL5 ~]# useradd -m -d /hone/yanina -c "yani na wi ckmayer" yani na
[root @GRHEL5 ~]# tail -1 /etc/passwd
yani na: x: 529: 529: yani na wi ckmayer : / hone/ yani na:/ bi n/ bash

The user named yaninareceived userid 529 and primary group id 529.

/etc/default/useradd

Both Red Hat Enterprise Linux and Debian/Ubuntu have afile called /etc/default/
useradd that contains some default user options. Besides using cat to display this
file, you can also use useradd -D.

[root @RHEL4 ~] # useradd -D
GROUP=100

HOVE=/ hone

I NACTI VE=- 1

EXPI RE=

SHELL=/ bi n/ bash

SKEL=/ et c/ skel

userdel

Y ou can del ete the user yaninawith user del. The-r option of userdel will aso remove
the home directory.

[root @RHELS5 ~]# userdel -r yanina

usermod

Y ou can modify the properties of a user with the usermod command. This example
uses user mod to change the description of the user harry.

[root @RHEL4 ~]# tail -1 /etc/passwd

harry: x: 516: 520: harry potter:/home/ harry:/bin/bash
[root @RHEL4 ~]# usernod -c 'wi zard' harry

[root @RHEL4 ~]# tail -1 /etc/passwd

harry: x: 516: 520: wi zard: / hore/ har ry: / bi n/ bash

190

users

23.3. passwords

passwd

Passwords of users can be set with the passwd command. Userswill have to provide
their old password before twice entering the new one.

[harry@HEL4 ~]$ passwd

Changi ng password for user harry.

Changi ng password for harry

(current) UN X password:

New UNI X passwor d:

BAD PASSWORD: it's WAY too short

New UNI X passwor d:

Ret ype new UNI X passwor d:

passwd: all authentication tokens updated successfully.
[harry@RHEL4 ~] $

As you can see, the passwd tool will do some basic verification to prevent users
from using too simple passwords. The root user does not have to follow these rules
(there will be awarning though). The root user also does not have to provide the old
password before entering the new password twice.

/etc/shadow

User passwords are encrypted and kept in /etc/shadow. The /etc/shadow fileis read
only and can only be read by root. We will see in the file permissions section how it
is possible for users to change their password. For now, you will have to know that
users can change their password with the /usr/bin/passwd command.

[root @RHELS ~] # tail /etc/shadow

i nge: 1yWVESi nOV$Ys YvcVKgBy FVYLKnU3ncdO: 14054: 0: 99999: 7: : :
ann:!!:14054:0:99999:7:::

frederik:!!:14054:0:99999:7:::

steven:!!:14054:0:99999: 7:::

pascal e: !'1:14054: 0: 99999: 7: : :

geert:!11:14054:0:99999:7:::

wim!!:14054:0:99999: 7: ::

sandra:!!:14054: 0: 99999: 7: ::
annelies:!!:14054:0:99999:7:::

| aura: 1Tvby1Kpa$l L. Wgobuj US3LCA | Rndv1: 14054: 0: 99999: 7: : :

The/etc/shadow file contains nine colon separated columns. The nine fields contain
(from left to right) the user name, the encrypted password (note that only inge and
laura have an encrypted password), the day the password was last changed (day 1 is
January 1, 1970), number of days the password must be left unchanged, password
expiry day, warning number of days before password expiry, number of days after
expiry before disabling the account, and the day the account was disabled (again,
since 1970). The last field has no meaning yet.

191

users

password encryption

encryption with passwd

Passwords are stored in an encrypted format. This encryption is done by the crypt
function. The easiest (and recommended) way to add a user with a password to the
system isto add the user with the useradd -m user command, and then set the user's
password with passwd.

[root @GRHEL4 ~]# useradd -m xavi er

[root @GRHEL4 ~] # passwd xavi er

Changi ng password for user xavier.

New UNI X passwor d:

Ret ype new UNI X passwor d:

passwd: all authentication tokens updated successfully.
[root @GRHEL4 ~] #

encryption with openssl

Another way to create userswith apassword isto usethe -p option of useradd, but that
option requires an encrypted password. You can generate this encrypted password
with the openss passwd command.

[root @RHEL4 ~] # openss|l passwd stargate

ZZNX16QZVgUQY
[root @RHEL4 ~]# useradd -m -p ZZNX16QZVgUQy nohaned

encryption with crypt

A third option isto create your own C program using the crypt function, and compile
thisinto a command.

[paul @ai ka ~]$ cat M/Crypt.c
#i ncl ude <stdio. h>

#define __ USE XOPEN

#i ncl ude <uni std. h>

int main(int argc, char** argv)

{
i f(argc==3)
{

}

el se

{
}

return O;

}

printf("%\n", crypt(argv[1],argv[2]));

printf("Usage: MyCrypt $password $salt\n");

192

users

Thislittle program can be compiled with gcc like this.
[paul @ai ka ~]$ gcc MCrypt.c -o MyCrypt -lcrypt

To use it, we need to give two parameters to MyCript. The first is the unencrypted
password, the second isthe salt. The salt isused to perturb the encryption algorithmin
one of 4096 different ways. Thisvariation preventstwo userswith the same password
from having the same entry in /etc/shadow.

paul @ai ka: ~$./ MWCrypt stargate 12
12L4FoTS3/ k9U
paul @ ai ka: ~$./ MWCrypt stargate 01
01Y.yPnl @BR. Y
paul @ ai ka: ~$./ MWCrypt stargate 33
330asFUbzgVeg
paul @ai ka: ~$./ MWCrypt stargate 42
42XFx0T4R75gk

Did you notice that the first two characters of the password are the salt?

The standard output of the crypt function is using the DES algorithm which is old
and can be cracked in minutes. A better method is to use md5 passwords which can
be recognized by a salt starting with 1.

paul @ai ka: ~$./ MCrypt stargate '$1$12'
$1$12$xUl Q4116Us. Q6Osc2Khbmt
paul @ai ka: ~$./ MCrypt stargate '$1$01'
$1$01$yNs8brj p4b4TEw. v9/ 113/
paul @ai ka: ~$./ MCrypt stargate ' $1$33'
$1$33%t Lh/ Ldy2wskdKAJR. Ph4MD)
paul @ai ka: ~$./ MCrypt stargate '$1$42'
$1$42$Hb3nvPOKWHSQ7 QM | Y7R.

The md>5 salt can be up to eight characterslong. The salt is displayed in /etc/shadow
between the second and third $, so never use the password as the salt!

paul @ai ka: ~$./ MCrypt stargate '1stargate’
1st ar gat e$qgxolLgi SVNvG 5y bMKEVML

193

users

password defaults

/etc/login.defs

chage

The /etc/login.defs file contains some default settings for user passwords like
password aging and length settings. (Y ou will aso find the numerical limits of user
ids and group ids and whether or not a home directory should be created by default).

[root @RHEL4 ~]# grep -i pass /etc/login.defs

Password aging controls:

PASS_MAX _DAYS Maxi mum nunber of days a password nay be used.

PASS M N _DAYS M ni num nunber of days all owed between password changes.
PASS M N LEN M ni num accept abl e password | engt h.

PASS WARN _AGE Nunber of days warning given before a password expires.
PASS_MAX_DAYS 99999

PASS M N DAYS 0

PASS M N_LEN 5

PASS WARN AGE 7

The chage command can be used to set an expiration date for a user account (-E),
set a minimum (-m) and maximum (-M) password age, a password expiration date,
and set the number of warning days before the password expiration date. Much of
thisfunctionality is also available from the passwd command. The -l option of chage
will list these settings for a user.

[root @RHEL4 ~] # chage -1 harry

M ni mum 0

Maxi mum 99999

VMr ni ng: 7

| nactive: -1

Last Change: Jul 23, 2007
Password Expires: Never
Password | nacti ve: Never

Account Expires: Never

[root @GRHEL4A ~] #

disabling a password

Passwords in /etc/shadow cannot begin with an exclamation mark. When the second
field in /etc/passwd starts with an exclamation mark, then the password can not be
used.

Using this feature is often called locking, disabling, or suspending a user account.
Besides vi (or vipw) you can also accomplish this with usermod.

Thefirst line in the next screenshot will disable the password of user harry, making
it impossible for harry to authenticate using this password.

194

users

[root @RHEL4 ~]# usernod -L harry
[root @RHEL4 ~]# tail -1 /etc/shadow
harry:!$1$143TOA1 Z$RLm FpQkpDr V4/ Tkhku5el: 13717: 0: 99999: 7: : :

The root user (and users with sudo rights on su) still will be able to su to harry
(because the password is not needed here). Also note that harry will still be able to
login if he has set up passwordless ssh!

[root @RHEL4 ~]# su - harry
[harry@RHEL4 ~] $

Y ou can unlock the account again with usermod -U.

Watch out for tiny differences in the command line options of passwd, usermod,
and user add on different distributions! Verify thelocal fileswhen using featureslike
" disabling, suspending, or locking" users and passwords!

editing local files
If you still want to manually edit the/etc/passwd or /etc/shadow, after knowing these

commands for password management, then use vipw instead of vi(m) directly. The
vipw tool will do proper locking of thefile.

[root @RHELS ~] # vi pw /et c/ passwd
vi pw. the password file is busy (/etc/ptnp present)

195

users

23.4. home directories

creating home directories

The easiest way to create a home directory isto supply the -m option with useradd
(itislikely set as adefault option on Linux).

A less easy way is to create a home directory manually with mkdir which also
requires setting the owner and the permissions on the directory with chmod and
chown (both commands are discussed in detail in another chapter).

[root @RHEL5 ~]# nkdir /home/l aura

[root @RHEL5 ~]# chown | aura:laura /hone/laura

[root @RHEL5 ~]# chnod 700 /hone/ | aura

[root @RHEL5 ~]# |s -1d /hone/l aural

drwx- - ---- 2 laura laura 4096 Jun 24 15:17 /hone/| aura/

letc/skel/

When using useradd the -m option, the /etc/skel/ directory is copied to the newly
created home directory. The /etc/skel/ directory contains some (usually hidden) files
that contain profile settings and default values for applications. In thisway /etc/skel/
serves as a default home directory and as a default user profile.

[root @RHELS ~]# Is -la /etc/skel/

total 48

drwxr-xr-x 2 root root 4096 Apr 1 00:11 .

drwxr-xr-x 97 root root 12288 Jun 24 15:36 ..

-rwr--r-- 1 root root 24 Jul 12 2006 .bash_| ogout
-rwr--r-- 1 root root 176 Jul 12 2006 .bash_profile
-rwr--r-- 1 root root 124 Jul 12 2006 . bashrc

deleting home directories

The -r option of userdel will make sure that the home directory is deleted together
with the user account.

[root @GRHELS ~]# |Is -1d /honme/w m

drwx------ 2 wimw m 4096 Jun 24 15:19 /home/w m
[root @RHEL5 ~]# userdel -r wim

[root @RHELS ~]# |Is -1d /hone/w m

I's: /home/wim: No such file or directory

196

users

23.5. user shell

login shell

chsh

The /etc/passwd file specifies the login shell for the user. In the screenshot below
you can see that user annelieswill log in with the /bin/bash shell, and user laurawith
the /bin/ksh shell.

[root @RHELS ~]# tail -2 /etc/passwd
annel i es: x: 527: 533: sword fighter:/home/annelies:/bin/bash
| aura: x: 528: 534: art deal er:/hone/ | aura:/bin/ksh

Y ou can use the usermod command to change the shell for a user.

[root @RHELS5 ~]# usernmod -s /bin/bash |aura
[root @RHELS ~]# tail -1 /etc/passwd
laura: x: 528: 534: art deal er:/hone/ | aura:/ bi n/ bash

Users can change their login shell with the chsh command. First, user harry obtains
alist of available shells (he could aso have done a cat /etc/shells) and then changes
hislogin shell to the Korn shell (/bin/ksh). At the next login, harry will default into
ksh instead of bash.

[harry@HEL4 ~]1$ chsh -|
/ bin/ sh

/ bi n/ bash

/ sbi n/ nol ogi n

/ bi n/ ash

/ bi n/ bsh

/ bi n/ ksh

[usr/bin/ksh

[usr/ bi n/ pdksh

/ bin/tcsh

/ bin/csh

/ bin/zsh

[harry@HEL4 ~]1$ chsh -s /bin/ksh
Changi ng shell for harry.
Passwor d:

Shel | changed.
[harry@RHEL4 ~] $

197

users

23.6.

su to

su to

Su as

switch users with su

another user

The su command allows a user to run a shell as another user.
[paul @GRHEL4b ~]1$ su harry

Passwor d:
[harry@RHEL4b paul] $

root

Y es you can asu su to become root, when you know the root password.

