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Abstract

The main features of the phylogeny program TNT are discussed. Windows versions have a menu interface, while Macintosh and
Linux versions are command-driven. The program can analyze data sets with discrete (additive, non-additive, step-matrix) as well as
continuous characters (evaluated with Farris optimization). Effective analysis of large data sets can be carried out in reasonable
times, and a number of methods to help identifying wildcard taxa in the case of ambiguous data sets are implemented. A variety of
methods for diagnosing trees and exploring character evolution is available in TNT, and publication-quality tree-diagrams can be
saved as metafiles. Through the use of a number of native commands and a simple but powerful scripting language, TNT allows the
user an enormous flexibility in phylogenetic analyses or simulations.

� The Willi Hennig Society 2008.

Introduction

Since the first breakthrough in parsimony analysis
with the release of Hennig86 (Farris, 1988), parsimony
programs have continued to improve, culminating in
TNT (Goloboff et al., 2003b), which includes several
new methods to facilitate phylogenetic analysis (for
reviews see Hovenkamp, 2004; Giribet, 2005; Meier and
Ali, 2005). Under an agreement between the Willi
Hennig Society and the authors, TNT is now available
as a free program. A version of TNT licensed for single-
user, academic use can be downloaded from http://
www.zmuc.dk/public/phylogeny/TNT. The purpose of
the present paper is to provide a general overview of the
program and some guidance for beginners.

General interface: menus or commands

TNT is a fully interactive program. All versions
(Windows, Linux and Macintosh) can be run by means
of commands. In addition, the Windows version has a

sophisticated menu interface or GUI (Figs 1–5), which
makes TNT the only major phylogeny program that can
be menu-driven under Windows. Using emulators or
alternative implementations of the Windows APIs (such
as WINE or CrossOver Mac), the Windows version of
TNT can also be run under Linux or OSX. Note that the
menu-driven PAUP* (Swofford, 2002) is a Classic
Macintosh program, and as such it is no longer supported
on the latest version of OSX or any Intel Macintosh.

Commands can also be read from data files or
instruction files, providing an easy way to automate
routines. The on-line help (help command) includes a list
of all the TNT commands and their options. Through-
out, command options (available in all versions) are
indicated as italics and bold (e.g. procedure) and menu
options (available only in Windows versions) are indi-
cated as bold (e.g. File ⁄OpenInputFile). To save space,
only the most important and common options are
indicated.

A basic analysis

The input data file can be in either TNT or basic
Nexus format. The TNT format is derived from
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Hennig86 ⁄NONA with significant enhancements mak-
ing it relatively backwards compatible (requiring at the
most a little editing to eliminate commands extraneous
to TNT). The data file should start with a specification
of the data type, which in the case of DNA data is
nstates dna;. Next comes the xread command, followed
by the number of characters, the number of taxa, and
the data themselves (sequence data must be prealigned).
Character states may be IUPAC codes, digits (for

morphological characters), ? (for missing data), or
- (for gaps).

To read in the data file, select File ⁄OpenInputFile or
type in procedure datafilename. Usually you will name
your data file with a .tnt extension, such as mydata.tnt.

Before analyzing the data, you should make provision
for saving the output to a log file. This can be done by
selecting File ⁄Output ⁄OpenOutput or by entering log
logfilename. Usually you should give a log file the .out

Fig. 1. Main menu options of TNT.
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extension and the same base name as the data
file—something like mydata.out.

All program output is temporarily saved to an
internal text-buffer. This text-buffer can be saved to a
newly opened log file by selecting File ⁄Output ⁄SaveDis

playBuffer. In command-driven versions, the text-buffer
can be inspected with the view command; in the
Windows version, the default window displays the
text-buffer automatically.

A basic analysis consists of using multiple addition
sequences followed by branch swapping. To do this
select Analyze ⁄TraditionalSearch with default options
(just click Search when the option dialog appears) or
enter mult. This will perform 10 random addition
sequences followed by branch-swapping, saving up to

10 trees per replication (roughly equivalent to a ‘‘heu-
ristic search’’ with random addition sequences in
PAUP*, or hold ⁄10;mult*10; in NONA). In the case of
small data sets (15–30 taxa), exact solutions using
branch-and-bound (which guarantee finding all trees
optimal under current settings) can be produced within
reasonable times with Analyze ⁄ImplicitEnumeration or
the ienum command.

