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METHODS FOR COMPUTING WAGNER TREES 

JAMES S. FA.ns 

Abstract 
Farris, J. S. (Biol. Sci., State Univ., Stony Brook, N. Y.) 1970. Methods for computing 

Wagner Trees. Syst. Zool., 19:83-92.-The article derives some properties of Wagner Trees 
and Networks and describes computational procedures for Prim Networks, the Wagner 
Method, Rootless Wagner Method and optimization of hypothetical intermediates (HTUs). 

The Wagner Ground Plan Analysis 
method for estimating evolutionary trees 
has been widely employed in botanical 
studies (see references in Wagner, 1961) 
and has more recently been employed in 
zoological evolutionary taxonomy (Kluge, 
1966; Kluge and Farris, 1969). Wagner 
Trees are one possible generalization of the 
most parsimonious trees of Camin and Sokal 
(1965). The Wagner technique is of con- 
siderable interest for quantitative evolution- 
ary taxonomists because it is readily pro- 
grammable and because the type of tree 
produced can tractably be extended to ap- 
plications in a variety of novel quantitative 
phyletic techniques. 

In this paper I shall formalize the concept 
of a Wagner Network and discuss a number 
of algorithms for calculating such networks. 
The rationale for the methods described 
will not be treated extensively here, as it 
is published elsewhere (Kluge and Farris, 
1969). 

REPRESENTATION OF TREES 

An evolutionary tree, T, can be repre- 
sented as an ordered pair, T = (N, f), where 
N is a collection of nodes of the tree and 
f is a function that assigns to a member, n, 
of N a unique node, f(n), such that n is 
directly derived from f(n) according to the 
tree, T. We shall call f (n) the immediate 
ancestor of n. Fig. 1(i) depicts a tree with 
nodes A, B, C, D, E, F, G, and ancestor 
function: 

f(A) = B 
f(C) =B 
f(B) =D 
f(F) =E 
f(G) =E 
f(E) = D 

Note that f(.) is not defined for D, the 
ancestor of the whole tree. While D is the 
ancestor of the whole tree, it is not true, for 
example that f(A) = D, because D is not 
the immediate ancestor of A. 

We shall consider only pairs, T = (N, f), 
that have a unique node, P, in N such that 
if n is any element of N, then there exists 
a non-negative integer, K, for which fK(n) 
= P. The function fK (.) is the K-fold com- 
position of f on itself; i.e. f4(x) = f(f(f(f(x)))). 
These pairs are just the trees that have a 
unique "root' and on which every member 
of N is connected to the tree so that it is a 
descendent of the "root." The trees we con- 
sider are, in short, those that fit the usual 
taxonomic notion of "tree.'> 

NETVWORKS 

Trees are directed entities in which the 
root is presumed to represent a point chron- 
ologically prior to any descendent point. 
We can think of a tree as being specified in 
two components, the first being the relative 
position of the nodes in the branching pat- 
tern, and the second being the location of 
the root. If the root is not specified, we 
have an "undirected tree," or a network. A 
network with a certain set of nodes may 
correspond to a wide class of trees with 
the same nodes, each tree differing from 
the others in the class only in the position 
of its root. Figs. 1(i) and 1(ii) show two 
trees that differ only in the location of their 
roots. Fig. 1 (iii) depicts the generalization 
of both trees: a network with the "same" 
branching pattern, but with no root spec- 
ified at all. 

The central problem of evolutionary tax- 
onomy is to construct an evolutionary tree. 
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A CF G A C 

B E B 

D (i) D G 
\E (ii) 

C F 

D 

FIG. 1.-Three equivalent Wagner Networks, 
two of which, ( (i) and (ii) ) are also Wagner 
T9ees. 

One possible way to approach the problem 
is to first construct a network corresponding 
to the class of trees that contains the desired 
tree and then to select a tree from the class 
by specifying the root node. One possible 
advantage of this approach is that the form 
of the network may be used in inferring the 
proper position of the root. 

There are many ways of specifying net- 
works. The most convenient method for 
our purposes is to subvert the notation for 
trees. A network, W, will be defined as an 
ordered pair, W = (N, g), consisting of a 
class, N, of nodes, and a function, g, that 
assigns to a member, n, of N a unique node 
g(n) in N such that n is directly connected 
to g(n). The g function differs conceptu- 
ally from the f function only in that no 
directionality of the linkage between g(n) 
and n is implied. We will treat only net- 
works, W = (N, g), for which N contains 
a unique base element, Q, such that for any 
element, n, in N there is a non-negative 
integer, K, for which gK (n) = Q. These 
are just the simply connected networks, and 
they are the only networks that can have 
the same form as a tree of the type we 
consider. If T = (N, f) is any member of 

the class of trees that have the same form 
as a network, W = (N, g), then W can be 
represented as (N, g*), where g* = f. We 
have listed above the ancestor function for 
Fig. 1(i). The ancestor function for Fig. 
1(ii) is 

f(A) =B 
f(C) =B 
f(B) = D 
f(D) =E 
f(F) =E 
f(G) =E. 