[harry@HEL4b paul 1$ su root
Passwor d:
[root @GRHEL4b paul | #

root

Unless you are logged in as root, running a shell as another user requires that you
know the password of that user. Theroot user can become any user without knowing
the user's password.

[root @RHEL4b paul]# su serena
[serena@HEL4b paul 1$

su - $username

Su -

By default, the su command maintains the same shell environment. To become
another user and also get the target user's environment, issue the su - command
followed by the target username.

[paul @GRHEL4b ~]1$ su - harry
Passwor d:
[harry@RHEL4b ~] $

When no username is provided to su or su -, the command will assume root is the
target.

[harry@HEL4b ~]$ su -
Passwor d:
[root @GRHEL4b ~]#

198

users

23.7.run a program as another user

about sudo

The sudo program allows a user to start a program with the credentials of another
user. Before this works, the system administrator has to set up the /etc/sudoer sfile.
This can be useful to delegate administrative tasks to another user (without giving
the root password).

The screenshot below shows the usage of sudo. User paul received the right to run
useradd with the credentials of root. This allows paul to create new users on the
system without becoming root and without knowing the r oot password.

paul @ ai ka: ~$ useradd -m i nge
useradd: unable to | ock password file
paul @ ai ka: ~$ sudo useradd -m i nge

[sudo] password for paul:

paul @ ai ka: ~$

setuid on sudo

The sudo binary has the setuid bit set, so any user can run it with the effective userid
of root.

paul @ai ka: ~$ I's -1 “which sudo’
-rwsr-xr-x 2 root root 107872 2008-05-15 02: 41 /usr/bi n/sudo
paul @ ai ka: ~$

visudo

Check the man page of visudo before playing with the /etc/sudoersfile.

sudo su

On some linux systems like Ubuntu and Kubuntu, the root user does not have a
password set. This means that it is not possible to login as root (extra security). To
perform tasks as root, the first user is given all sudo rights viathe /etc/sudoers. In
fact all usersthat are members of the admin group can use sudo to run all commands
as root.

root @ai ka: ~# grep admin /etc/sudoers
Menbers of the admin group nay gain root privileges
%dm n ALL=(ALL) ALL

199

users

The end result of thisis that the user can type sudo su - and become root without
having to enter the root password. The sudo command does require you to enter your
own password. Thus the password prompt in the screenshot below is for sudo, not
for su.

paul @ ai ka: ~$ sudo su -
Passwor d:
root @ ai ka: ~#

200

users

23.8. practice: users

1. Create the users Serena Williams, Venus Williams and Justine Henin, all of them
with password set to stargate, with username (lower case!) as their first name, and
their full name in the comment. Verify that the users and their home directory are
properly created.

2. Create a user caled kornuser, give him the Korn shell (/bin/ksh) as his default
shell. Log on with this user (on acommand line or in atty).

3. Create a user named einstime without home directory, give him /bin/date as his
default logon shell. What happens when you log on with this user ? Can you think of
auseful real world example for changing a user's login shell to an application ?

4. Try the commands who, whoami, who ami, w, id, echo SUSER $UID .
5a. Lock the venus user account with usermod.

5b. Use passwd -d to disable the serena password. Verify the serena line in /etc/
shadow before and after disabling.

5c. What is the difference between locking a user account and disabling a user
account's password ?

6. Asroot change the password of einstime to stargate.

7. Now try changing the password of serenato serena as serena.

8. Make sure every new user needs to change his password every 10 days.
9. Set the warning number of daysto four for the kornuser.

10a. Set the password of two separate users to stargate. Look at the encrypted
stargate's in /etc/shadow and explain.

10b. Take a backup as root of /etc/shadow. Use vi to copy an encrypted stargate to
another user. Can this other user now log on with stargate as a password ?

11. Put afilein the skeleton directory and check whether it is copied to user's home
directory. When is the skeleton directory copied ?

12. Why use vipw instead of vi ? What could be the problem when using vi or vim ?

13. Usechshtolist all shells, and compareto cat /etc/shells. Change your login shell
to the Korn shell, log out and back in. Now change back to bash.

14. Which useradd option allows you to name a home directory ?

15. How can you see whether the password of user harry islocked or unlocked ? Give
a solution with grep and a solution with passwd.

201

users

23.9. solution: users

1. Create the users Serena Williams, Venus Williams and Justine Henin, all of them
with password set to stargate, with username (lower case) as their first name, and
their full name in the comment. Verify that the users and their home directory are
properly created.

useradd -m-c "Serena WIlians" serena ; passwd serena

useradd -m-c "Venus WIlians" venus ; passwd venus

useradd -m-c "Justine Henin" justine ; passwd justine
tail /etc/passwd ; tail /etc/shadow ; |s /hone

Keep user |ogon nanmes in | owercase!

2. Create a user caled kornuser, give him the Korn shell (/bin/ksh) as his default
shell. Log on with this user (on acommand line or in atty).

useradd -s /bin/ksh kornuser ; passwd kornuser

3. Create a user named einstime without home directory, give him /bin/date as his
default logon shell. What happens when you log on with this user ? Can you think of
auseful real world example for changing a user's login shell to an application ?

useradd -s /bin/date einstine ; passwd einstine

It can be useful when users need to access only one application on the server. Just
logging on opens the application for them, and closing the application automatically
logs them off.

4. Try the commands who, whoami, who ami, w, id, echo SUSER $UID .

who ; whoami ; who ami ; w; id ; echo $USER $U D

5a. Lock the venus user account with usermod.

usernod -L venus

5b. Use passwd -d to disable the serena password. Verify the serena line in /etc/
shadow before and after disabling.

grep serena /etc/shadow, passwd -d serena ; grep serena /etc/shadow

5c. What is the difference between locking a user account and disabling a user
account's password ?

Locking will prevent the user from logging on to the system with his password (by
putting a! in front of the password in /etc/shadow). Disabling with passwd will erase
the password from /etc/shadow.

6. Asroot change the password of einstime to stargate.

Log on as root and type: passwd einstine

7. Now try changing the password of serenato serena as serena.

|l og on as serena, then execute: passwd serena... it should fail

202

users

8. Make sure every new user needs to change his password every 10 days.

For an existing user: chage -M 10 serena

For all new users: vi /etc/login.defs (and change PASS MAX DAYS to 10)
9. Set the warning number of days to four for the kornuser.

chage -W4 kornuser

10a. Set the password of two separate users to stargate. Look at the encrypted
stargate's in /etc/shadow and explain.

If you used passwd, then the salt will be different for the two encrypted passwords.

10b. Take a backup as root of /etc/shadow. Use vi to copy an encrypted stargate to
another user. Can this other user now log on with stargate as a password ?

Yes.

11. Put afilein the skeleton directory and check whether it is copied to user's home
directory. When is the skeleton directory copied ?

When you create a user account with a new hone directory.

12. Why use vipw instead of vi ? What could be the problem when using vi or vim ?

vipw wi | | give a warning when soneone else is already using that file.

13. Usechshto list al shells, and compare to cat /etc/shells. Change your login shell
to the Korn shell, log out and back in. Now change back to bash.

On Red Hat Enterprise Linux: chsh -I
On Debi an/ Ubuntu: cat /etc/shells

14. Which useradd option allows you to name a home directory ?

-d

15. How can you see whether the password of user harry islocked or unlocked ? Give
a solution with grep and a solution with passwd.

grep harry /etc/shadow

passwd -S harry

203

users

23.10. shell environment

It is nice to have these preset and custom aliases and variables, but where do they all
come from ? The shell uses anumber of startup filesthat are checked (and executed)
whenever the shell isinvoked. What follows is an overview of startup scripts.

/etc/profile
Both the bash and the ksh shell will verify the existence of /etc/profile and execute
itif it exists.

When reading this script, you might notice (at least on Debian Lenny and on Red Hat
Enterprise Linux 5) that it builds the PATH environment variable. The script might
also change the PS1 variable, set the HOSTNAME and execute even more scripts
like/etc/inputrc

Y ou can use this script to set aliases and variables for every user on the system.

~/.bash_profile

When thisfileexistsin the usershomedirectory, then bash will executeit. On Debian
Linux it does not exist by default.

RHELS5 uses a brief ~/.bash_profile where it checks for the existence of ~/.bashrc
and then executesit. It also adds SHOME/bin to the $PATH variable.

[serena@hel 53 ~]$ cat .bash_profile
.bash_profile
CGet the aliases and functions
if [-f ~/.bashrc]; then
.~/ .bashrc
fi
User specific environment and startup prograns

PATH=$PATH: $HOWE/ bi n

export PATH

~/.bash_login

When .bash_profile does not exist, then bash will check for ~/.bash_login and
execute it.

Neither Debian nor Red Hat have thisfile by default.

204

users

~/.profile

When neither ~/.bash_profile and ~/.bash_login exist, then bash will verify the
existence of ~/.profile and execute it. Thisfile does not exist by default on Red Hat.

On Debian this script can execute ~/.bashr ¢ and will add $SHOME/bin to the $PATH
variable.

serena@eb503: ~$ tail -12 .profile
if running bash
if [-n "$BASH VERSION']; then
include .bashrc if it exists
if [-f "$HOVE/ . bashrc"]; then
. "$HOWE/ . bashrc"
fi
fi
set PATH so it includes user's private bin if it exists
if [-d"$HOVE bin"] ; then
PATH=" $HOVE/ bi n: $PATH"
fi

~/[.bashrc

Asseeninthe previouspoints, the ~/.bashr ¢ script might be executed by other scripts.
Let ustake alook at what it does by defaullt.

Red Hat uses avery simple ~/.bashrc, checking for /etc/bashrc and executing it. It
also leaves room for custom aliases and functions.

[serena@hel 53 ~]$ nore . bashrc
. bashrc

Source gl obal definitions

if [-f /etc/bashrc]; then
. letc/bashrc

fi

User specific aliases and functions

On Debianthisscript isquiteabit longer and configures $PS1, some history variables
and anumber af active and inactive aliases.

serena@eb503: ~$ Is -1 .bashrc
-rwr--r-- 1 serena serena 3116 2008-05-12 21:02 . bashrc

205

users

~/.bash_logout

When exiting bash, it can execute ~/.bash_logout. Debian and Red Hat both use this
opportunity to clear the screen.

serena@eb503: ~$ cat .bash_| ogout

~/ . bash_|l ogout: executed by bash(1) when login shell exits.

when | eaving the console clear the screen to increase privacy
if ["$SHLVL" = 1]; then

[-x fusr/bin/clear_console] && /usr/bin/clear_console -q
f

[serena@hel 53 ~]$ cat . bash_I ogout
~/.bash_l ogout

[usr/ bin/clear

Debian overview

Below isatable overview of when Debian isrunning any of these bash startup scripts.

Table 23.1. Debian User Environment

script Su | su- | ssh | gdm
~./bashrc no | yes | yes | yes
~/.profile no | yes | yes | yes
[etc/profile no | yes | yes | yes
/etc/bash.bashrc yes | no no | yes

RHELS5 overview

Below is a table overview of when Red Hat Enterprise Linux 5 is running any of
these bash startup scripts.

Table 23.2. Red Hat User Environment

script Su | su- | ssh | gdm
~./bashrc yes | yes | yes | yes
~/.bash_profile no | yes | yes | yes
/etc/profile no | yes | yes | yes
/etc/bashrc yes | yes | yes | yes

206

Chapter 24. groups

Table of Contents

- oo 1U | o (01U o 208
P27 o (01N [o S 208
PR B L= (oo o U o LSS 208
244, USEINOA ...ttt ettt sttt ettt ettt seenne e 209
2 T o | (0 TN o1 1o o 209
24.6. GrOUPTELc.eeeiecee ettt e e re e e e e nnes 209
P 0| (01U 0PRSS PR 209
P S I o 7= = o 210
Y o PSSO 210
24.10. PraCliCE: gIOUDS .oveerveeeeireesreaeesseesseseesseesseaeesseessessessseessessesssesssessesssenssens 211
24.11. SOIULION: GrOUPS ...ecuveveeeteeeeesieesteeseesteestesseesseessesseesseesesseesseenseaneesseensessensns 212

207

groups

24.1.

24.2.