Once calculated, trees may be viewed by selecting
Tree ⁄Display or by entering tplot. In the Windows
version, the tree can be saved as an extended metafile (a
publication-quality image file which can be exported to
PowerPoint, CorelDraw, etc.), by pressing ‘‘M’’ while
viewing the tree-diagram (see below). To save the trees for
later reanalysis, create a save file by selecting File ⁄

Fig. 2. Dialogs for handling internal tree file: A, filtering, and B, creating groups of trees.
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TreeSaveFile ⁄Open or by entering tsave * savefilename.
Usually you will name your save file with a .tre extension,
so that its name will be something likemydata.tre. If there
are multiple trees, their consensus can be found by
selecting Trees ⁄Consensus or by entering nelsen.

The synapomorphies common to several trees can be
plotted on their consensus by selecting Optimize ⁄Syna-
pomorphies ⁄MapCommon or by entering apo [ .

Bremer supports can be calculated by using a script (a
program written in the scripting language, as explained
later) contained in a file called bremer.run, with
instructions for TNT to calculate Bremer supports using
either searches for suboptimal trees, constraints for non-
monophyly, or combinations of both methods. To run
this script select File ⁄OpenInputFile or enter procedure
bremer.run. Resampling (jackknifing, bootstrapping,
etc.) can be done by selecting Analyze ⁄Resampling or
by entering resample.

Quantitative and morphological characters, and data

editing

In addition to DNA sequences, data can also consist
of morphological characters with up to 32 states
(alphanumerical codes), continuous characters (values
from 0 to 65, with three decimals), or protein sequences
(IUPAC codes), possibly combined (each one must be
placed in a different block of data, preceded by
indication of the corresponding format). Despite the
fact that continuous characters are so common in
morphological data sets, all other programs for phylo-
genetic analysis require that continuous characters be
forced into characters with discrete states; TNT instead

optimizes continuous characters as such (Goloboff
et al., 2006).

In Windows versions, it is possible to edit the data
(selecting Data ⁄Edit, either on a character-by-character
basis, Fig. 3, or on a taxon-by-taxon basis); if charac-
ters ⁄states have been named, this facilitates inspecting
and proof-checking the data, without the need to look at
an alphanumeric matrix. Data editing in command-
driven versions is limited, and can only be done one cell
at a time.

Groups of taxa, trees, and characters

In commands that require selections of trees, taxa or
characters, it is possible to specify them one by one, or
by referring to tree, taxon, or character groups (Fig. 2B
shows the dialog for defining tree groups), which can be
defined by means of tgroup (for trees), agroup (for taxa)
and xgroup (for characters). Taxa, characters, and trees
are numbered starting from 0, so that for N elements,
the last is numbered N ) 1. When a command expects a
list, enclosing the name (possibly truncated) or number
of a group in curly braces { } is equivalent to listing all
the members of the group. Commands that generate,
modify or read trees from files automatically place the
trees in tree groups, which makes subsequent manipu-
lations of sets of trees easier. For example, the ‘‘nelsen
*;’’ option calculates and saves a strict consensus tree to
memory (automatically placing it in a group called
‘‘strict_consensus’’), and the tnodes command counts the
number of nodes in subsequently listed trees, so that
‘‘nelsen *; tnodes {strict };’’ counts the number of nodes
in the strict consensus.

Fig. 3. Dialog for editing data on a character-by-character basis.
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It is also possible to specify groups of taxa by
referring to specific nodes of a tree (i.e. @T N refers to
all of the taxa descended from node N of tree T), and
trees can be edited with the edit command.

Tree viewing and editing: producing publication-quality

output

In Windows versions, commands or menu options
that output tree diagrams display the trees in a

separate window to ‘‘pre-view’’ the trees. From the
previewing window the user can decide whether the
tree diagram is to be discarded, written to the text
buffer or log file, or saved as a metafile (i.e., a
publication-quality image file). If a metafile is opened
before displaying the tree (with File ⁄Output ⁄OpenMeta

file), the tree diagram goes there automatically. The
previewing window also allows mapping characters in
color, or defining specific legends or colors for tree
branches, by a double right-click on a node, when the
tree is unlocked.