It should be clear that the ancestor function 
of either Fig. 1 (i) or Fig. 1 (ii) can serve 
as the connection function of Fig. 1 (iii). 

LENGTH 

In constructing an evolutionary tree it is 
necessary to choose among a large number 
of possible alternative trees. One way of 
making the choice is to select the tree that 
implies the minimum amount of evolution- 
ary change between the OTUs. Camin and 
Sokal (1965) took such an approach in 
introducing the idea of most parsimonious 
trees as trees with the smallest number of 
"steps" (changes in integer-valued charac- 
ters). The notion of length of a tree is a 
generalization of "number of steps." 

A data matrix, X, assigns a state, X (A, i), 
to node A for character i. The difference 
between two nodes, A and B, is defined 
to be 

d(A, B) = X(A, i) -X(B, i). (1) 

Two nodes, A and f( A), are the end 
points of a unique internode of a tree, T = 
(N, f), for A in N. The length of the inter- 
node between A and f(A) is defined to be 
d(A, f(A) ) 

The tree T = (N, f) has just K-1 inter- 
nodes if K is the number of nodes in N. 
The length of a tree is defined to be 

L(N, f) =: d(n, f(n)), (2) 
n#P 

where P is the ancestor of the tree. The 
length, L(N, f ), of a tree, T = (N, f ), is the 
sum of the lengths of the internodes of the 
tree. 
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METHODS FOR COMPUTING WAGNER TREES 85 

If the data matrix, X, takes on only inte- 
ger values, (1) clearly gives the "number 
of steps" between A and f(A). Length as 
defined here is thus related to the concept 
of parsimony as used by Camin and Sokal. 
Equation (1), however, is defined for any 
real-valued data matrix, X, so that we can 
speak of the length of a tree in terms of 
continuously coded characters. 

The length of a network is defined analo- 
gously to the length of a tree. For a net- 
work, W = (N, g), the length is 

L(N, g) = d(n, g(n)), (3) 

where Q is the base element of N. 

WAGNER TREES AND NETWORKS 

The most parsimonious trees of Camin 
and Sokal (1965) are trees with a minimum 
number of steps, provided they have no 
evolutionary reversals. Analogously, we will 
be interested in trees of minimum length. 
The assumption of irreversibility of evolu- 
tion will not be made, however. 

We define a Wagner Tree for a set, S, of 
OTUs as a tree, T = (N, f) such that 

1) S is a subset of N 
2) if T' = (N', f') is any other tree 

satisfying 

(1), then L(N, f) <, L(N', f'). 
A Wagner Network for a set, S, is analo- 

gously defined as a network, W = (N, g) 
such that: 

1) S is a subset of N 
2) if W' = (NN', g') satisfies (1), then 

L(N', Ig') >, L (N, g). 
Any of the nodes of a network can be 

used as the root of a corresponding tree 
without altering its length (since (2) and 
(3) are the same equation). Since irrevers- 
ibility of evolution is not assumed, any tree 
generated from a network in this way is a 
legitimate candidate as a Wagner Tree. 
Hence a Wagner Network on S can be con- 
verted into a Wagner Tree for S with no 
change in length. It is thus possible to find 
a Wagner Tree by finding a Wagner Net- 

D,C 
FiG. 2.-A local region of a Wagner Network. 

work. This simplification of the task of 
finding a tree is possible only if evolutionary 
reversals are permitted. 

HYPOTHETICAL TAXONOMIC UNITS 

The nodes of a Wagner Tree are not re- 
quired all to be OTUs, and in fact it is 
often necessary to use nodes not in S in 
order to achieve a shortest tree for S. The 
nodes of a Wagner Tree, T = (N, f), that 
are not OTUs are purely hypothetical ob- 
jects chosen simply to allow the length of 
the tree to be minimized. I shall refer to 
hypothetical nodes as Hypothetical Taxo- 
nomic Units (HTUs). 

The definition of Wagner Trees implies 
a useful property of HTUs: the character 
state values of an HTU are related to the 
character state values of the OTUs and the 
other HTUs in a simple way. Consider the 
four-node network of Fig. 2 and suppose 
that it is a Wagner Network. Whether Fig. 
2 is interpreted as a tree or a network is 
immaterial. Fig. 2 can be considered as a 
section of a more extensive network. 