24.3.

about groups

Userscan belisted in groups. Groupsallow you to set permissions on the group level
instead of having to set permissions for every individual user. Every Unix or Linux
distribution will have a graphical tool to manage groups. Novice users are advised
to use this graphical tool. More experienced users can use command line tools to
manage users, but be careful: Some distributions do not allow the mixed use of GUI
and CLI tools to manage groups (YaST in Novell Suse). Senior administrators can
edit the relevant files directly with vi or vigr.

groupadd

Groups can be created with the groupadd command. The example below shows the
creation of five (empty) groups.

root @ ai ka: ~# groupadd tennis
root @ ai ka: ~# groupadd f oot bal |
root @ ai ka: ~# groupadd snooker
root @ ai ka: ~# groupadd fornul al
root @ ai ka: ~# groupadd sal sa

/etc/group

Users can be amember of several groups. Group membership is defined by the /etc/
group file.

root @ai ka: ~# tail -5 /etc/group
tenni s: x: 1006:

footbal |l :x:1007:

snooker: x: 1008:

formul al: x: 1009:

sal sa: x: 1010:

root @ ai ka: ~#

The first field is the group's name. The second field is the group's (encrypted)
password (can be empty). The third field is the group identification or GID. The
fourth field is the list of members, these groups have no members.

208

groups

24.4. usermod

24.5

24.6

24.7

Group membership can be modified with the useradd or usermod command.

root @ai ka: ~# usernod -a -G tennis inge
root @ai ka: ~# usernnod -a -G tennis katrien
root @ai ka: ~# usernnod -a -G sal sa katrien
root @ai ka: ~# usernpnd -a -G snooker sandra
root @ai ka: ~# usernod -a -G fornul al annelies
root @ai ka: ~# tail -5 /etc/group

tenni s: x: 1006: i nge, katri en

footbal |l : x:1007:

snooker: x: 1008: sandr a

fornmul al: x: 1009: annel i es

sal sa: x: 1010: katri en

root @ ai ka: ~#

Be careful when using usermod to add users to groups. By default, the usermod
command will removethe user from every group of which heisamember if the group
isnot listed in the command! Using the -a (append) switch prevents this behaviour.

groupmod

Y ou can change the group name with the groupmod command.

root @ai ka: ~# groupnod -n darts snooker
root @ai ka: ~# tail -5 /etc/group

tenni s: x: 1006: i nge, katri en

footbal | : x: 1007:

formul al: x: 1009: annel i es

sal sa: x: 1010: katri en

darts: x: 1008: sandra

groupdel

Y ou can permanently remove a group with the gr oupdel command.

root @ai ka: ~# groupdel tennis
root @ ai ka: ~#

groups

A user can typethe groups command to seealist of groupswhere the user belongsto.

[harry@HEL4b ~]$ groups
harry sports
[harry@HEL4b ~]1 $

209

groups

24.8.

24.9.

gpasswd

You can delegate control of group membership to another user with the gpasswd
command. In the example below we delegate permissions to add and remove group
members to serena for the sports group. Then we su to serena and add harry to the
sports group.

[root @RHEL4b ~]# gpasswd - A serena sports

[root @RHEL4b ~]# su - serena

[serena@HEL4b ~]$ id harry

ui d=516(harry) gi d=520(harry) groups=520(harry)
[serena@HEL4b ~]$ gpasswd -a harry sports

Addi ng user harry to group sports
[serena@HEL4b ~]$ id harry

ui d=516(harry) gi d=520(harry) groups=520(harry), 522(sports)
[serena@HEL4b ~]$ tail -1 /etc/group

sports: x: 522: serena, venus, harry

[serena@HEL4b ~] $

Group administrators do not have to be a member of the group. They can remove
themselves from a group, but this does not influence their ability to add or remove
members.

[serena@HEL4b ~]$ gpasswd -d serena sports
Rermovi ng user serena from group sports
[serena@RHEL4b ~]$ exit

Information about group administratorsis kept in the /etc/gshadow file.

[root @RHEL4b ~]# tail -1 /etc/gshadow
sports:!:serena:venus, harry
[root @RHEL4b ~]#

To remove all group administrators from a group, use the gpasswd command to set
an empty administrators list.

[root @RHEL4b ~]# gpasswd -A "" sports

vigr

Similar to vipw, the vigr command can be used to manually edit the /etc/group file,
since it will do proper locking of the file. Only experienced senior administrators
should use vi or vigr to manage groups.

210

groups

24.10. practice: groups

1. Create the groups tennis, football and sports.

2. In one command, make venus a member of tennis and sports.

3. Rename the football group to foot.

4. Use vi to add serenato the tennis group.

5. Use the id command to verify that serenais a member of tennis.

6. Make someone responsible for managing group membership of foot and sports.
Test that it works.

211

groups

24.11. solution: groups

1. Create the groups tennis, football and sports.

groupadd tennis ; groupadd football ; groupadd sports

2. In one command, make venus a member of tennis and sports.

usernod -a -G tennis,sports venus

3. Rename the football group to foot.

groupnod -n foot footbal

4. Use vi to add serenato the tennis group.

vi [etc/group

5. Use the id command to verify that serenais a member of tennis.

id (and after |ogoff |ogon serena should be nmenber)

6. Make someone responsible for managing group membership of foot and sports.
Test that it works.

gpasswd -A (to neke nanager)

gpasswd -a (to add nenber)

212

Part VIII. file security

Chapter 25. standard file permissions

Table of Contents

25.1. TIl€ OWNEISNIP .oecieeiecieie et ente e enes 215
25.2. list Of SPECIal TIlES v 216
25.3. PEIMISSIONS ...veeieieiiiteeieeteseesteeeessee e eseesseestesseesseeaeeseesseesesseesseensenneessennes 217
25.4. practice: standard file PErMISSIONSccccceeveeieereere e 222
25.5. solution: standard file PermiSSIONSccccveviiieieere e 223

214

standard file permissions

25.1. file ownership

user owner and group owner

The users and groups of a system can be locally managed in /etc/passwd and /etc/
group, or they can bein aNIS, LDAP, or Samba domain. These users and groups
can own files. Actualy, every file has auser owner and a group owner, as can be
seen in the following screenshot.

paul @GRHELv4u4: ~/test$ |Is -

total 24

-rwrwr-- 1 paul paul 17 Feb 7 11:53 filel
-rwrwr-- 1 paul paul 106 Feb 5 17:04 file2
-rwrwr-- 1 paul proj 984 Feb 5 15:38 data. odt
-rwr--r-- 1 root root 0 Feb 7 16:07 stuff.txt
paul @RHELv4u4: ~/test $

User paul ownsthreefiles, two of those are also owned by the group paul; data.odt is
owned by the group proj. Theroot user ownsthe file stuff.txt, as does the group root.

chgrp

Y ou can change the group owner of afile using the chgrp command.

root @ ai ka: / home/ paul # touch Fi | eFor Paul

root @ai ka: / home/ paul # |'s -1 Fil eFor Paul

-rwr--r-- 1 root root 0O 2008-08-06 14:11 Fil eFor Paul
root @ ai ka: / home/ paul # chgrp paul Fil eFor Paul

root @ai ka: / home/ paul # |'s -1 Fil eFor Paul

-rwr--r-- 1 root paul O 2008-08-06 14:11 Fil eFor Paul

chown

The user owner of afile can be changed with chown command.

root @ai ka: / home/ paul # |'s -1 Fil eFor Paul

-rwr--r-- 1 root paul O 2008-08-06 14:11 Fil eFor Paul
root @ ai ka: / home/ paul # chown paul Fil eFor Paul

root @ai ka: / home/ paul # |'s -1 Fil eFor Paul

-rwr--r-- 1 paul paul O 2008-08-06 14:11 Fil eFor Paul

Y ou can a'so use chown to change both the user owner and the group owner.

root @ ai ka: / hone/ paul # |'s -1 Fil eFor Paul

-rwr--r-- 1 paul paul 0 2008-08-06 14:11 Fil eFor Paul

root @ ai ka: / honme/ paul # chown root: project42 Fil eFor Paul
root @ ai ka: / hone/ paul # I's -1 Fil eFor Paul

-rwr--r-- 1 root project42 0 2008-08-06 14:11 Fil eFor Paul

215

standard file permissions

25.2. list of special files

When you usels-I, for each file you can see ten characters before the user and group
owner. Thefirst character tells usthe type of file. Regular files get a-, directories get
ad, symbolic links are shown with an |, pipes get a p, character devices a c, block
devicesab, and socketsan s.

Table 25.1. Unix special files

first filetype
character

- normal file
d directory
I symboalic link
p named pipe
b block device
c character device
S socket

Below a screenshot of a character device (the console) and a block device (the hard
disk).

paul @ebi an6lt~$ |Is -1d /dev/consol e /dev/sda
Crw------ 1 root root 5, 1 Mar 15 12:45 /dev/consol e
brw rw --- 1 root disk 8, 0 Mar 15 12:45 /dev/sda

And here you can see adirectory, aregular file and a symbolic link.

paul @ebian6lt~$ Is -1d /etc /etc/hosts /etc/notd

drwxr-xr-x 128 root root 12288 Mar 15 18:34 /etc

STWr--r-- 1 root root 372 Dec 10 17:36 /etc/hosts

| rwWxr wxr wx 1 root root 13 Dec 5 10:36 /etc/nmotd -> /var/run/notd

216

standard file permissions

25.3.

rwX

three

permissions

The nine charactersfollowing the file type denote the permissionsin threetriplets. A
permission can ber for read access, w for write access, and x for execute. Y ou need
ther permission to list (Is) the contents of a directory. Y ou need the x permission to
enter (cd) a directory. Y ou need the w permission to create filesin or remove files
from adirectory.

Table 25.2. standard Unix file permissions

permission on afile on adirectory
r (read) read file contents (cat) read directory contents (Is)
w (write) change file contents (vi) create files in (touch)
X (execute) execute thefile enter the directory (cd)
sets of rwx

We aready know that the output of Is-| startswith ten charactersfor each file. This
screenshot shows aregular file (because the first character isa-).

paul @RHELv4u4: ~/test$ |I's -1 proc42. bash
-rwxr-xr-- 1 paul proj 984 Feb 6 12:01 proc42. bash

Below is atable describing the function of all ten characters.

Table 25.3. Unix file permissions position

position characters function
1 - thisisaregular file
2-4 rwx permissions for the user owner
5-7 r-X permissions for the group owner
8-10 r-- permissions for others

When you are the user owner of afile, then the user owner permissions apply to
you. Therest of the permissions have no influence on your access to thefile.

When you belong to the group that is the group owner of a file, then the group
owner permissions apply to you. The rest of the permissions have no influence on
your accessto thefile.

When you are not the user owner of a file and you do not belong to the group
owner, then the others permissions apply to you. The rest of the permissions have
no influence on your accessto thefile.

217

standard file permissions

permission examples

Some example combinations on files and directories are seen in this screenshot. The
name of the file explains the permissions.

paul @ai ka: ~/perms$ Is -1h

total 12K

drwxr-xr-x 2 paul paul 4.0K 2007-02-07 22:26 Al Enter_UserCreateDel ete
-rwxrwxrwx 1 paul paul 0 2007-02-07 22:21 EveryoneFul | Control . txt
“f--f-=--- 1 paul paul 0 2007-02-07 22:21 Onl yOaner sRead. t xt
-rwxrwx--- 1 paul paul 0 2007-02-07 22:21 OmersAl | _Rest Not hi ng. t xt
dr-xr-x--- 2 paul paul 4.0K 2007-02-07 22:25 User AndG oupEnt er
dr-x------ 2 paul paul 4.0K 2007-02-07 22:25 Onl yUser Ent er

paul @ ai ka: ~/ per ns$

To summarise, the first rwx triplet represents the permissions for the user owner.
The second triplet corresponds to the group owner; it specifies permissions for all
members of that group. The third triplet defines permissions for all other users that
are not the user owner and are not a member of the group owner.

setting permissions (chmod)

Permissions can be changed with chmod. The first example gives the user owner
execute permissions.

paul @ ai ka: ~/ pernms$ |s -1 perm ssions.txt

-rwr--r-- 1 paul paul 0 2007-02-07 22: 34 pernmnissions.txt
paul @ ai ka: ~/ pernms$ chnmbd u+x perm ssions. t xt

paul @ ai ka: ~/ pernms$ |'s -1 perm ssions.txt

-rwxr--r-- 1 paul paul 0 2007-02-07 22: 34 pernissions.txt

This example removes the group owners read permission.

paul @ ai ka: ~/ perns$ chnmod g-r perm ssions. txt
paul @ ai ka: ~/ pernms$ |'s -1 perm ssions.txt
-rwx---r-- 1 paul paul 0 2007-02-07 22:34 permni ssions.txt

This example removes the others read permission.

paul @ ai ka: ~/ perms$ chnmobd o-r perm ssions. txt
paul @ ai ka: ~/ pernms$ |Is -1 perm ssions.txt
STWX------ 1 paul paul 0 2007-02-07 22: 34 perm ssions.txt

This example gives all of them the write permission.

paul @ ai ka: ~/ perms$ chnmod a+w perm ssi ons. t xt
paul @ ai ka: ~/ pernms$ |s -1 perm ssions.txt
-rwx-w-w 1 paul paul 0 2007-02-07 22:34 perm ssions.txt

218

standard file permissions

Y ou don't even have to type the a.

paul @ ai ka: ~/ perns$ chnpd +x perm ssions. t xt
paul @ ai ka: ~/ perns$ |Is -1 perm ssions.txt
-rwx-wx-wx 1 paul paul 0 2007-02-07 22: 34 perm ssions. txt

Y ou can aso set explicit permissions.

paul @ ai ka: ~/ perns$ chnod u=rw perm ssi ons. t xt
paul @ ai ka: ~/ pernms$ |s -1 perm ssions.txt
-rw-wx-wx 1 paul paul 0 2007-02-07 22: 34 perm ssions.txt

Feel free to make any kind of combination.

paul @ ai ka: ~/ pernms$ chnmod u=rw, g=rw, o=r perm ssions.t xt
paul @ ai ka: ~/ perns$ |Is -1 perm ssions.txt
-rwrwr-- 1 paul paul 0 2007-02-07 22:34 perm ssions.txt

Even fishy combinations are accepted by chmod.

paul @ ai ka: ~/ perms$ chnmod u=rwx, ug+rw, o=r perm ssi ons. txt
paul @ ai ka: ~/ pernms$ |Is -1 perm ssions.txt
-rwxrwr-- 1 paul paul 0 2007-02-07 22:34 perm ssions.txt

219

standard file permissions

setting octal permissions

Most Unix administrators will use the old school octal system to talk about and set
permissions. Look at the triplet bitwise, equating r to 4, w to 2, and x to 1.