Fig. 4. Dialogs for setting optimality criteria (A), branch-swapping and random addition sequences (B), and new technology searches (C).

778 P.A. Goloboff et al. / Cladistics 24 (2008) 774–786



Windows versions also allow the graphical editing and
selecting of taxa. Selecting Trees ⁄View switches to tree-
viewing mode. Under tree-viewing mode, a left-click on
the node of a tree will select (in red) or deselect (in green)
all the taxa descended from the node, so that the dialog
for taxon selection (under any menu option which can
select some taxa) will initially display that selection. In
tree-viewing mode trees may be locked or unlocked.
This is controlled by the padlock toggle switch in the
toolbar or by selecting Settings ⁄LockTrees. If the tree is
locked, right-clicking on a node shows a list of synapo-
morphies for the node (if characters ⁄states have been
named, and Format ⁄UseCharacterNames is selected, it
then uses character names). If the tree is unlocked, it can
be edited using the mouse.

Optimality criteria and character types

TNT implements different criteria for parsimony
analysis (Fig. 4A). Analyses can be carried out either
using equal weights (default), weights predefined by the
user, implied weights (Goloboff, 1993; either with
standard or with user-defined functions of the homo-
plasy), or self-weighted optimization (i.e. dynamic
weighting of state transformations, using the method
of Goloboff, 1997). The scripting language can be used
to search iteratively (as in successive weighting, Farris,
1969; dynamic weighting, Williams and Fitch, 1990; or
support weighting, Farris, 2001), reassigning weights to
either characters or state transformations, in specific
ways determined by the user.

Fig. 5. Dialogs for calculating consensus trees (A), Bremer supports (B), and resampling (C).
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If characters or state-transformations have been
assigned differential weights, then these weights or
costs are considered during implied weighting or self-
weighted optimization. TNT can optimize additive
(Farris, 1970) and nonadditive (Fitch, 1971) characters
(‘‘ordered’’ and ‘‘unordered’’ of PAUP*), as well as
Sankoff (step-matrix; Sankoff and Rousseau, 1975)
characters with any metric costs. Character state-trees
can easily be defined in the form of a diagram using
ASCII characters (with Data ⁄CharacterSettings, select-
ing ‘‘Character-state-tree’’, or with the cstree com-
mand); thus in

0� 1� 2
n

5� 3� 4

the cost of changing between two states is simply the
number of lines on the shortest path between them.

Searching for most parsimonious trees: basic methods

In addition to the basic approach described earlier
(Fig. 4B), branch-swapping can be applied to any
starting tree (with the bbreak command, or selecting as
starting trees ‘‘trees from RAM’’ instead of ‘‘wagner
trees’’). For most medium-sized data sets, the best
approach is to run a number of random addition
sequences (RAS), each with TBR1 branch-swapping,
until the best score is hit 10 to 20 times independently.
This is usually sufficient for all global optima (‘‘islands’’,
as they were once called) to be found. Note here that if a
search is repeated several times, the same random seed
will be used unless changed explicitly, either with the
rseed command or from the same dialog box in
Windows versions. When the program reports that
‘‘some replications overflowed’’ and the goal is to find
all most parsimonious trees for the data set at hand,
subsequent branch-swapping from the trees produced by
RAS+TBR can be used after setting the maximum trees
to save to a large number, with Settings ⁄Memory or with
the hold command. For data sets that produce very large
numbers of equally parsimonious trees, saving all of
them is (as noted by Farris et al., 1996) very impractical;
in those cases, similar results can be obtained if best
scores are found independently a significant number of
times, and the results are then strict-consensed.

The branch-swapping algorithms of TNT are very
efficient. For medium-sized data sets, RAS+TBR
searches typically proceed 5 to 10 times faster than in
PAUP* or Nona ⁄Pee-Wee (Goloboff, 1994a,b). For

large data sets, the difference in speed is often much
larger (e.g. Goloboff and Pol, 2007, for two data sets
with c. 11 000 and 14 000 taxa, report speed differences
in TBR of 300 and 900 times, respectively).