The length of the network of Fig. 2 is 
d(A,D) + d(A,C) + d(A,B). Recalling 
(1), this can be rewritten as 

8 X(A, i) -X(D, i) + 
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86 SYSTEMATIC ZOOLOGY 

jX(A,i) -X(C,i) + 

IX(A, i) - X(B, i)I= 

[IX(A., i) - X(D, i) + 

IX(A, i) - X(C, i)I + 

X(A, i) -X(B, i) I]. (4) 
Since (4) is completely additive over 

characters we can seek values X(A, i) to 
minimize (4) one character at a time. For 
character i, let 

a = X(A, i) 
p=the largest of X(B, i), X(C, i), 

X(D, i) 
q=the median of X(B, i), X(C, i), 

X(D, i) 
r =the smallest of X(B, i), X(C, i), 

X(D, i). 
The ith component of (4) is equal to 

I a -p I + I a -q I + I a -r I . (S) 
The optimal value of a = X( A, i) minimizes 
(5). We can see that if a is chosen outside 
the interval (r, p), the value of (5) must 
exceed p - r. If a is chosen inside (r, p), 
the first and last terms of (5) sum to p-r, 
and if a = q, the total value of (5) is p - r. 
The optimal value of a is thus q, and in 
general, the optimal value of X(A, i) is the 
median of X(B, i), X(C, i), X(D, i) if A is 
connected just to the nodes B, C, D, of a 
Wagner Network. 

The median-state property of HTUs is 
used in the algorithms described later to 
specify optimal HTUs by constructing them 
one character state at a time. 

INTERVAL DIFFERENCES 

Some calculations for constructing Wag- 
ner Trees can be simplified by a relation 
on the differences between HTUs and 
OTUs. The relation is a corollary of the 
median-state property of HTUs. 

Suppose that a node, B, is connected to 
two other nodes, C and D, through an opti- 
mal HTU, A (Fig. 2). We know from the 
argument above that for each character the 

state of A is the median of the states of B, 
C, and D. Then for any character, i, 
X(A, i) lies between X(B, i) and X(C, i) 
X(A, i) lies between X(B, i) and X(D, i) 
X(A, i) lies between X(C, i) and X(D, i). 
Consequently, 
X(B, i) -X(C, i) I 

= IX(A,i)-X(B,i)+ IX(A,i)-X(C,i)I; 
fX(B, i) - X(D, i) I 
= IX(A, i) -X(B, i) + IX(A, i) -X(D, i) I; 
X(C, i) - X(D, i) I 

=I X(A, i) - X(C, i) + I X(A, i) - X(D, i) j. (6) 
Summing over characters and using (1), 

(6) yields 
d(B, C) = d(A, B) + d(A, C); (7) 
d(B, D) =d(A, B) + d(A, D); (8) 
d(C, D) = d(A, C) + d(A, D). (9) 

Adding (7) and (8), we obtain 
d(B, C) + d(B, D) 

= 2d(A, B) + d(A, C) + d(A, D). (10) 
By (9), (10) becomes 
d(B, C) + d(B, D) = 2d(A, B) + d(C, D). (11) 
Therefore, 

d(A, B) = (d(B, C) + d(B, D) - 
d(C, D)) (12). (12) 

Equation (12) gives the difference be- 
tween a node, B, and the optimal HTU 
through which B may be connected to two 
other nodes, C and D. It will be useful to 
think of the connection between C and D 
as an object called interval, INT(C, D), 
whose difference from a node, B, may be 
calculated as 
d(B, INT(C, D)) = (d(B, C) + d(B, D) - 

d(C, D))(/2). (13) 

PRIM NETWORKS 

We now consider a number of algorithms 
for calculating approximations to Wagner 
Networks. It is important to realize that 
the current level of development of algo- 
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METHODS FOR COMPUTING WAGNER TREES 87 

rithms for finding Wagner Networks is 
comparable to the state of methods of find- 
ing Camin-Sokal Trees prior to the work 
of Estabrook (1968): several reliable heu- 
ristic programs exist, but no existing algo- 
rithm is certain to produce a Wagner Net- 
work for an arbitrary set of data. 

We shall first treat Prim Networks. A 
Prim Network, for our purposes, is a Wag- 
ner Network, subject to the constraint that 
the set of nodes, N, is identical to the set 
of OTUs, S. Thus, no HTUs are con- 
structed. Prim Networks are so called 
because they were introduced into evolu- 
tionary taxonomy by Edwards and Cavalli- 
Sforza (1963), who named them with refer- 
ence to the work of Prim (1957). 