Table 25.4. Octal permissions

binary octal permission
000 0
001 1 ==X
010 2 -W-
011 3 -WX
100 4 r--
101 5 r-x
110 6 rw-
111 7 rwx

Thismakes 777 equal to rwxrwxrwx and by the samelogic, 654 mean rw-r-xr-- . The
chmod command will accept these numbers.

paul @ ai ka: ~/ pernms$ chnmod 777 permi ssions. txt

paul @ ai ka: ~/ pernms$ |s -1 perm ssions.txt

-rwxrwxrwx 1 paul paul 0 2007-02-07 22: 34 permnissions.txt
paul @ ai ka: ~/ perms$ chnod 664 permi ssions. txt

paul @ ai ka: ~/ pernms$ |s -1 perm ssions.txt

-rwrwr-- 1 paul paul 0 2007-02-07 22:34 permnissions.txt
paul @ ai ka: ~/ perms$ chnmod 750 permi ssions. txt

paul @ ai ka: ~/ pernms$ |s -1 perm ssions.txt

-rwxr-x--- 1 paul paul 0 2007-02-07 22:34 perm ssions.txt

220

standard file permissions

umask

When creating a file or directory, a set of default permissions are applied. These
default permissions are determined by the umask. The umask specifies permissions
that you do not want set on by default. Y ou can display the umask with the umask
command.

[Harry@HEL4b ~]$ unask

0002

[Harry@HEL4b ~]$ touch test

[Harry@HEL4b ~]$ Is -| test

-rwrwr-- 1 Harry Harry O Jul 24 06:03 test
[Harry@RHEL4b ~]1 $

Asyou can also see, thefileisal so not executable by default. Thisisageneral security
feature among Unixes; newly created files are never executable by default. Y ou have
to explicitly do achmod +x to make afile executable. This also means that the 1 bit
in the umask has no meaning--aumask of 0022 is the same as 0033.

mkdir -m

When creating directories with mkdir you can use the -m option to set the mode.
This screenshot explains.

paul @ebi an5~$% nkdir -m 700 MWyDir

paul @ebi an5~$ nkdir -m 777 Public

paul @ebi an5~$% |s -dl MyDir/ Public/

drwx------ 2 paul paul 4096 2011-10-16 19:16 MyDir/
drwxrwxrwx 2 paul paul 4096 2011-10-16 19:16 Public/

221

standard file permissions

25.4. practice: standard file permissions

1. Asnormal user, create a directory ~/permissions. Create a file owned by yourself
in there.

2. Copy afile owned by root from /etc/ to your permissions dir, who owns this file
now ?

3. Asroot, create afile in the users ~/permissions directory.

4. Asnormal user, look at who owns thisfile created by root.

5. Change the ownership of all filesin ~/permissions to yourself.

6. Make sure you have al rights to these files, and others can only read.

7. With chmod, is 770 the same as rwxrwx--- ?

8. With chmod, is 664 the same as r-xr-xr-- ?

9. With chmod, is 400 the same as r-------- ?

10. With chmod, is 734 the same as rwxr-xr-- ?

11a. Display the umask in octal and in symbolic form.

11b. Set theumask to 077, but use the symbolic format to set it. Verify that thisworks.

12. Create a file as root, give only read to others. Can a normal user read this file ?
Test writing to this file with vi.

13a. Create afile as normal user, give only read to others. Can another normal user
read thisfile ? Test writing to thisfile with vi.

13b. Can root read thisfile ? Can root write to this file with vi ?

14. Create a directory that belongs to a group, where every member of that group
can read and write to files, and create files. Make sure that people can only delete
their own files.

222

standard file permissions

25.5. solution: standard file permissions

1. Asnormal user, create a directory ~/permissions. Create afile owned by yourself
in there.

nkdir ~/perm ssions ; touch ~/perm ssions/nyfile.txt

2. Copy afile owned by root from /etc/ to your permissions dir, who owns this file
now ?

cp /etc/hosts ~/perm ssions/
The copy is owned by you.

3. Asroot, create afile in the users ~/permissions directory.

(becone root)# touch /hone/usernane/ perni ssions/rootfile

4. Asnormal user, look at who owns thisfile created by root.

I's -1 ~/perm ssions
Thefile created by root is owned by root.

5. Change the ownership of al filesin ~/permissions to yourself.

chown user ~/perm ssions/*
Y ou cannot become owner of the file that belongs to root.

6. Make sure you have al rightsto these files, and others can only read.
chnod 644 (on files)

chmod 755 (on directories)

7. With chmod, is 770 the same as rwxrwx--- ?
yes

8. With chmod, is 664 the same as r-xr-xr-- ?
No

9. With chmod, is 400 the same as r-------- ?
yes

10. With chmod, is 734 the same as rwxr-xr-- ?
no

11a. Display the umask in octal and in symbolic form.

umask ; umask -S

223

standard file permissions

11b. Set the umask to 077, but usethe symbolic format to set it. Verify that thisworks.
umask -S u=rwx, go=

12. Create afile as root, give only read to others. Can a normal user read this file ?
Test writing to this file with vi.

(becomne root)

echo hello > /home/usernane/root. txt

chrmod 744 /home/ user name/ r oot . t xt

(becone user)

vi ~/root.txt

13a. Create afile as normal user, give only read to others. Can another normal user
read thisfile ? Test writing to thisfile with vi.

echo hello > file ; chnod 744 file
Y es, others can read thisfile

13b. Can root read thisfile ? Can root write to thisfile with vi ?

Y es, root can read and write to this file. Permissions do not apply to root.

14. Create a directory that belongs to a group, where every member of that group
can read and write to files, and create files. Make sure that people can only delete
their own files.

nkdi r /hone/ proj ect42 ; groupadd project42

chgrp project42 /hone/project42 ; chnod 775 /home/ proj ect 42

Y ou can not yet do the last part of thisexercise...

224

Chapter 26. advanced file permissions

Table of Contents

26.1. Sticky Dit ON AIFECLONY ..vecvecee e 226
26.2. setgid Dit ON AIFECLONY ...veeeeeeee e 226
26.3. setgid and setuid on regular fil€Sccvecvveeiiiie e 227
26.4. practice: sticky, setuid and setgid DitScccooecevieviccescre e 228
26.5. solution: sticky, setuid and setgid DitScccoeveveeceviece e 229

225

advanced file permissions

26.1. sticky bit on directory

You can set the sticky bit on a directory to prevent users from removing files that
they do not own as a user owner. The sticky bit is displayed at the same location as
the x permission for others. The sticky bit is represented by at (meaning X is also
there) or aT (when thereis no x for others).

root @RHELv4u4: ~# nkdir /project55

root @RHELv4u4: ~# |s -1d /project55

drwxr-xr-x 2 root root 4096 Feb 7 17:38 /project55
root @RHELv4u4: ~# chnod +t /proj ect 55/

root @RHELv4u4: ~# |s -1d /project55

drwxr-xr-t 2 root root 4096 Feb 7 17:38 /project55
r oot @RHELv4u4: ~#

The sticky bit can also be set with octal permissions, itisbinary 1 in the first of four
triplets.

r oot @RHELv4u4: ~# chnod 1775 / proj ect 55/

root @RHELv4u4: ~# |s -1d /project55

drwxrwxr-t 2 root root 4096 Feb 7 17:38 /project55
root @GRHELv4u4: ~#

Y ou will typically find the sticky bit on the /tmp directory.

root @arry:~# Is -1d /tnp
drwxrwxrwt 6 root root 4096 2009-06-04 19:02 /tnp

26.2. setgid bit on directory

setgid can be used on directories to make sure that al files inside the directory are
owned by the group owner of the directory. The setgid bit is displayed at the same
location as the x permission for group owner. The setgid bit is represented by an
S (meaning X is also there) or a S (when there is no x for the group owner). As
this example shows, even though root does not belong to the group proj55, the files
created by root in /project55 will belong to proj55 since the setgid is set.

r oot @RHELv4u4: ~# groupadd proj 55

r oot @RHELv4u4: ~# chown root: proj 55 /project55/

r oot @RHELv4u4: ~# chrmod 2775 / proj ect 55/

root @RHELv4u4: ~# touch /project55/fronroot.txt

root @RHELv4u4: ~# |s -1d /project55/

drwxrwsr-x 2 root proj55 4096 Feb 7 17:45 /project55/
root @RHELv4u4: ~# |s -1 /project55/

total 4

-rwr--r-- 1 root proj55 0 Feb 7 17:45 fronroot.txt
root @GRHELv4u4: ~#

Y ou can use the find command to find all setgid directories.

paul @ai ka:~$ find / -type d -perm-2000 2> /dev/null
/var/1 og/ nysql

/var/l og/ news

/var /| ocal

226

advanced file permissions

26.3. setgid and setuid on regular files

These two permissions cause an executable file to be executed with the permissions
of thefileowner instead of the executing owner. Thismeansthat if any user executes
a program that belongs to the root user, and the setuid bit is set on that program,
then the program runs as root. This can be dangerous, but sometimes this is good
for security.

Takethe example of passwords; they are stored in/etc/shadow whichisonly readable
by root. (Theroot user never needs permissions anyway.)

root @RHELv4u4: ~# |s -1 /[etc/shadow
Sl R 1 root root 1260 Jan 21 07:49 /etc/shadow

Changing your password requires an update of thisfile, so how can normal non-root
users do this? Let'stake alook at the permissions on the /usr/bin/passwd.

root @RHELv4u4: ~# |'s -1 [usr/bin/passwd
-r-s--x--x 1 root root 21200 Jun 17 2005 /usr/bin/passwd

When running the passwd program, you are executing it with root credentials.

Y ou can use the find command to find all setuid programs.

paul @ai ka: ~$ find /usr/bin -type f -perm -04000
/usr/ bi n/ ar pi ng

/usr/ bi n/ kgrant pty

/usr/ bi n/ newgr p

/usr/bin/chfn

/usr/ bi n/ sudo

[usr/ bi n/f pi ng6

/usr/ bi n/ passwd

/ usr/ bi n/ gpasswd

In most cases, setting the setuid bit on executablesis sufficient. Setting the setgid bit
will result in these programs to run with the credentials of their group owner.

227

advanced file permissions

26.4. practice: sticky, setuid and setgid bits

la. Set up adirectory, owned by the group sports.

1b. Members of the sports group should be able to create filesin this directory.
1c. All files created in this directory should be group-owned by the sports group.
1d. Users should be able to delete only their own user-owned files.

le. Test that this works!

2. Verify the permissions on /usr/bin/passwd. Remove the setuid, then try changing
your password as anormal user. Reset the permissions back and try again.

3. If time permits (or if you are waiting for other studentsto finish this practice), read
about file attributes in the man page of chattr and Isattr. Try setting the i attribute on
afile and test that it works.

228

advanced file permissions

26.5. solution: sticky, setuid and setgid bits

la. Set up adirectory, owned by the group sports.
groupadd sports
nkdir /home/ sports

chown root:sports /home/sports

1b. Members of the sports group should be able to create filesin this directory.

chnod 770 /hone/ sports

1c. All files created in this directory should be group-owned by the sports group.

chnod 2770 / hone/ sports

1d. Users should be able to delete only their own user-owned files.

chnod +t /hone/sports
le. Test that thisworks!