A stricter collapsing of zero-length branches improves

tree-searches

Searches optionally collapse zero-length branches
under different criteria or retain all distinct dichotomous
trees. The default collapsing rule in TNT is to eliminate
any branch for which the minimum possible length
(among alternative most parsimonious reconstructions)
is zero. As discussed by Goloboff (1996) and Davis et al.
(2004), this criterion produces more effective searches
than criteria which collapse fewer branches, both in
terms of time needed to complete searches, and ability to
find shortest trees when doing multiple RAS+TBR
saving limited numbers of trees per replication. Under
this criterion, the polytomized trees may become longer
(see Coddington and Scharff, 1994). Unless explicitly
asked to polytomize the trees after a search (either by
ticking on the corresponding option, or with the collapse
auto option), TNT will retain the trees as dichotomous,
so that re-optimizing them will produce minimum
length. Note that even when TNT does not collapse
the trees, the program makes sure that all the trees saved
would be different if they were collapsed. When trees are
(by default) retained as binary, consensus calculation
re-optimizes the trees, temporarily eliminating
zero-length branches. If the trees are collapsed after
the search, the consensus calculation should avoid
re-collapsing the trees (see below, under Tree Compa-
risons).

Tree-searches in large and complex data sets: the new

technology options

For large and very complex data sets, TNT also
implements several algorithms that are much more
effective than simple branch-swapping (Fig. 4C). Most
of these algorithms were introduced in TNT, and make
TNT the only program capable of reliably analyzing data
sets with more than a few hundred taxa. Using these new
algorithms TNT may require only a hundredth or a
thousandth of the time needed by PAUP* to find trees of
minimum length. A recent example is Goloboff et al.�s
(submitted) reanalysis of McMahon and Sanderson�s
(2006) 2228-taxon data set: trees of the best length ever
found with the ratchet under PAUP* in 1700 h of CPU-
time were found by TNT, on average, in 30 min.

The ratchet (Nixon, 1999) and tree-drifting (Goloboff,
1999) use a cyclic scheme of perturbation and search
phases. Tree-fusing (Goloboff, 1999) evaluates sub-tree

1‘‘Tree bisection reconnection’’ is a synonym of ‘‘branch-breaking’’
(Farris, 1988; see Goloboff, 1999, footnote 1), the swapping method of
Hennig86, from which the name of the TNT command, bbreak, is
derived.

780 P.A. Goloboff et al. / Cladistics 24 (2008) 774–786



exchanges between trees, effecting those which improve
score. Sectorial searches (Goloboff, 1999) create reduced
data sets (using down-pass state-sets for each node), and
subject the reduced data set to a search algorithm (in
TNT, any specific search command, including further
subdivision in sectors, can be used). For extremely large
data sets, sectorial searches are the most effective means
for quickly finding near-optimal trees (see Goloboff and
Pol, 2007). These algorithms can be applied to preex-
isting trees (with the commands ratchet, drift, sectsch
and tfuse, or selecting Analyze ⁄NewTechSearch and
‘‘RAM’’ for ‘‘Get trees from’’, see Fig. 4C), or to trees
created de novo with multiple RAS (xmult command, or
selecting ‘‘Driven search’’ or ‘‘Random addition
sequences’’). The ‘‘driven search’’ continues until the
specified tree-score (or the best score found during the
search, if no target score was specified) is hit a given
number of times, or until the consensus (re-calculated as
new hits to the best score are produced) becomes stable.
The latter provides a way to produce accurate consensus
trees (especially if the trees are collapsed more strictly,
see below) without saving all possible equally parsimo-
nious trees. Note that the consensus stabilization will
produce more reliable results, or with fewer hits to
minimum length, when the trees are collapsed more
strictly (the best choice is TBR-collapsing; see Goloboff,
1999).

In the case of impossibly large data sets (or easier
data sets but very impatient users), a conservative
estimate of the actual consensus of most parsimonious
trees that does not require actually finding them (i.e. a
quick consensus estimation; Goloboff and Farris, 2001)
can be produced by selecting Analyze ⁄EstimateConsen-

sus or with the qnelsen command. In addition to the
built-in routines for tree-searches, the scripting lan-
guage of TNT allows users to devise their own search
strategies.