Prim Networks are quite crude approxi- 
mations to Wagner Networks, but have the 
advantages that they can be computed 
exactly and very efficiently. Prim Networks 
may be most useful in evolutionary studies 
as tools for preliminary analyses of data, 
the more elaborate programs described 
below being reserved for refining final con- 
clusions. A Prim Network can provide a 
fairly accurate picture of a Wagner Net- 
work. Fig. 3(i) depicts a Wagner Tree for 
the anuran data of Kluge and Farris (1969), 
while Fig. 3(1i) shows a tree produced from 
a Prim Network for the same data. In this 
instance, the Prim and Wagner Networks 
indicate virtually identical relationships and 
differ in length by only 1 unit. 

A Prim Network may be computed as 
follows: 

1) Pick an OTU, say Q, as a starting 
point. It does not matter which OTU is 
used. Go to 2. 

2) Find the OTU in S that is closest to 
Q. Connect it to Q to form a network with 
one linkage. Go to 3. 

3) Compute the difference between each 
unplaced OTU and the network. The dif- 
ference between an OTU, A, and a net- 
work, W = (N, g), with nodes in N is 
defined to be min(d(A,n)). Go to 4. 

n in N 

4) Find the OTU that is closest to the 
network. Add it to the network by connect- 

M M 

RA RA 

RH B RH B 

PI PE Pi PE 

X D 

D A 

(i) (ii) 
A 
FIG. 3.-Evolutionary trees for families of anu- 

rans, produced by the Wagner Method (i), and 
from a Prim Network (ii). Legend: A: Ascaphi- 
dae, D: Discoglossidae, X: a hypothetical inter- 
mediate, PI: Pipidae, RH: Rhinophryhidae, PE: 
Pelobatidae, B: Bufonoid complex, RA: Ranoid 
complex, M: Microhylidae. (cf. Kluge and Farris, 
1969). 

ing it to the node from which it differs least. 
Go to 5. 

5) If any OTUs remain unplaced, go to 
3. Otherwise, stop. 

A FORTRAN IV program to perform this 
algorithm is short enough to be profitably 
described here. 

DO 101 I = 2, IT 
LIN(I) = I 
JB(I) =1 
DB(I) =0. 
DO 101 J = 1, N 

101 DB(I) = DB(I) + ABS(X(J, I) - X(J, 1)) 
ITO = IT- 1 
DO 102 IP = 2, ITO 
D = DB(LIN(IP)) 
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88 SYSTEMATIC ZOOLOGY 

IB = IP 
K =IP + 1 
DO 103 I = K IT 
IF(DB(LIN(I)). GE. D) GOTO 103 
D = DB(LIN(I)) 
IB = I 

103 CONTINUE 
JEXT = LIN(IB) 
LIN(IB) = LIN(IP) 
LIN(IP) = JEXT 
DO 104 I = K, IT 
D = 0. 
L = LIN(I) 
DO 105 J = 1, N 

105 D = D + ABS(X(J, L) - X(J,JEXT)) 
IF(D. GE. DB(L)) GOTO 104 
DB(L) = D 
JB(L) = JEXT 

104 CONTINUE 
102 CONTINUE 

The program operates as follows. N is 
the number of characters; IT is the number 
of OTUs; and X(J, I) is the data matrix. 
The first subscript of X indexes characters, 
the second, OTUs. OTU 1 is chosen as the 
starting point and the list, LIN, is loaded 
with the numbers of the unplaced OTUs 
(all the OTUs except 1). Each unplaced 
OTU is assigned a difference, DB(I), from 
the network, and DB (I) is initialized to the 
difference between OTU I and OTU 1. 
Each OTU, I, is assigned a closest OTU, 
JB (I), on the network. JB (I) is initialized 
to 1 for each OTU other than 1. These 
initializations are all performed by the 101 
loop. 

In the 103 loop the unplaced OTU that is 
closest to the network (has the smallest DB 
value) is located. The list LIN is then up- 
dated so that the numbers of the unplaced 
OTUs are stored in positions K, . .. , IT of 
LIN. The OTU selected in loop 103 is 
called JEXT, and the number of JEXT is 
saved in position IP of LIN, JEXT being 
the IPth OTU added to the-network. The 
reason for saving the number of JEXT in 
LIN is that it is convenient to have the 
connection function printed out in the order 
in which the OTUs are placed on the net- 
work. 