Log in with different users (group members and others and root), create files and
watch the permissions. Try changing and deleting files...

2. Verify the permissions on /usr/bin/passwd. Remove the setuid, then try changing
your password as anormal user. Reset the permissions back and try again.

root @eb503: ~# |s -1 [usr/bin/passwd

-rwsr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/ passwd
r oot @eb503: ~# chnod 755 /usr/ bi n/ passwd

root @eb503: ~# |s -1 [usr/bin/passwd

-rwxr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/passwd

A normal user cannot change password now.

root @eb503: ~# chnod 4755 /usr/ bi n/ passwd
root @eb503: ~# |s -1 /[usr/bin/passwd
-rwsr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/ passwd

3. If time permits (or if you are waiting for other studentsto finish this practice), read
about file attributes in the man page of chattr and |sattr. Try setting thei attribute on
afile and test that it works.

paul @ai ka: ~$ sudo su -

[sudo] password for paul:

root @ai ka: ~# nkdir attr

root @ai ka: ~# cd attr/

root @ai ka: ~/attr# touch filed2
root @ai ka: ~/attr# |sattr
------------------ filed2

root @ai ka: ~/attr# chattr +i file42

229

advanced file permissions

root @ ai ka:

root @ ai ka:

rm cannot

root @ ai ka:
root @ ai ka:
root @ ai ka:

~lattr# |sattr

------- filed2
~lattr# rm-rf filed2
renove file42':

~/attr# chattr

Qper ati on not
filed2

~lattr# rm-rf filed2

~lattr#

permtted

230

Chapter 27. access control lists

Table of Contents

27.1.
27.2.
27.3.
27.4.
27.5.
217.6.
27.7.

ACl IN JEEC/SEBD v 232
011 = 232
S L= o SRS 232
FEMOVE AN 8Cl ENENY .o 233
remove the COMPIELE Clccvevieeeceee e 233
the BCl MASK ... 233
L= o= PSR 234

Standard Unix permissions might not be enough for some organisations. This chapter
introduces access control listsor acl's to further protect files and directories.

231

access control lists

27.1. acl in /etc/fstab

27.2

27.3

File systems that support access control lists, or acls, have to be mounted with the
acl option listed in /etc/fstab. In the example below, you can see that the root file
system has acl support, whereas /home/data does not.

root @ai ka: ~# tail -4 /etc/fstab

/ dev/ sdal / ext 3 acl ,relatine 0 1
/ dev/ sdb2 / hone/ dat a aut o noacl ,defaults 0 O
pasha: / hone/r / horre/ pasha nfs defaults 0 O
wol f:/srv/data / honme/ wol f nfs defaults 0 O
getfacl

Reading acls can be done with /usr/bin/getfacl. This screenshot shows how to read
the acl of file33 with getfacl.

paul @ai ka: ~/test$ getfacl file33
file: file33

owner: paul

group: paul

user::rw

group: :r--

mask: : rwx

other::r--

setfacl

Writing or changing acls can be done with /usr/bin/setfacl. These screenshots show
how to change the acl of file33 with setfacl.

First we add user sandra with octal permission 7 to the acl.

paul @ai ka: ~/test$ setfacl -mu:sandra:7 file33

Then we add the group tennis with octal permission 6 to the acl of the samefile.

paul @ai ka: ~/test$ setfacl -mg:tennis:6 file33

Theresult is visible with getfacl.

paul @ai ka: ~/test$ getfacl file33
file: file33

owner: paul

group: paul

user::rw

user: sandra: r wx

group: :r--

group: tennis:rw

mask: : rwx

other::r--

232

access control lists

27.4.

27.5

27.6.

remove an acl entry

The -x option of the setfacl command will remove an acl entry from the targeted file.

paul @ai ka: ~/test$ setfacl -mu:sandra:7 file33
paul @ai ka: ~/test$ getfacl file33 | grep sandra
user: sandra: r wx

paul @ai ka: ~/test$ setfacl -x sandra fil e33
paul @ai ka: ~/test$ getfacl file33 | grep sandra

Note that omitting the u or g when defining the acl for an account will default it to
auser account.

remove the complete acl

The -b option of the setfacl command will remove the acl from the targeted file.

paul @ai ka: ~/test$ setfacl -b file33
paul @ai ka: ~/test$ getfacl file33

file: file33

owner: paul

group: paul

user::rw
group::r--
other::r--

the acl mask

The acl mask defines the maximum effective permissions for any entry in the acl.
This mask is calculated every time you execute the setfacl or chmod commands.

Y ou can prevent the calculation by using the --no-mask switch.

paul @ai ka: ~/test$ setfacl --no-mask -mu:sandra:7 file33
paul @ai ka: ~/test$ getfacl file33

file: file33

owner: paul

group: paul

user: :rw

user: sandra: rwx #effective:rw

group: :r--

mask: : rw

other::r--

233

access control lists

27.7. eiciel

Desktop users might want to use eiciel to manage acls with a graphical tool.

Basic Emblems | Permissions Open With | Notes | Access Control List

Access Control List

Entry |Read Write Execution b
Qrau @ @ O
}_{standraﬁ ¥ @ @ !
Lg;paul i O O
Bvask w @ ®
_5ﬂjﬂther i O O IEI

You will need to install eiciel and nautilus-actions to have an extratab in nautilus
to manage acls.

paul @ ai ka: ~$ sudo aptitude install eiciel nautilus-actions

234

Chapter 28. file links

Table of Contents

P22 T | 0 o L= SO 236
S TIVZE o 01U o [= o (o =S 237
28.3. DA [INKS ..ottt nn 238
28.4. SyMBOLIC TINKS ... 239
28.5. 1eMOVING 1INKSeiiieice e 239
28.6. PraCtiCe @ lINKSeceeiieeieee et ne e 240
28.7. SOIULION 2 TINKS ..ot ens 241

An average computer using Linux has a file system with many hard links and
symboalic links.

To understand linksin afile system, you first have to understand what an inodeiis.

235

filelinks

28.1. iInodes

inode contents

Aninodeisadatastructure that contains metadata about afile. When the file system
stores anew file on the hard disk, it stores not only the contents (data) of thefile, but
also extra properties like the name of the file, the creation date, its permissions, the
owner of the file, and more. All thisinformation (except the name of the file and the
contents of the file) is stored in the inode of thefile.

Thels-I command will display some of the inode contents, as seen in this screenshot.

root @hel 53 ~# |s -1d /hone/ project 42/
drwxr-xr-x 4 root pro42 4.0K Mar 27 14:29 /hone/ project 42/

inode table

The inode table contains al of the inodes and is created when you create the file
system (with mkfs). You can use the df -i command to see how many inodes are
used and free on mounted file systems.

root @ hel 53 ~# df -i
Fil esystem I nodes | Used | Free | Use% Mount ed on
/ dev/ mapper/ Vol Gr oup00- LogVol 00

4947968 115326 4832642 3%/

/ dev/ hdal 26104 45 26059 1% / boot

tnpfs 64417 1 64416 1% / dev/ shm

/ dev/ sdal 262144 2207 259937 1% / hone/ proj ect 42
/ dev/ sdbl 74400 5519 68881 8% / hone/ proj ect 33
/ dev/ sdb5 0 0 0 - /hone/sal es

/ dev/ sdb6 100744 11 100733 1% / hone/ resear ch

In the df -i screenshot above you can see the inode usage for severa mounted file
systems. Y ou don't see numbers for /dev/sdb5 because it isafat file system.

inode number

Each inode has a unique number (the inode number). Y ou can see theinode numbers
with thels -li command.

paul @GRHELv4u4: ~/test$ touch filel

paul @GRHELv4u4: ~/test$ touch file2

paul @GRHELv4u4: ~/test$ touch file3

paul @RHELv4u4: ~/test$ Is -1i

total 12

817266 -rwrwr-- 1 paul paul 0 Feb 5 15:38 filel
817267 -rwrwr-- 1 paul paul 0 Feb 5 15:38 file2
817268 -rwrwr-- 1 paul paul O Feb 5 15:38 file3
paul @RHELv4u4: ~/ test $

236

filelinks

These three files were created one after the other and got three different inodes (the
first column). All the information you see with this|s command residesin theinode,
except for the filename (which is contained in the directory).

iInode and file contents

Let's put some datain one of thefiles.

paul @RHELv4u4: ~/test$ Is -1i

total 16

817266 -rwrwr-- 1 paul paul O Feb 5 15:38 filel
817270 -rwrwr-- 1 paul paul 92 Feb 5 15:42 file2
817268 -rwrwr-- 1 paul paul O Feb 5 15:38 file3
paul @RHELv4u4: ~/test$ cat file2

It is winter nowand it is very cold.

We do not like the cold, we prefer hot summer nights.
paul @RHELv4u4: ~/ test $

The data that is displayed by the cat command is not in the inode, but somewhere
else on the disk. The inode contains a pointer to that data.

28.2. about directories

a directory is a table

A directory is a special kind of file that contains a table which maps filenames
to inodes. Listing our current directory with Is -ali will display the contents of the
directory file.

paul @GRHELv4u4: ~/test$ Is -ali

total 32

817262 dr wxr wxr - X 2 paul paul 4096 Feb 5 15:42 .
800768 drwx------ 16 paul paul 4096 Feb 5 15:42 ..
817266 -rwrwr-- 1 paul paul 0 Feb 5 15:38 filel
817270 -rwWrwr-- 1 paul paul 92 Feb 5 15:42 file2
817268 -rwrwr-- 1 paul paul 0O Feb 5 15:38 file3

paul @GRHELv4u4: ~/test $

.and ..

Y ou can see five names, and the mapping to their five inodes. The dot . isamapping
to itself, and the dotdot .. is a mapping to the parent directory. The three other names
are mappings to different inodes.

237

filelinks

28.3. hard links

creating hard links

When we create ahard link to afilewith In, an extraentry isadded in the directory.
A new file name is mapped to an existing inode.

paul @GRHELv4u4: ~/test$ In file2 hardlink_to_file2

paul @RHELv4u4: ~/test$ |Is -1

total 24

817266 -rwrwr-- 1 paul paul O Feb 5 15:38 filel

817270 -rwrwr-- 2 paul paul 92 Feb 5 15:42 file2

817268 -rwrwr-- 1 paul paul O Feb 5 15:38 file3

817270 -rwrwr-- 2 paul paul 92 Feb 5 15:42 hardlink_to_file2
paul @RHELv4u4: ~/test $

Both files have the same inode, so they will always have the same permissions and
the same owner. Both files will have the same content. Actually, both files are equal
now, meaning you can safely removethe original file, the hardlinked filewill remain.
The inode contains a counter, counting the number of hard links to itself. When the
counter drops to zero, then the inode is emptied.

finding hard links

Y ou can use the find command to look for files with a certain inode. The screenshot
below shows how to search for all filenames that point to inode 817270. Remember
that an inode number is unique to its partition.

paul @RHELv4u4: ~/test$ find / -inum 817270 2> /dev/ nul
/hone/ paul /test/file2
/ home/ paul /test/hardlink_to_file2

238

filelinks

28.4. symbolic links

28.5

Symboalic links (sometimes called soft links) do not link to inodes, but create aname
to name mapping. Symbolic links are created with In -s. As you can see below, the

symbolic link gets an inode of its own.

paul @RHELv4u4: ~/test$ In -s file2 symink_to file2
paul @GRHELv4u4: ~/test$ Is -1i

total 32

817273 -rwrwr-- 1
817270 -rwrwr-- 2
817268 -rwrwr-- 1 paul paul
817270 -rwrwr-- 2
817267 | rwxrwxrwx 1
t

paul paul
paul paul

paul paul
paul paul

paul @GRHELv4u4: ~/test $

13
106
0
106
5

Feb
Feb
Feb
Feb
Feb

o1 o1 o1 ool

17:06 filel
17:04 file2
15:38 file3

17: 04 hardlink_to_file2
16:55 symink_to file2 -> file2

Permissions on a symbolic link have no meaning, since the permissions of the target
apply. Hard links are limited to their own partition (because they point to an inode),
symbolic links can link anywhere (other file systems, even networked).

removing links

Links can be removed with rm.

paul @ ai ka:
paul @ ai ka:
paul @ ai ka:
paul @ ai ka:
paul @ ai ka:

~$ touch data.txt

~$ In -s data.txt sl_data.txt

~$ In data.txt hl_data.txt

~$ rm sl _data. txt
~$ rmhl _data.txt

239

filelinks

28.6. practice : links

1. Create two files named winter.txt and summer.txt, put some text in them.
2. Create a hard link to winter.txt named hlwinter.txt.