Constrained searches, suboptimal trees

Tree searches can be performed under either positive
or negative constraints, so that only trees either having,
or not having, certain specified groups are acceptable.
This can be useful for calculating Bremer supports. The
Windows version has a uniquely simple way to define
constraints, by just clicking on tree nodes, with
Data ⁄DefineConstraints. In command-driven versions,
constraints can be defined by reference to trees or taxon
groups in the force command. Once defined, constraints
must be explicitly applied to searches, either by ticking
on the corresponding box, or with the constrain com-
mand. In the case of PAUP*, searches can use either
positive or negative constraints, but not both at the
same time; TNT can use both positive and negative
constraints.

For calculation of Bremer supports, or for other
purposes, the program can search for suboptimal trees
(based on either fit difference and ⁄or relative fit differ-
ence, of Goloboff and Farris, 2001). The maximum
acceptable difference in score is set with Analyze ⁄
Suboptimal or the subopt command.

Character optimization: diagnosis and mapping

Character mapping and the diagnosis of the trees
obtained are one of the main components of a cladistic
analysis. TNT can either produce lists of synapomor-
phies or character changes, or display those results on
tree diagrams (with the menu options Optimize ⁄Syna-
pomorphies and Optimize ⁄Characters, or with the com-
mands apo and map). When multiple most parsimonious
trees are used to calculate consensus trees, the consensus
is longer, so that optimizing it for producing synapo-
morphy lists or studying character evolution is (while
possible) inappropriate. In this case TNT allows an
optimization of the multiple most parsimonious trees
individually, displaying on the consensus tree a sum-
mary of the changes that are common to all the trees
used to produce the consensus. This is done with the
Common Synapomorphies or Common Changes options,
which are also available as options of the apo and map
commands.

TNT also implements options for counting specific
transformations (e.g., are gains more common than
losses?), and enumerating all possible most parsimoni-
ous reconstructions, in the case of ambiguity. The
scripting language can access these options as well as
handling individual reconstructions (or finding the best
state assignments with a fixed state at one or more
nodes, for a given tree; see the documentation for the
iterrecs command).

Finding wildcard taxa, tree comparisons, consensus trees

The options for comparing trees and summarizing
results are one of the most important aspects of TNT.
The standard methods for consensus (strict, semi-strict
or combinable components, majority, and frequency
differences) are accessed with Trees ⁄Consensus
(Fig. 5A), or with the commands nelsen, comcomp,
majority and freqdifs. As noted above, the trees are (by
default) temporarily collapsed as the consensus is
calculated (needed if the trees are retained as binary
after searches, which is the default); whether trees are
temporarily collapsed is changed with Settings ⁄Consen-
seOptions, or the collapse notemp command. If the trees
have different taxon sets, then the default action
(changed with Settings ⁄ConsenseOptions or the unshared
command) is pruning all the trees so that they have
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identical taxon sets. Poorly resolved consensus trees (or
some groups with low frequencies, in the case of
majority rule or frequency difference trees, often used
to measure group supports; see below) may be caused by
just one or a few taxa moving among alternative distant
positions in the input trees.

TNT implements several options that facilitate iden-
tifying the taxa responsible for the lack of resolution, or
responsible for the low group supports:

(a) automatic evaluation of alternative taxon pru-
nings, counting the numbers of nodes gained in either
the strict or semistrict consensus, and reporting those
prunings which improve the results (Trees ⁄
Comparisons ⁄PrunedTrees, or prunnelsen and pruncom
commands); since the alternative prunings are tried
combinatorially, this option may (depending on the
resolution of the consensus trees) become very time-
consuming beyond five or six taxa (or clades) eliminated
at the same time;

(b) agreement subtrees, which identify the largest
subset of taxa which are identically related in all input
trees (Trees ⁄Comparisons ⁄AgreementSubtrees, or prun-
nelsen). This is often used also as a measure of similarity
between the input trees;

(c) a heuristic command which, given the groups in a
reference tree, attempts to identify the taxa to prune to
increase group frequencies (this is the method used by
Goloboff et al. (submitted), implemented with the prun-
major command);