In the 104 loop the difference between 
each unplaced OTU, L, and JEXT is com- 
puted as D. If D exceeds DB ( L) no action 

is taken. If D is smaller than DB (L), DB 
(L) and JB (L) are updated. 

At each stage of the computation, for any 
unplaced OTU, I, DB (I) is the difference 
between I and the network, while JB (I) is 
the number of the network node closest to I. 
At the end of execution, JB (I) is the con- 
nection function of the Prim Network, and 
DB (I) is the length of the internode be- 
tween I and JB(I). 

The algorithm presented here has some 
advantages over other ways of computing 
Prim Networks. The program above com- 
putes the difference between OTUs I and 
J, I < J, just once and either saves the value 
in DB or discards it. An OTU-by-OTU 
matrix of differences is not stored, so that 
Prim Networks for quite large sets of data 
can be found on relatively small computers. 
Further, inspection of the program will 
reveal that it produces a network for IT 
OTUs by performing (IT-3) (IT-2) com- 
parisons of differences. We may contrast 
this amount of work with that required by 
a Prim Network forming procedure de- 
scribed by Edwards and Cavalli-Sforza 
(1963). "[The Prim Network] can be found 
by listing all the distances between points 
in increasing order, and successively allocat- 
ing segments to these distances, omitting 
any segment which completes a loop." The 
minimum number of comparisons needed 
to order the distances between IT OTUs 
is set by information theory at ('/2) (IT) 
(IT-1) (log2( (1/2) (IT) (IT-1))). The pro- 
gram presented here can thus be made 
more computationally efficient than other 
programs for computing Prim Networks, 
because it forms the networks by doing less 
work. 

A working version of the FORTRAN IV 
Prim Network Program is available from the 
author, as is an IBM 360/67 Assembler 
Language routine using a similar algorithm. 

THE WAGNER METHOD 

The "Wagner Method" presented here is 
a computerized version of the original Wag- 
ner procedure for producing trees (Wagner, 
1961, and references therein). This method 
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METHODS FOR COMPUTING WAGNER TREES 89 

has been employed by Kluge and Farris 
(1969). 

In the Wagner Method, the tree is formed 
by adding OTUs one at a time to a tree 
that initially consists of a single node-the 
ancestor. The ancestor may be "hypothet- 
ical" in that it is not an existing OTU. The 
"hypothetical" ancestor is, however, treated 
as an OTU rather than an HTU in that the 
character states of the ancestor are fixed, 
not computed by the algorithm. 

The order in which OTUs are added to 
the tree is determined by the rank order 
of the advancement index. For OTU I, the 
advancement index is defined to be d( I, A), 
where A is the ancestor. OTUs with small 
advancement indices are added to the tree 
first. At each stage, the placement of the 
next OTU to be added is determined 
through the interval distance formula, and 
a new HTU to connect an OTU to the 
network is formed using the median-state 
property. 

The algorithm of the Wagner Method is 
then: 

1) Select an ancestor, A. Go to 2. 
2) Compute the advancement index, AD 

(I) = d(1, A) for each OTU, I. Go to 3. 
3) Find the OTU with smallest advance- 

ment index. Connect it to the ancestor to 
form a tree with one linkage (one interval). 
Go to 4. 

4) Find the unplaced OTU, B, with 
smallest advancement index. Go to 5. 

5) Find the interval (linkage), INT( C, 
f(C) ), for C a node of the tree such that 
d(B, INT(C, f(C))) is minimal. Go to 6. 

6) Construct an HTU, Y, as the median 
of B, C, and f(C). Go to 7. 

7) Update the ancestor function: 
f(Y) =f(C) 
f(B) =Y 
f(C) =Y. 

Go to 8. 
8) If any OTUs remain unplaced, go to 

4. Otherwise stop. 
The simple Wagner algorithm can be 

modified by changing the criterion for the 
order in which the OTUs are added to the 

tree. I have experimented with programs 
in which the addition sequence is given by 

1) scanning the tree by the interval- 
distance formula at each step to determine 
which unplaced OTU is closest to the tree 
(as opposed to being closest to the ancestor), 

2) adding OTUs to a Wagner Tree with 
ancestor A in the same order as they would 
be added to a Prim Network with base 
element A, and 

3) adding OTUs with large advancement 
indices first. 

None of these modifications has shown 
particular superiority to the original algo- 
rithm in forming ordinary Wagner Trees. 
Methods (2) and (3) have proved to be 
superior to the original algorithm in appli- 
cations where Wagner programs are used 
in successive weighting procedures (see 
Farris, 1969). 