3. Display theinode numbers of these threefiles, the hard links should have the same
inode.

4. Use the find command to list the two hardlinked files

5. Everything about afileisin the inode, except two things : name them!

6. Create a symbolic link to summer.txt called slsummer.txt.

7. Find al files with inode number 2. What does this information tell you ?

8. Look at the directories /etc/init.d/ /etc/rc.d/ /etc/rc3.d/ ... do you see the links ?
9. Look in/libwithIs-|...

10. Use find to look in your home directory for regular files that do not(!) have one
hard link.

240

filelinks

28.7. solution : links

1. Create two files named winter.txt and summer.txt, put some text in them.

echo cold > winter.txt ; echo hot > summer.txt

2. Create a hard link to winter.txt named hlwinter.txt.

In winter.txt hlw nter.txt

3. Display theinode numbers of these threefiles, the hard links should have the same
inode.

Is -Ii winter.txt sunmer.txt hlw nter.txt

4. Use the find command to list the two hardlinked files

find . -inumxyz

5. Everything about afileisin the inode, except two things : name them!

The name of thefileisin adirectory, and the contents is somewhere on the disk.

6. Create a symbolic link to summer.txt called slsummer.txt.

In -s sunmer.txt slsumer.txt
7. Find al files with inode number 2. What does this information tell you ?

It tells you there is more than one inode table (one for every formatted partition +
virtual file systems)

8. Look at the directories /etc/init.d/ /etc/rc.d/ /etc/rc3.d/ ... do you see the links ?
Is -1 /etcl/init.d

Is -1 /etc/rc.d

Is -1 /etc/rc3.d

9. Look in/libwithIs-I...

Is -1 /lib

10. Use find to look in your home directory for regular files that do not(!) have one
hard link.

find ~! -links 1 -type f

241

Part IX. Appendices

Appendix A. certifications

A.1. Certification

LPI: Linux Professional Institute

LPIC Level 1

This is the junior level certification. You need to pass exams 101 and 102 to
achieve LPIC 1 certification. To pass level one, you will need Linux command
line, user management, backup and restore, installation, networking, and basic system
administration skills.

LPIC Level 2

This is the advanced level certification. You need to be LPIC 1 certified and pass
exams 201 and 202 to achieve L PI C 2 certification. To passlevel two, you will need
to be able to administer medium sized Linux networks, including Samba, mail, news,
proxy, firewall, web, and ftp servers.

LPIC Level 3

This is the senior level certification. It contains one core exam (301) which tests
advanced skills mainly about Idap. To achieve this level you aso need LPIC Level
2 and pass a specialty exam (302 or 303). Exam 302 mainly focuses on Samba, and
303 on advanced security. More info on http://www.|pi.org.

Ubuntu

When you are LPIC Level 1 certified, you can take a LPI Ubuntu exam (199) and
become Ubuntu certified.

Red Hat Certified Engineer

The big difference with most other certifications is that there are no multiple choice
guestionsfor RHCE. Red Hat Certified Engineershaveto take alive exam consisting
of two parts. First, they have to troubleshoot and maintain an existing but broken
setup (scoring at least 80 percent), and second they have to install and configure a
machine (scoring at least 70 percent).

243

certifications

MySQL

There are two tracks for MySQL certification; Certified MySQL 5.0 Developer
(CMDEV) and Certified MySQL 5.0 DBA (CMDBA). The CMDEV is focused
towards database application developers, and the CMDBA towards database
administrators. Both tracks require two exams each. The MySQL cluster DBA
certification requires CMDBA certification and passing the CMCDBA exam.

Novell CLP/CLE

TobecomeaNovell Certified Linux Professional, you haveto takealive practicum.
ThisisaVNC session to a set of real SLES servers. You have to perform severd
tasks and are free to choose your method (commandline or YaST or ...). No multiple
choice involved.

Sun Solaris
Sun uses the classical formula of multiple choice exams for certification. Passing
two exams for an operating system gets you the Solaris Certified Administrator for
Solaris X title.

Other certifications

There are many other lesser known certifications like EC council's Certified Ethical
Hacker, CompTIA's Linux+, and Sair's Linux GNU.

244

Appendix B. keyboard settings

B.1. about keyboard layout

Many people (like US-Americans) prefer the default US-qwerty keyboard layout. So
when you are not from the USA and want a local keyboard layout on your system,
then the best practiceisto select thiskeyboard at installation time. Then the keyboard
layout will always be correct. Also, whenever you use ssh to remotely manage alinux
system, your local keyboard layout will be used, independent of the server keyboard
configuration. So you will not find much information on changing keyboard layout
on thefly on linux, because not many people need it. Below are sometipsto help you.

B.2. X Keyboard Layout

This is the relevant portion in /etc/X11/xorg.conf, first for Belgian azerty, then for
US-qwerty.

[paul GRHEL5 ~]$ grep -i xkb /etc/X11/ xorg. conf
Option " XkbModel " " pcl05"
Opti on "XkbLayout" "be"

[paul @GRHEL5 ~]$ grep -i xkb /etc/ X11/ xorg. conf
Option " XkbModel " " pcl05"
Opti on "XkbLayout" "us"

When in Gnome or KDE or any other graphical environment, look in the graphical
menu in preferences, there will be a keyboard section to choose your layout. Use the
graphical menu instead of editing xorg.conf.

B.3. shell keyboard layout

When in bash, take alook in the /etc/sysconfig/keyboard file. Below a sample US-
gwerty configuration, followed by a Belgian azerty configuration.

[paul @GRHEL5 ~]$ cat /etc/sysconfig/ keyboard
KEYBOARDTYPE=" pc"
KEYTABLE="us"

[paul @GRHEL5 ~]$ cat /etc/sysconfig/ keyboard
KEYBOARDTYPE="pc"
KEYTABLE="be- | ati nl"

The keymaps themselves can be found in /usr/share/keymaps or /lib/kbd/keymaps.

245

keyboard settings

[paul @GRHEL5 ~1$ Is -1 /lib/kbd/ keynaps/
total 52

drwxr-xr-x 2 root root 4096 Apr 1 00: 14 aniga
drwxr-xr-x 2 root root 4096 Apr 1 00:14 atari
drwxr-xr-x 8 root root 4096 Apr 1 00:14 i 386
drwxr-xr-x 2 root root 4096 Apr 1 00: 14 incl ude
drwxr-xr-x 4 root root 4096 Apr 1 00: 14 nac

I rwxrwxrwx 1 root root 3 Apr 1 00:14 ppc -> mac
drwxr-xr-x 2 root root 4096 Apr 1 00: 14 sun

246

Appendix C. hardware

C.1. buses

about buses

Hardware components communicate with the Central Processing Unit or cpu over
abus. The most common busestoday are usb, pci, agp, pci-expr ess and pcmcia aka
pc-card. These are al Plag and Play buses.

Older x86 computers often had isa buses, which can be configured using jumpers
or dip switches.

/proc/bus

To list the buses recognised by the Linux kernel on your computer, look at the
contents of the /proc/bug/ directory (screenshot from Ubuntu 7.04 and RHEL4u4
below).

root @ai ka: ~# |'s /proc/bus/
input pccard pci usb

[root @RHEL4b ~]# |s /proc/bus/
input pci usb

Can you guess which of these two screenshots was taken on a laptop ?

/usr/sbin/lsusb

To list al the usb devices connected to your system, you could read the contents
of /proc/bus/usb/devices (if it exists) or you could use the more readable output of
Isusb, which is executed here on a SPARC system with Ubuntu.

root @haka: ~# | susb

Bus 001 Device 002: |D 0430: 0100 Sun M crosystens, Inc. 3-button Muse
Bus 001 Device 003: |ID 0430: 0005 Sun M crosystens, Inc. Type 6 Keyboard
Bus 001 Device 001: |ID 04b0: 0136 N kon Corp. Cool pi x 7900 (storage)
root @haka: ~#

/var/lib/usbutils/usb.ids

The /var/lib/usbutils/usb.ids file contains a gzipped list of al known usb devices.

247

hardware

paul @arry: ~$ znore /var/lib/usbutils/usb.ids | head
------ > /var/lib/usbutils/usb.ids <------

List of USB ID s

Mai nt ai ned by Vojtech Pavlik <vojtech@use.cz>
If you have any new entries, send themto the naintainer.
The | atest version can be obtained from

http://wwmv. | i nux-usb. org/usb.ids

HH K HHHHHH

$ld: usb.ids,v 1.225 2006/07/13 04:18: 02 dbrownel |l Exp $

lusr/sbin/Ispci

To get alist of al pci devices connected, you could take alook at /proc/bus/pci or
run Ispci (partia output below).

paul @ ai ka: ~$ | spci

00: 06.

0O FireWre (I EEE 1394): Texas Instruments TSB43AB22/ A | EEE- 139. ..
00:08.0 Ethernet controller: Realtek Senm conductor Co., Ltd. RTL-816...
00:09.0 Multimedia controller: Philips Sem conductors SAA7133/ SAA713. ..
00: 0a. 0 Network controller: RaLi nk RT2500 802.11g Car dbus/ m ni - PCI
00: 0f .0 RAID bus controller: VIA Technol ogies, Inc. VIA VI6420 SATA ...
00:0f .1 IDE interface: VIA Technol ogies, Inc. VI82C586A/ B/ VT82C686/ A. . .
00:10.0 USB Controller: VIA Technol ogies, Inc. VI82xxxxx UHCI USB 1....
00:10.1 USB Controller: VIA Technol ogies, Inc. VI82xxxxx UHCI USB 1....

C.2. interrupts

about interrupts
Aninterrupt request or IRQ isarequest from adevice to the CPU. A deviceraises

an interrupt when it requires the attention of the CPU (could be because the device
has data ready to be read by the CPU).

Since the introduction of pci, irg's can be shared among devices.

Interrupt O is always reserved for the timer, interrupt 1 for the keyboard. IRQ 2 is
used as achannel for IRQ's 8 to 15, and thus is the same as IRQ 9.

/procl/interrupts

Y ou can see alisting of interrupts on your system in /proc/interrupts.

paul @ ai ka: ~$ cat /proc/interrupts

248

hardware

CPUWO
0: 1320048
1: 10224
7. 0
8: 2
10: 3062
12: 131
15: 47073
18: 0
19: 31056
20: 19042
21: 44052
22: 188352
23: 632444
24: 1585

CPUL
555
7

0

2

1
1
2
0
1
1
1
1
1
1
1

| O API C- edge
| O API C-edge
| O API C-edge
| O API C-edge
| O API C-f ast eoi
| O API C- edge
| O API C-edge
| O APl C-f ast eoi
| O APl C-f ast eoi
| O APl C-f ast eoi
| O API C-f ast eoi
| O APl C-f ast eoi
| O APl C-f ast eoi
| O APl C-f ast eoi

tinmer

i 8042
par portO
rtc

acpi

i 8042

i del
yent a

|'i bata,
et hO
uhci _hcd: usbl,
ra0

nvidi a

VI A82XX- MODEM VI A8237

ohci 1394

uhci _hcd: usb2, . ..

dmesg

Y ou can also use dmesg to find irg's allocated at boot time.

paul @ ai ka: ~$ dmesg | grep "irq 1[45]"
[28.930069] ata3: PATA max UDMA/ 133 cnd 0x1fO ctl
[28.930071] ata4: PATA max UDMA/ 133 cmd 0x170 ctl

0x3f6 brmdma 0x2090 irq 14
0x376 bmdma 0x2098 irq 15

C.3.10 ports

about io ports

Communication in the other direction, from CPU to device, happens through 10
ports. The CPU writes data or control codes to the 10 port of the device. But thisis
not only a one way communication, the CPU can also use a device's |O port to read
status information about the device. Unlike interrupts, ports cannot be shared!

/proc/ioports

Y ou can see alisting of your system's IO ports via/proc/ioports.

[root @RHEL4b ~]# cat /proc/ioports

0000- 001f dmal
0020- 0021 : picl
0040-0043 : timer0
0050-0053 : timerl
0060- 006f : keyboard
0070-0077 : rtc
0080-008f : dma page reg
00a0-00al : pic2
00c0- 00df : dma2

o0of 0-00ff : fpu
0170-0177 : idel
02f8-02ff : seria

249

hardware

C.4.dma

about dma

A device that needs a lot of data, interrupts and ports can pose a heavy load on the
cpu. With dma or Direct Memory Access a device can gain (temporary) access to

a specific range of the ram memory.