(d) TBR-tracking (chkmoves command), which sub-
mits a tree to TBR branch-swapping, and records (for
each clade) the number of possible positions, maximum
distance and depth of rerooting, for all the moves that
produce equally optimal trees (or trees within a specified
score difference); and

(e) calculation of approximate frequencies of group
recovery with the rfreqs command, which is a sort of
majority rule, but calculates a similarity index between
partitions (based on the composition of the taxa inside
and outside the group). The score is 1 for two identical
(=monophyletic) groups, and decreases to the extent
that there are more differences. In this way, a group
which is ‘‘almost’’ monophyletic (i.e. which could be
made monophyletic by ignoring the position of just a
few terminals) in most of the trees will receive scores
approaching 100%. Groups that have scores near 100%
are probably amenable to have their frequencies
improved by ignoring the position of few taxa (while
groups with very low scores can, probably, be improv-
able only by pruning large numbers of taxa).

Most of these commands allow identifying the taxa
either visually or (perhaps by interacting with the
scripting language) by placing them in taxon groups,
so that automation of routines to improve consensus
trees by using a combination of these basic approaches
is possible.

TNT also natively supports semistrict consensus
supertrees (Goloboff and Pol, 2002), as well as easy
creation of MRP matrices (for subsequent supertree
analysis under either parsimony or cliques).

For simple comparisons between tree topologies,
TNT allows checking (and reporting) of duplicate trees,
checking the groups present in one tree but not in
another (a sort of ‘‘anticonsensus’’, either with tcomp or
Trees ⁄Comparisons ⁄CompareGroups), and (if con-
straints have been defined) checking whether each of
the groups defined in the constraints is (or is not)
monophyletic (mono, or Trees ⁄Monophyly).

Another important component of the tree-comparison
routines is found in the options which calculate different
coefficients of tree similarity. The natively implemented
options for topological comparison are the retention
index (Farris, 1989) of the MRP of one tree mapped
onto the other (tcomp command), which is a variation of
Farris (1973) ‘‘distortion coefficient’’, and SPR-distances
between trees (using the heuristic method of Goloboff
(2008), with the Trees ⁄Comparisons ⁄SPR-Distances, or
sprdiff command). In conjunction with the scripting
language, it is also possible to implement Robinson–
Foulds distances (Robinson and Foulds, 1981), triplet
dissimilarity, number of steps in the MRP, number of
‘‘flippings’’ (changes to the MRP matrix), etc.

Bootstrapping, jackknifing and Bremer support

For measuring group supports, TNT implements both
Bremer supports and measures based on resampling
(jackknifing, bootstrapping or symmetric resampling).

For resampling (Analyze ⁄Resampling, see Fig. 5C, or
resample), the user may define any search routines (or
use the instructions in a file or script) to analyze each
resampled data set. After analyzing each resampled data
set, TNT will automatically compute the strict consen-
sus tree (collapsing for which is done according to the
criterion in effect; as with consensus stabilization, the
best choice is TBR-collapsing; see Goloboff and Farris,
2001; and Goloboff et al., 2003a). A summary of results
is calculated at the end, and it is optionally possible to
save the strict consensus for each replication for
subsequent manipulations and consensing.

For Bremer supports, finding suboptimal trees where
the different groups are non-monophyletic is up to the
user. In simple data sets, just using the optimal trees as a
starting point for searches, saving successively larger sets
of more suboptimal trees (make sure you select ‘‘trees
from RAM’’ as starting trees, see Fig. 4B, and tick on
‘‘stop when maxtrees hit’’, or use the bbreak = fillonly
command, so that the suboptimal trees are not need-
lessly swapped). Increasing the value of suboptimal in
several steps is important, because otherwise the values
of Bremer support will probably be overestimated—the
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search for suboptimal trees is very likely to fill the tree
buffer with very suboptimal trees, thus missing most of
the slightly suboptimal trees (which are needed to
identify the least supported groups). Once the optimal
and suboptimal trees are stored in memory, the program
checks minimum score differences to lose each group
(with Trees ⁄BremerSupports, Fig. 5B, or the bsupport
command) and plots them on a tree diagram.