The ancestor in the simple Wagner algo- 
rithm can be used to impart a direction to 
the tree, but it need not be interpreted in 
this way. If a real OTU is used as the 
"ancestor" in the Wagner algorithm, the out- 
put can be used as a Wagner Network. 

ROOTLESS WAGNER METHODS 

The simple Wagner algorithm does not 
impose irreversibility on the trees it pro- 
duces, and from this standpoint, the choice 
of an ancestor may not be crucial. It has 
been found, however, that the form of the 
tree produced by a simple Wagner algo- 
rithm can be changed by altering, the an- 
cestor. The Rootless Wagner algorithms 
have been developed as an approach to 
reducing the dependency of the tree on the 
inferred ancestor. 

A Rootless Wagner algorithm is produced 
from the simple algorithm described above 
by modifying the first 4 steps: 

1) Select a pair of OTUs, A and D such 
that d(A, D) > d(I, J) for any OTUs, I and 
J, in the study. Link them to form an inter- 
val. Go to 2. 

2) Compute the "advancement index" of 
each OTU, I, as d(I, INT(A, D)). Go to 3. 

3) Find the OTU, C 7= A, D, with the 
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largest "advancement index." Form an 
HTU, Y, as the median of A, B, and C. 
Construct an ancestor function: 

f(A) =Y 
f(D) =Y 
f(C) =Y. 

Go to 4. 
4) Find the unplaced OTU, B, with the 

largest "advancement index." Go to 5. 

As with rooted Wagner procedures, a 
number of Rootless Wagner algorithms can 
be generated by changing the criterion for 
the addition sequence of OTUs. Several 
addition criteria have been tried, but none 
seem to be appreciably more effective than 
the- one given above. The criterion de- 
scribed can operate effectively in successive 
weighting applications. 

The Rootless Wagner algorithm has the 
advantage that it can produce a Wagner 
Network with no reference to an ancestor 
at all. The algorithm can be used, however, 
to produce a directed Wagner Tree, simply 
by including a postulated ancestor among 
the OTUs to be analyzed. Hypothetical 
ancestor "OTUs" are given no special treat- 
ment by a Rootless Wagner procedure. It 
is still possible for the form of the tree to 
be influenced by the inclusion of an an- 
cestor. 

OPTIMI ZATION OF TREES 

A drawback of the algorithms described 
above is that the HTUs produced during 
the stepwise addition of OTUs to the tree 
may not be the optimal ones for the com- 
plete tree. The algorithms in which inter- 
vals are created by choosing the most dis- 
parate available OTUs are particularly 
subject to this difficulty. Suppose, for ex- 
ample, that the initial pair, A and D, of 
OTUs selected by the Rootless Wagner 
procedure have quite similar states, X(A, i) 
and X( D, i) for the ith character; i.e., I X(A, 
i) - X( D, i) I is a relatively small number. 
There cannot, of course, be many such 
characters, since A and D were selected 
for the large value of d(A, D) (cf. Eq. 
(1)). The presence of a few such charac- 
ters is nonetheless possible. Now any HTU, 

Y, generated by the existing Rootless Wag- 
ner algorithms as a connector of some OTU 
to INT (A, D) will have for character i a 
state, X( Y, i), that lies numerically between 
X(A, i) and X(D, i), inclusive. It is quite 
probable that several OTUs, C, E, and F, 
say, will be independently connected to INT 
(A, D), say through HTUs, R, Y, Z, respec- 
tively. Then X(R, i), X(Y, i) and X(Z, i) 
will all lie numerically between X( A, i) and 
X(D, i). Now suppose that C, E, and F are 
described by a state, x = X(C, i), that does 
not lie between X(A, i) and X(D, i). Then 
the output of the Rootless Wagner proce- 
dure will effectively assert that state x is 
convergently present in OTUs C, E, and F, 
while the similarity of X (A, i) and X( D, i) 
is homologous. A more parsimonious inter- 
pretation is that state x is homologously 
present in C, E, and F, while the similarity 
of X (A, i) and X(D, i) is convergent. The 
latter interpretation can be imposed with- 
out changing the form of the Wagner Net- 
work. It is necessary only to alter the 
character state values of HTUs R, Y, Z. 

A tree with a fixed branching form, that 
is, a fixed set of cladistic relationships, can 
be optimized for the parsimony criterion by 
computing for it an optimizing set of HTUs. 
I shall describe a procedure for doing so 
below. In the description, I shall utilize 
the concept of the state set, S (Y, i) of an 
HTU, Y, for a character, i. The state set is 
a closed interval describing a range of char- 
acter state values applicable to Y and i. The 
term cladistic difference is used in the sense 
of Farris (1967). In particular, two nodes 
are said to have cladistic difference unity 
if they share an immediate common an- 
cestor. 