/proc/dma

L ooking at /proc/dma might not give you the information that you want, sinceit only

contains currently assigned dma channels for isa devices.

root @ai ka: ~# cat /proc/dma
1: parportO
4: cascade

pci devicesthat are using dmaare not listed in /proc/dma, in this case dmesg can be
useful. The screenshot below shows that during boot the parallel port received dma

channel 1, and the Infrared port received dma channel 3.

root @ai ka: ~# dnesg | egrep -C 1 '"dna 1| dm 3
PnPBI CS parport detected.

parport0: PC-style at 0x378 (0x778), irq 7, dma 1...
irda_init()

[20.
[20.
[20.
[21.
[21.
[21.

576000]
580000]
764000]

204000]
204000]
204000]

par port:

pnp: Device 00:0b activated.

nsc_ircc_

nsc-ircc,

pnp_probe() :
chip->init

From PnP,

found firbase Ox2F8...

250

Appendix D. License

GNU Free Docunentation License
Version 1.3, 3 Novenber 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

Everyone is permtted to copy and distribute verbatimcopies of this
license docunment, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to nake a nmanual, textbook, or other
functional and useful document "free" in the sense of freedom to
assure everyone the effective freedomto copy and redistribute it,
with or without nmodifying it, either commercially or nonconmercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for nodifications nade by others

This License is a kind of "copyleft”, which neans that derivative
wor ks of the document nust thenselves be free in the same sense. It
conpl enents the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free docunentation: a free
program shoul d cone with manual s providing the sane freedons that the
software does. But this License is not l[imted to software nmanual s; it
can be used for any textual work, regardl ess of subject matter or
whether it is published as a printed book. W recommend this License
principally for works whose purpose is instruction or reference.

1. APPLI CABI LI TY AND DEFI NI TI ONS

This License applies to any manual or other work, in any medium that
contains a notice placed by the copyright holder saying it can be
distributed under the ternms of this License. Such a notice grants a
wor | d-wi de, royalty-free license, unlimited in duration, to use that
wor k under the conditions stated herein. The "Docunent", below, refers
to any such nmanual or work. Any nmenber of the public is a |licensee,
and is addressed as "you". You accept the license if you copy, nodify
or distribute the work in a way requiring perm ssion under copyright

I aw.

A "Mdified Version" of the Docunent neans any work containing the
Docunment or a portion of it, either copied verbatim or with
nmodi fications and/or translated into another |anguage.

A "Secondary Section" is a naned appendix or a front-matter section of
t he Docunent that deals exclusively with the relationship of the
publ i shers or authors of the Docunment to the Docunent's overal

subject (or to related matters) and contains nothing that could fal
directly within that overall subject. (Thus, if the Docunent is in
part a textbook of mathematics, a Secondary Section may not explain
any mat hematics.) The relationship could be a matter of historica
connection with the subject or with related matters, or of |egal
conmerci al, phil osophical, ethical or political position regarding

t hem

The "Invariant Sections" are certain Secondary Sections whose titles

251

License

are designated, as being those of Invariant Sections, in the notice
that says that the Docunent is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Docunent does not identify any |nvariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are |isted,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
t he Docunent is released under this License. A Front-Cover Text may be
at nmost 5 words, and a Back-Cover Text may be at npbst 25 words.

A "Transparent” copy of the Docunent means a machi ne-readabl e copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the docunent
straightforwardly with generic text editors or (for images conposed of
pi xel s) generic paint progranms or (for drawi ngs) sonme w dely avail able
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherw se Transparent file
format whose mar kup, or absence of markup, has been arranged to thwart
or di scourage subsequent nodification by readers is not Transparent.
An image format is not Transparent if used for any substantial anount
of text. A copy that is not "Transparent” is called "Opaque".

Exanpl es of suitable formats for Transparent copies include plain
ASCI | wi thout markup, Texinfo input format, LaTeX input format, SGWL
or XML using a publicly avail abl e DID, and standard-conforming sinple
HTM., Post Script or PDF designed for human nodification. Exanples of
transparent image formats include PNG XCF and JPG Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGW or XM for which the DID and/ or
processing tools are not generally available, and the

machi ne- generated HTM., Post Script or PDF produced by sone word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,

pl us such foll ow ng pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the nost prom nent appearance of the work's title,
precedi ng the begi nning of the body of the text.

The "publisher" neans any person or entity that distributes copies of
t he Docunent to the public.

A section "Entitled XYZ" neans a named subunit of the Docunent whose
title either is precisely XYZ or contains XYZ in parentheses follow ng
text that translates XYZ in another |anguage. (Here XYZ stands for a
speci fic section nane nentioned bel ow, such as "Acknow edgenents”,
"Dedi cations”, "Endorsenents", or "History".) To "Preserve the Title"
of such a section when you nodify the Docunent nmeans that it remains a
section "Entitled XYZ" according to this definition.

The Docunent may include Warranty Disclainers next to the notice which
states that this License applies to the Docunent. These Warranty

Di scl ainers are considered to be included by reference in this

Li cense, but only as regards disclainng warranti es: any ot her
inmplication that these Warranty Disclaimers may have is void and has
no effect on the neaning of this License.

2. VERBATI M COPYI NG

You may copy and distribute the Docunent in any nedium either

252

License

commerci ally or noncommercially, provided that this License, the
copyright notices, and the |license notice saying this License applies
to the Docunment are reproduced in all copies, and that you add no

ot her conditions whatsoever to those of this License. You may not use
techni cal measures to obstruct or control the reading or further
copying of the copies you nmake or distribute. However, you may accept
conpensation in exchange for copies. If you distribute a | arge enough
nunber of copies you must also follow the conditions in section 3.

You may al so | end copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING I N QUANTI TY

If you publish printed copies (or copies in nmedia that conmonly have
printed covers) of the Docunent, numbering nore than 100, and the
Docunment's |icense notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and |legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
t he back cover. Both covers nust also clearly and legibly identify you
as the publisher of these copies. The front cover mnust present the
full title with all words of the title equally prom nent and visible.
You may add other material on the covers in addition. Copying with
changes linmted to the covers, as long as they preserve the title of

t he Docunent and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too volum nous to fit

l egibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document nunbering
more than 100, you mnust either include a machi ne-readabl e Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a conputer-network | ocation fromwhich the general network-using
public has access to downl oad using public-standard network protocols
a conplete Transparent copy of the Docunent, free of added materi al

If you use the latter option, you nust take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at |east one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document wel | before redistributing any | arge nunber of copies, to

gi ve them a chance to provide you with an updated version of the
Docunent .

4. MODI FI CATI ONS

You may copy and distribute a Modified Version of the Docunent under
the conditions of sections 2 and 3 above, provided that you rel ease
the Modified Version under precisely this License, with the Mdified
Version filling the role of the Docunent, thus licensing distribution
and nodification of the Mddified Version to whoever possesses a copy
of it. In addition, you nust do these things in the Mdified Version:

* A, Use inthe Title Page (and on the covers, if any) a title
distinct fromthat of the Docunent, and from those of previous
versions (which should, if there were any, be listed in the History
section of the Docunent). You may use the sane title as a previous
version if the original publisher of that version gives perm ssion.

253

License

* B. List on the Title Page, as authors, one or nore persons or
entities responsible for authorship of the nodifications in the
Modi fied Version, together with at |east five of the principal authors
of the Document (all of its principal authors, if it has fewer than
five), unless they release you fromthis requiremnent.

* C. State on the Title page the nane of the publisher of the
Modi fied Version, as the publisher.

* D. Preserve all the copyright notices of the Docunent.

* E. Add an appropriate copyright notice for your nodifications
adj acent to the other copyright notices.

* F. Include, inmediately after the copyright notices, a |license
notice giving the public permission to use the Mdified Version under
the terns of this License, in the formshown in the Addendum bel ow.

* G Preserve in that |license notice the full lists of Invariant
Sections and required Cover Texts given in the Docunment's |icense
notice

* H Include an unaltered copy of this License.

* |. Preserve the section Entitled "History", Preserve its Title,
and add to it an itemstating at least the title, year, new authors,
and publisher of the Mddified Version as given on the Title Page. If
there is no section Entitled "Hi story" in the Document, create one
stating the title, year, authors, and publisher of the Docunent as
given on its Title Page, then add an item describing the Mdified
Version as stated in the previous sentence.

* J. Preserve the network location, if any, given in the Docunent
for public access to a Transparent copy of the Document, and |ikew se
the network | ocations given in the Docunment for previous versions it
was based on. These may be placed in the "History" section. You nmay
omit a network location for a work that was published at |east four
years before the Docunent itself, or if the original publisher of the
version it refers to gives perm ssion.

* K. For any section Entitled "Acknow edgenents" or "Dedications"”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknow edgenents and/or
dedi cati ons given therein.

* L. Preserve all the Invariant Sections of the Docunent,
unaltered in their text and in their titles. Section nunmbers or the
equi val ent are not considered part of the section titles.

* M Delete any section Entitled "Endorsements”. Such a section
may not be included in the Mdified Version.

* N Do not retitle any existing section to be Entitled
"Endorsenments” or to conflict in title with any Invariant Section

* O Preserve any Warranty Discl ai ners.

If the Modified Version includes new front-natter sections or

appendi ces that qualify as Secondary Sections and contain no materi al
copi ed fromthe Docunent, you may at your option designate some or al
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Mddified Version's |license notice
These titles must be distinct fromany other section titles.

You may add a section Entitled "Endorsenments”, provided it contains
not hi ng but endorsenents of your Modified Version by various

parti es—for exanple, statements of peer review or that the text has
been approved by an organi zation as the authoritative definition of a
st andar d.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the |ist
of Cover Texts in the Mdified Version. Only one passage of
Front - Cover Text and one of Back-Cover Text may be added by (or

t hrough arrangenents made by) any one entity. |If the Docunment already
includes a cover text for the same cover, previously added by you or
by arrangenent made by the same entity you are acting on behal f of,

254

License

you may not add another; but you may replace the old one, on explicit
permi ssion fromthe previous publisher that added the old one.

The aut hor (s) and publisher(s) of the Document do not by this License
give permission to use their nanes for publicity for or to assert or
i mply endorsenent of any Modified Version.

5. COMBI NI NG DOCUMENTS

You may conbine the Document with other docunents rel eased under this
Li cense, under the terns defined in section 4 above for nodified
versions, provided that you include in the conbination all of the
Invariant Sections of all of the original docunents, unnodified, and
list themall as Invariant Sections of your conbined work in its
license notice, and that you preserve all their Warranty Di scl ai mers.

The comnbi ned work need only contain one copy of this License, and
multiple identical Invariant Sections nay be replaced with a single
copy. If there are multiple Invariant Sections with the same nane but
different contents, nake the title of each such section unique by
adding at the end of it, in parentheses, the nanme of the original

aut hor or publisher of that section if known, or else a unique nunber.
Make the same adjustment to the section titles in the list of
Invariant Sections in the |license notice of the conbined work.

In the conbinati on, you nust conbi ne any sections Entitled "History"”
in the various original docunents, form ng one section Entitled

"Hi story"; |ikew se conbine any sections Entitled "Acknow edgenents",
and any sections Entitled "Dedications". You nust delete all sections
Entitled "Endorsenents".

6. COLLECTI ONS OF DOCUMENTS

You may nake a collection consisting of the Docunent and ot her
docurnents rel eased under this License, and replace the individual
copies of this License in the various docunents with a single copy
that is included in the collection, provided that you follow the rul es
of this License for verbatimcopying of each of the docunents in all
ot her respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted docunment, and follow this
License in all other respects regardi ng verbati mcopying of that
docunent .

7. AGGREGATI ON W TH | NDEPENDENT WORKS

A conpil ation of the Docunent or its derivatives with other separate
and i ndependent docunents or works, in or on a volunme of a storage or
distribution nedium is called an "aggregate" if the copyright
resulting fromthe conmpilation is not used to linmt the legal rights
of the conpilation's users beyond what the individual works permt.
When the Docunent is included in an aggregate, this License does not
apply to the other works in the aggregate which are not thensel ves
derivative works of the Docunent.

If the Cover Text requirenment of section 3 is applicable to these

copi es of the Document, then if the Docunment is |ess than one half of
the entire aggregate, the Docunent's Cover Texts may be placed on
covers that bracket the Docunent within the aggregate, or the

el ectroni c equival ent of covers if the Docunment is in electronic form
O herwi se they nust appear on printed covers that bracket the whole
aggr egat e.

255

License

8. TRANSLATI ON

Transl ation is considered a kind of nodification, so you may
distribute translations of the Docunent under the ternms of section 4.
Repl aci ng I nvariant Sections with translations requires special

permi ssion fromtheir copyright holders, but you may include
transl ati ons of sone or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the |license notices in the
Docunent, and any Warranty Disclai mers, provided that you al so include
the original English version of this License and the original versions
of those notices and disclainers. In case of a disagreenent between
the translation and the original version of this License or a notice
or disclainmer, the original version will prevail.