For better supported groups or very noisy data sets,
finding a tree not displaying a given group by just
accepting suboptimal trees may require saving enor-
mous numbers of suboptimal trees—and it may be
impossible in the case of large data sets with hundreds of
thousands of optimal trees. The best method is then
searching for trees lacking the group of interest, using
negative constraints (see above). Creating constraints
and searching for each of the groups in the tree may be
very tedious, but a simple script distributed with TNT,
Bremer.run, automates this task (creating the con-
straints and searching for every group). The script
automatically writes to the corresponding branches the
difference, and plots the tree.

The Bremer.run script also implements an alternative
means of calculating Bremer supports, which is proba-
bly the only way to estimate Bremer supports for very
large data sets. For each group for which the support is
to be calculated this method consists of calculating first
the average tree-length for each of a number of simple
searches (e.g. 5 RAS+TBR saving a single tree) with the
group constrained to be monophyletic. This is then
followed by a similar calculation, but with the group
constrained to not be monophyletic. The difference
between the two averages constitutes an estimation of
the Bremer supports. This uses a reasoning similar to
that in Farris et al.�s (1994) congruence test: if the
positively and negatively constrained searches are (on

average) off by the same numbers of steps, then their
difference in length equals the Bremer supports.

Trees may be plotted with multiple support measures
(Bremer support, bootstrap frequency, jackknife fre-
quency, etc.) attached to each branch. This may be done
by selecting Trees ⁄MultipleTags ⁄Store or the command
ttag= before running the support calculation, then
plotting the trees with Trees ⁄MultipleTags ⁄ShowSave or
the command ttag. The multiple tags can also be saved,
in the Windows version, in extended metafile formats.

Randomization

For specific tests or simulations, TNT allows gener-
ation of random trees (Trees ⁄RandomTrees or rand-
trees), character permutation (xperm), or generation of
data (random or simulated under Jukes-Cantor, xread).
The results of these can be used, with suitable scripts, to
implement specific tests. An example is Goloboff et al.�s
(2006) analysis, in which the number of SPR moves
corresponding to the consensus trees for discrete-only
and continuous-only data sets were compared to those
for pairs of random trees, by means of the script in
Fig. 6. This script takes as arguments two numbers (the
numbers of trees to compare), and outputs the propor-
tion of pairs of random trees which differ in as few (or
fewer) SPR-moves (for further explanation of scripting
in TNT, see next section). Using scripts, a wide variety
of tests can easily be implemented.

Extending TNT�s capabilities with scripts

The scripting language allows the making of deci-
sions and the automation of processes, so that TNT

Fig. 6. Example of a simple script, to test whether the number of SPR-moves to interconvert two trees is greater than the number of moves to
interconvert two random trees.
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can be programmed to perform specific tasks. This
extends the capabilities of the program enormously. An
example is Pickett et al.�s (2005) analysis, in which they
automated tens of thousands of tree searches using
TNT scripts.

Only the basic aspects of the scripting language will be
explained here; a more detailed description is provided
in the documentation that comes with the program.

If a script is placed in a file called xxx.run, in current
directory, then just typing xxx at the TNT command
prompt will automatically execute file xxx.run, passing
to the file any arguments given to xxx (argument
number n is identified, within the file, as %n; argument 0
is the name of the file itself).

The basic components of the scripting language are:
(a) commands for flow control and decision-making:

decisions are made with if, and repetitive actions are
executed with the loop command (with the symbol #
replaced by the current value of the loop�s index
variable, in every cycle).

(b) internal variables (or values calculated by TNT),
accessible only within the context of scripting com-
mands; for example, the expression ntrees is equivalent
to the number of trees in memory minus 1 (recall that
TNT numbers everything, except data blocks, starting
from 0). Thus,

loop 0 ntrees
tplot #1 ;
stop

will sequentially plot the tree diagram, for each of the
trees in memory.

(c) variables defined by the user: these establish the
connection between internal variables and the regular
commands; they can also be used to store values of
calculations. Writing the name (or number) of a user
variable within quotes, is equivalent to writing the value
of the user variable.