The procedure is most conveniently de- 
scribed in sections. The first is the cluster- 
ing procedure, as follows. Consider a set K 
of clusters to have initially as its elements 
just all the OTUs in the study, each OTU 
being considered as a "cluster" of one OTU. 
Then: 

1. Select any two clusters, A and B, 
that have cladistic difference unity ac- 
cording to the tree being optimized. 
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2. Remove A and B from K. 
3. Place Y = f(A) = f(B) in K. 
4. For every character, i, compute S 

(Y, i) as described below. 
5. If K has more than one element, 

return to ( 1). 
The rules for computing new state sets 

(step (4)) are: 
If clusters A and B in K are united to 

form Y = f(A) = f(B) then S(Y, i) is 
R-1: the intersection of S (A, i) and S (B, 

i), provided that intersection is not empty; 
otherwise, S (Y, i) is 

R-2: the smallest closed interval of one 
of the forms [at, bi] or [bi, ai], where ai is 
an element of S ( A, i), and bi is an element 
of S(B,i). 

The state sets, S (Z, i), of HTUs, Z, will 
generally not be singleton, so that the char- 
acter states, X(Z, i) of Z, will not generally 
be unique. The ambiguity of the states 
assigned to HTUs is reduced to a minimum 
by 

R-3: if an HTU, F, with non-singleton 
state set, S(F,i), has f(F) = H, replace 
S (F, i) with the intersection of S (F, i) and 
S (H, i). 

R-3 is most easily applied through a 
second pass through the tree after the clus- 
tering cycle that computes state sets of 
HTUs has been completed. 

An example of the optimizing process 
may prove helpful. We use the hypothetical 
data: 

Character 
OTU 1 2 3 4 5 
A 2 1 0 0 1 
B 1 2 0 0 0 
C 0 0 1 2 0 
D 0 0 2 1 0 
E 0 0 0 0 1 
F 0 0 0 0 0 

We shall optimize the tree of Fig. 4(i) 
for these data. For the example, I shall 
indicate state sets by expressions of the 
form [x, y], where x and y are the bounds 
of the range of state values in a set S (A, i). 

The initial cluster set, K, contains A, B, 
C, D, and E. Clustering according to Fig. 4, 
we first unite A and B to form Y. By R-2 

A BC D C D 

Y Z z 

R A R E 

\ E Y \S 

E F 

T (i) (ii) 
FiG. 4.-A tree (i) and a network (ii) to be 

optimized. 

we assign to the state sets of Y the ranges 
of variation between A and B. Then Y has 
the state sets [1, 2], [1, 2], [0, 0], [0, 0], and 
[0, 1] for the five characters respectively. 
Similarly, Z has state sets [0, 0], [0, 0], [1, 
2], [1, 2], and [0, 0]. For the first four char- 
acters, the state sets of Y and Z have empty 
intersections, so that the corresponding state 
sets of R are computed according to R-2. 
For character five, the state sets of Y and Z 
have a non-empty intersection, so that R-1 
applies. R then has state sets [0, 1], [0, 1], 
[0, 1], [0, 1], [0, 0]. Similarly, the first four 
state sets of S can be computed as the inter- 
sections of the state sets of R and E, while 
the last state sets of S is the range between 
the "1" state of E and the "O" state of R. S 
has state sets [0, 0], [0, 0], [0, 0], [0, 0], and 
[0, 1]. The intersection of the state sets of 
S and F is non-empty for all characters. 
Thus, T has state sets [0, 0], [O, O], [0, O], 
[0, 0], and [0, 0]. 

Making the second pass through the tree, 
we replace the state sets of Y with their 
intersections with the state sets of R, obtain- 
ing new state sets [1, 1], [1, 1], , O, [O, O], 
and [0, 0] for Y, and proceed similarly for 
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the other HTUs. The character states of 
the HTUs are in the case uniquely deter- 
mined and are 

Character 
HTU 1 2 3 4 5 

Y 1 1 0 0 0 
Z 0 0 1 1 0 
R 0 0 0 0 0 
S 0 0 0 0 0 
T 0 0 0 0 0 

Note that the optimized lengths of INT 
(R, S), INT(S, T), and INT(T, F) are zero. 

The same procedure as described above 
can be used also to optimize the HTUs of 
approximated Wagner Networks simply by 
imposing an arbitrary direction on the con- 
nection function of the network. The tree 
example just performed is equivalent to 
optimizing the network of Fig. 4( ii). 