If a section in the Docunent is Entitled "Acknow edgenents”,

"Dedi cations”, or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERM NATI ON

You may not copy, nodify, sublicense, or distribute the Document
except as expressly provided under this License. Any attenpt otherw se
to copy, nodify, sublicense, or distribute it is void, and wll
automatically term nate your rights under this License.

However, if you cease all violation of this License, then your |icense
froma particular copyright holder is reinstated (a) provisionally,

unl ess and until the copyright holder explicitly and finally

term nates your license, and (b) permanently, if the copyright hol der
fails to notify you of the violation by some reasonabl e nmeans prior to
60 days after the cessation.

Mor eover, your license froma particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
viol ation by sone reasonable neans, this is the first time you have
received notice of violation of this License (for any work) fromthat
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Term nation of your rights under this section does not termnate the
licenses of parties who have received copies or rights fromyou under
this License. If your rights have been term nated and not permanently
reinstated, receipt of a copy of sone or all of the same material does
not give you any rights to use it.

10. FUTURE REVI SI ONS OF THI' S LI CENSE

The Free Software Foundation may publish new, revised versions of the
G\U Free Docunentation License fromtinme to tinme. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problens or concerns. See

http://ww. gnu. org/ copyl eft/.

Each version of the License is given a distinguishing version nunber.
If the Docunent specifies that a particul ar nunbered version of this
Li cense "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any |l ater version that has been published (not as a draft) by the
Free Software Foundation. |If the Document does not specify a version
nunber of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Docunent specifies

256

License

that a proxy can decide which future versions of this License can be
used, that proxy's public statenent of acceptance of a version
permanent|y authorizes you to choose that version for the Docunent.

11. RELI CENSI NG

"Massive Miultiauthor Collaboration Site" (or "MMC Site") means any
World Wde Web server that publishes copyrightable works and al so
provides prominent facilities for anybody to edit those works. A
public w ki that anybody can edit is an exanple of such a server. A
"Massive Mul tiauthor Collaboration” (or "MMC') contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" neans the Creative Commpns Attribution-Share Alike 3.0
Ii cense published by Creative Comons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that |icense
publ i shed by that sane organi zati on.

"I ncorporate” means to publish or republish a Docunment, in whole or in
part, as part of another Docunent.

An MMC is "eligible for relicensing” if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the sane site at any tine before August 1, 2009,
provided the MC is eligible for relicensing.

257

Index

Symbols

; (shell), 84

I (shell), 101

I' (bash history), 101

I (file globbing), 108

? (file globbing), 107

/, 28, 52

/bin, 53, 76

/bin/bash, 73, 204
/bin/cat, 53

/bin/csh, 73

/bin/date, 53

/binfksh, 73, 204
/bin/rm, 77

/bin/sh, 73

/boot, 55

/boot/grub, 55
/boot/grub/grub.cfg, 55
/boot/grub/grub.conf, 55
/dev, 36, 59

/dev/null, 59, 117
/dev/pts/1, 59
/dev/random, 70
/dev/ttyl, 59
/dev/urandom, 69, 71
/dev/zero, 70

/etc, 55

[etc/bashre, 205
/etc/default/useradd, 190
letc/fstab, 232
/etc/group, 208, 215
/etc/gshadow, 210
/etc/hosts, 71
[etclinit.d/, 55
[etc/inputre, 204
/etc/login.defs, 194
[etc/passwd, 132, 189, 195, 195, 197, 215
[etc/profile, 204
[etc/resolv.conf, 71
/etc/shadow, 191, 193, 227
/etc/shells, 158, 197
letc/skel, 56, 196
/etc/sudoers, 199, 199
/etc/sysconfig, 56
/etc/sysconfig/firstboot, 56

/etc/sysconfig/harddisks, 56
/etc/sysconfig/hweonf, 56
/etc/sysconfig/keyboard, 56
letc/X11/xorg.conf, 55
/export, 57

/home, 57

Nlib, 54
/lib/kbd/keymaps/, 56
/lib/modules, 54

Nib32, 54

/lib64, 54

/media, 57

/opt, 54

/proc, 36, 60

/proc/bus, 247
/proc/bus/pci, 248
[/proc/bus/usb/devices, 247
/proc/cpuinfo, 61
/proc/dma, 250
/proc/interrupts, 62, 248
[/proc/ioports, 249
/proc/kcore, 62

/proc/sys, 61

[root, 57

run, 67

/sbin, 53, 76

[srv, 57

/sys, 63

/tmp, 58, 226

lusr, 64

/usr/bin, 64
lusr/bin/getfacl, 232
[usr/bin/passwd, 227
lusr/bin/setfacl, 232
/usr/include, 64

lusr/lib, 64

/usr/local, 64

lusr/share, 65
lusr/share/games, 65
/usr/share/man, 65
lusr/src, 65

Ivar, 66

Ivar/cache, 66

Ivarllib, 67

Ivar/lib/rpm, 67
Ivar/lib/usbutils/ush.ids, 247
Ivar/lock, 67

Ivar/log, 66

258

Index

Ivar/log/messages, 66
Ivar/log/syslog, 66
Ivar/run, 67
Ivar/spool, 67
Ivarltmp, 67

. 27

o 27

.. (directory), 237

. (directory), 237

. (shell), 159
.Jbash_history, 102
Jbash_login, 204
.bash_logout, 206
Jbash_profile, 204
Jbashrc, 204, 205
.exrc, 153

vimrc, 153
“(backtick), 96

~, 27

'(single quote), 96

" (double quotes), 75
(((shell), 179

-- (shell), 160

[(file globbing), 107
[(shell), 164

$? (shell variables), 84
$() embedded shell, 96
$ (shell variables), 90
$HISTFILE, 102
$HISTFILESIZE, 102
$HISTSIZE, 102
$LANG, 108
$PATH, 76, 91

$PS1, 28

* (file globbing), 107
\ (backdlash), 86

&, 84

&&, 85

#1/bin/bash, 158

#! (shell), 158

(pound sign), 86

> 115

>> 116

>|, 116

[, 120

I, 85

1>, 117

2>, 117

2>&1, 117
777,220

A

access control list, 232
acl, 234

acls, 232

agp, 247

AlX, 3

alias(bash), 77
alias(shell), 77
apropos, 23
arguments(shell), 74

B

backticks, 96
base64, 118

bash, 171

bash history, 101
bash -x, 160
binaries, 53

Bourne again shell, 73
BSD, 3

bunzip2, 141

bus, 247

bzcat, 141

bzip2, 140, 141, 141
bzmore, 141

C

cal, 139

case, 181

case sengitive, 36
cat, 124

cat(1), 46

cd(bash builtin), 27
cd -(bash builtin), 28
CentOS, 5
chage(1), 194
chgrp(1), 215
chkconfig, 56
chmod, 196, 220
chmod(1), 150, 218
chmod +x, 158, 221
chown, 196
chown(1), 215
chsh(1), 197
CMDBA, 244
CMDEV, 244

259

Index

comm(1), 129 F
command line scan, 74 Fedora, 5
command mode(vi), 147 FHS, 52
copyleft, 8 file(1), 36, 54
copyright, 7, 7 file globbing, 106
cp(1), 38, 38 file ownership, 215
cpu, 247 Filesystem Hierarchy Standard, 52
crypt, 192 filters, 123
csh, 158 find(1), 137, 226, 227, 238
Ctrl d, 46 FireWire, 63
ctrl-r, 102 for (bash), 165
current directory, 27 FOSS, 7
cut, 132 four freedoms, 8
cut(1), 126 Free Software, 7
free software, 8
D freeware, 7
daemon, 23 function (shell), 182
date, 138
Debian, 5 G
Dennis Ritchie, 3 gce(1), 193
devfs, 63 getfacl, 232
df -i, 236 getopts, 174
directory, 237 GID, 208
distribution, 4 glob(7), 107
distributions, 52 GNU, 3
dma, 250 gpasswd, 210
dmesg(1), 249, 250 GPL, 8
dumpkeys(1), 56 GPLV3, 8
grep(1), 124
E grep -i, 124
echo, 74 grep -v, 125
echo(1), 74, 75 groupadd(1), 208
echo $-, 95 groupdel (1), 209
echo *, 109 groupmod(1), 209
Edubuntu, 5 groups, 208
eiciel, 234 groups(1), 209
ELF, 54 gunzip(1), 140
elif, 165 gzip, 140
embedding(shell), 96 gzip(1), 140
env(1), 93, 93
environment variable, 90 H
EOF, 118 hard link, 238
escaping (shell), 109 head(1), 45
eval, 179 here directive, 47
executables, 53 here document, 118
exit (bash), 102 here string, 118
export, 93 hidden files, 29
HP, 3

260

Index

HP-UX, 3 man hier, 52
http://www.pathname.com/fhs/, 52 man -k, 23
md5, 193
| mkdir, 196
IBM, 3 mkdir(1), 31, 221
id(1), 188 mkdir -p, 31
|EEE 1394, 63 mkfs, 236
if then else (bash), 165 more(1), 48
inode, 235, 238 mv(1), 39
inode table, 236
insert mode(vi), 147 N
interrupt, 248 noclobber, 115
|O Ports, 249 nounset(shell), 94
IRQ, 248 Novell Certified Linux Professional, 244
isa, 247
@)
K octal permissions, 220
Ken Thompson, 3 od(1), 130
kernel, 54 OEL, 5
keymaps(5), 56 open source, 8
Korn shell, 103 open source definition, 8
Korn Shell, 197 open source software, 7
ksh, 103, 158 openssl(1), 192
kudzu, 56 Oracle Enterprise Linux, 5
owner, 217
L
less(1), 48 P
let, 180 parent directory, 27
Linus Torvalds, 3 passwd, 194
Linux Mint, 5 passwd(1), 24, 191, 191, 192, 227
In, 239 passwd(5), 24
In(1), 238 path, 28, 29
loadkeys(1), 56 pc-card, 247
locate(1), 138 pci, 247
logical AND, 85 pci-express, 247
logical OR, 85 pcmcia, 247
Logiciel Libre, 8 pipe, 120
LPIC 1 Certification, 243 popd, 34
LPIC 2 Certification, 243 primary group, 190
Is, 217, 236 proprietary, 7
Is(1), 29, 29, 236, 237 public domain, 7
Is-l, 216 pushd, 34
Ispci, 248 pwd(1), 27, 28
Isusb, 247
R
M random number generator, 70
magic(5), 36 read, 172
man(1), 23, 24, 24 reboot, 102
mandb(1), 25 Red Hat, 5

261

Index

regular expressions, 103 sudo(1), 199
rename(1), 40 sudo su -, 200
repository, 4 Sun, 3
RHCE, 243 Sunos, 3
Richard Stallman, 3 superuser, 189
rm(1), 37, 239 symbolic link, 239
rmdir(1), 31 sysfs, 63
rmdir -p, 31 System V, 54
rm -rf, 38
root, 53, 189, 198, 199, 199 T
root directory, 52 tab key(bash), 29
rpm, 67 tac(1), 47

tail(1), 45
S tee(1), 124
salt (encryption), 193 test, 164
Scientific, 5 time, 139
sed, 131 touch(1), 37
set, 95 tr, 127
set(shell), 92 tr(1), 126
set +x, 78 type(shell), 76
setfacl, 232 U
setgid, 226, 226
setuid, 160, 199, 227, 227 Ubuntu, 5
set -x, 78 UmaSk(l), 221
she-bang (shell), 158 unalias(bash), 78
shell, 204 unig, 132
shell comment, 86 uniq(1), 129
shell escaping, 86 Unix, 3
shell expansion, 74, 74 unset, 95
shell functions, 182 unsef(shell), 92
shift, 172 until (bash), 166
shopt, 175 updatedb(1), 138
skeleton, 56 usb, 63, 247
sleep, 139 useradd, 190, 196
soft link, 239 useradd(1), 192, 196
Solaris, 3 useradd -D, 190
sort, 132 userdel(1), 190
sort(1), 128 usermod, 209
source, 159, 173 usermod(1), 190, 194, 195
stderr, 115 V

stdin, 115, 120, 124

stdout, 115, 120, 124 v 210

(. vi(1), 146
sticky bit, 226 '

; vigr(1), 210
strings(1), 48 vim(1), 146
3, 12? 210 vimtutor(1), 146

-, ipw(1), 195

su(1), 198, 198 X:%(o()l) 9199
sudo, 195, 199 '

vrije software, 8

262

Index

w

w(1), 188

wc(1), 127
whatis(1), 23
whereis(1), 24
which(1), 76
while (bash), 166
white space(shell), 74
who, 132
who(1), 188

who ami, 188
whoami(1), 188
wild cards, 108

X
X, 55
X Window System, 55

Z
zcat, 140
zmore, 140

263