(d) expressions: in the context of the scripting
language, when a number is expected, a parenthetical
expression (with operations between numbers, or logical
comparisons) can be used instead of the number.

Flow-control and decision making

The if command has the following syntax:

ifðexpressionÞ
actionðsÞA;

else
actionðsÞB;
end

If the expression following the if is different from 0,
then action(s) A are executed; otherwise, action(s) B are
executed. The else and action(s) B can be omitted.
There can be any number of nested if�s ⁄else�s.

The syntax for a loop is:

loop ¼ name iþj k ðactionðsÞÞ stop

the loop will start at value i and end at value k, every
time increasing by the value of j (the ‘‘+j’’ can be
omitted if the increment is 1; if k<i, then the loop is
decreasing). Within the specified action(s), the expres-
sion ‘‘#name’’ is equivalent to writing the current value
of the loop index value (if the equal sign and the name
are omitted, then the loop is not named, and the value of
the loop is accessed with ‘‘#N’’, where N is the nesting
level of the loop to be accessed; nesting level is exclusive
of each input file).

Within the loop, the command setloop N will re-set
the loop value to N, continue will move to the next cycle
(skipping all actions between continue and stop), and
endloop will interrupt the execution of the loop.

Other commands that execute loops are sprit and tbrit
(execute subsequent actions for each of the SPR or TBR
rearrangements of the specified tree), travtree (executes
subsequent actions for each of the nodes in a tree, visited
according to a down-pass, up-pass, or path-travelling
sequence), and iterrecs (executes subsequent actions for
each of the equally parsimonious reconstructions of the
specified character, with the possibility of forcing a
specific state at any given node). TNT�s on-line help
explains the usage of each of these commands in detail.

Internal variables

TNT provides easy access to more than 120 internal
variables to be used in decision making (e.g. number of
taxa, trees, tree-scores, degree of resolution, branch
lengths, tree-distances, hits to minimum length or
number of rearrangements in the last search, most
parsimonious states at internal nodes, etc.). Internal
variables cannot be accessed from regular TNT com-
mands, but only from the scripting commands.

User variables

The user can define variables (arrays with up to five
dimensions). Once named and defined (with the var
command), their values can be set with the set command.
For example, the following script will randomly select 10
characters (between 0 and nchar, the number of char-
acters minus 1) and place them (with the xgroup
command) in a character-group named ‘‘selected’’:

var : i;
xgroup ¼ 0 ðselectedÞ ;
loop 1 10

set i getrandom ½ 0 nchar � ;
xgroup 0 0i0 ;
stop

proc=;
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Note that getrandom, being an internal variable, could
not be accessed from the xgroup command, so that
the value has to be transferred first to a user vari-
able called i. The script is merely an example, since
the xgroup command has a built-in option to select
characters at random, with which the equivalent result
can be achieved more simply: xgroup =0 (selected)
*10;.

Other features of the scripting language

The scripting language also allows:
(a) formatted input (hifile command) and output

(quote and lquote commands).
(b) In Windows versions, customizable dialogs (open-

dlg command).
(c) access to taxon names, character names, branch-

legends, etc., for use in formatted output, or for setting
internal variables. Within almost any context, a dollar
sign followed by the specification of the type and
number is automatically converted (e.g. $taxon n is
equivalent to typing the name of taxon number n, and
$ttag i is equivalent to typing the legend of branch
number i). Conversely, values can be written to tree-tags
for subsequent display on a tree-diagram (ttag com-
mand).

(d) input redirection to specific parts of a script (with
the goto and label commands). Instructions in that
section are effectively executed as functions, making it
possible to write well structured scripts.

(e) report of progress and interruption (progress
command), for time consuming scripts. This is best
used with the output silenced (with the silent command,
so that the program does not produce tons of unnec-
essary output).

Running TNT in parallel

In Linux and Mac versions, it is possible to run TNT
in parallel (this requires installation of the PVM system,
available at http://www.netlib.org/pvm3). With the ptnt
command, the program can launch, monitor (with
information retrievable from the slaves at any time),
and control slave tasks (possibly interrupting them,
making them return results and continue running, or
substituting the instructions for the slaves for a new set
of instructions). For details see the documentation of
the ptnt command.
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