DISCUSSION 

The HTU optimizing procedure can be 
used to increase the parsimony of trees and 
networks generated by Wagner programs. 
It can also be used, however, to assign an 
optimal set of HTUs to the dendrogram 
generated by any sort of numerical taxo- 
nomic clustering procedure. 

Since any dendrogram can now be as- 
signed a parsimony-optimal set of HTUs, 
any dendrogram can also be assigned a 
length, and, consequently, a measure of 
parsimony. It is therefore practical to 
use parsinmony as an optimality criterion 
on any sort of dendrogram, including 
strictly phenetic ones. The phenetic desir- 
ability of doing so is, of course, open to 
doubt and will have to be extensively inves- 
tigated. It does seem possible, however, 
that parsimony will provide a general opti- 
mality criterion that lacks some of the less 
appealing qualities of the cophenetic cor- 
relation coefficient, now widely used as an 
optimality measure on phenograms (see 
Farris, 1969a). 

The possibility of calculating an optimal 
set of HTUs for a tree of any branching 
form also allows us to compare the relative 
parsimony of intuitively derived and numer- 

ically derived hypotheses on phylogeny. 
The relative degree of the likelihood of 
alternative phylogenetic theories can thus 
be assessed, as can the relative efficiency of 
intuitive and numerical techniques. 

Finally, since optimal HTUs can be cal- 
culated after a tree has been formed, we 
are freed of the necessity to compute trees 
by the sort of stepwise procedure used in 
the Wagner programs. We may be able to 
reduce the amount of computer time neces- 
sary to obtain taxonomic conclusions by 
using conventional clustering methods to 
obtain the form of the tree. HTUs could 
then be computed separately. The type of 
clustering scheme used will need to be 
carefully selected, however. Most phenetic 
clustering methods generate branching 
forms with an unacceptably low degree of 
parsimony. I am currently investigating 
clustering criteria to allow clustering pro- 
grams to generate branching forms opti- 
mizable to acceptably small length. 

REFERENCES 

CAMIN, J. H., AND R. R. SOKAL. 1965. A method 
for deducing branching sequences in phylogeny. 
Evolution, 19:311-327. 

EDWARDS, A. W. F., AND L. L. CAVALLI-SFORZA. 

1963. Reconstruction of evolutionary trees. In 
Phenetic and phylogenetic classification. System- 
atics Assoc. Publ., 6:67-76. 

ESTABROOK, G. F. 1968. A general solution in 
partial orders for the Camin-Sokal model in 
phylogeny. J. Theoret. Biol., 21:421-438. 

FABRns, J. S. 1969. A successive approximations 
approach to character weighting. Syst. Zool., 
18:374-385. 

FARMs, J. S. 1969a. On the cophenetic correla- 
tion coefficient. Syst. Zool., 18:279-285. 

KLUGE, A. G., AND J. S. FARRIS. 1969. Quantita- 
tive phyletics and the evolution of anurans. Syst. 
Zool, 18:1-32. 

PRDM, R. C. 1957. Shortest connection networks 
and some generalizations. Bell Syst. Tech. J., 
36:1389-1401. 

WAGNER, W. H. 1961. Problems in the classifi- 
cation of ferns, p. 841-844. In Recent advances 
in botany. Univ. Toronto Press, Toronto. 

Biological Sciences, State University of 
New York, Stony Brook, New York 11790. 

Contribution No. 12 from the program in Ecology and Evolution, State University of New York at 
Stony Brook, Stony Brook, New York 11790. 

This content downloaded from 137.99.252.6 on Wed, 2 Apr 2014 08:43:22 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 83
	p. 84
	p. 85
	p. 86
	p. 87
	p. 88
	p. 89
	p. 90
	p. 91
	p. 92

	Issue Table of Contents
	Systematic Zoology, Vol. 19, No. 1 (Mar., 1970), pp. 1-98
	Front Matter [pp. ]
	A Practical Criticism of Hennig-Brundin "Phylogentic Systematics" and Antarctic Biogeography [pp. 1-18]
	A Faunal History of the North Atlantic Ocean [pp. 19-34]
	A Phenetic Study of the Suborder Lari (Aves) I. Methods and Results of Principal Components Analyses [pp. 35-57]
	Adaptive Hierarchical Clustering Schemes [pp. 58-82]
	Methods for Computing Wagner Trees [pp. 83-92]
	Points of View
	Similarity and Homology [pp. 93]
	Nomina and Taxa Dubia [pp. 94]
	The Language of Zoological Names [pp. 94-97]

	Corrections to the Paper: The Classification of Constrained Data [pp. 98]
	Back Matter [pp. ]



