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aFaculdade de Biociências, Pontifı́cia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Av. Ipiranga 6681, 90619-900,

Brazil; b3140 Dolph Drive, Ann Arbor, MI 48103, USA

Accepted 15 May 2008

Abstract

In addition to hypothesis optimality, the evaluation of clade (group, edge, split, node) support is an important aspect of
phylogenetic analysis. Here we clarify the logical relationship between support and optimality and formulate adequacy conditions
for support measures. Support, S, and optimality, O, are both empirical knowledge claims about the strength of hypotheses, h1, h2,
… hn, in relation to evidence, e, given background knowledge, b. Whereas optimality refers to the absolute strength of hypotheses,
support refers to the relative strength of hypotheses. Consequently, support and optimality are logically related such that they vary
in direct proportion to each other, S(h | e,b) � O(h | e,b). Furthermore, in order for a support measure to be objective it must
quantify support as a function of explanatory power. For example, Goodman–Bremer support and ratio of explanatory power
(REP) support satisfy the adequacy requirement S(h | e,b) � O(h | e,b) and calculate support as a function of explanatory power. As
such, these are adequate measures of objective support. The equivalent measures for statistical optimality criteria are the likelihood
ratio (or log-likelihood difference) and likelihood difference support measures for maximum likelihood and the posterior probability
ratio and posterior probability difference support measures for Bayesian inference. These statistical support measures satisfy the
adequacy requirement S(h | e,b) � O(h | e,b) and to that extent are internally consistent; however, they do not quantify support as a
function of explanatory power and therefore are not measures of objective support. Neither the relative fit difference (RFD; relative
GB support) nor any of the parsimony (bootstrap and jackknife character resampling) or statistical [bootstrap character resampling,
Markov chain Monte Carlo (MCMC) clade frequencies] support measures based on clade frequencies satisfy the adequacy
condition S(h | e,b) � O(h | e,b) or calculate support as a function of explanatory power. As such, they are not adequate support
measures.

� The Willi Hennig Society 2008.

The development of quantitative phylogenetics con-
tinues to be driven by the need for explicit concepts and
assumptions in methods. Debate has appropriately
focused on the optimality criteria employed in choosing
among competing hypotheses. The evaluation of clade
(group, edge, split, node) support is also an important
component of phylogenetic analysis, yet comparatively
little attention has been paid to the conceptual bases for
the many methods used to measure support. Indeed, the
concept of support has been a frequent topic in the
philosophical and statistical literature, but there has
been limited discussion about what is meant by
‘‘support’’ in phylogenetics (Grant and Kluge, 2003;

Wilkinson et al., 2003) or the conditions that must be
met for a given support measure to be considered
adequate.

We recognize that the concept of support is a matter of
definition. Consequently, we use widely accepted logical
and epistemological arguments to clarify the relationship
between support, optimality, and objectivity, which limits
the scope that those definitions can reasonably take
within the context of objective knowledge. Based on this
relationship, we formulate adequacy conditions for sup-
port measures and evaluate the adequacy of several
popular support measures. We also propose equivalent
support measures for parsimony, maximum likelihood,
and Bayesian phylogenetic inference. We classify mea-
sures as either parsimony support measures or statistical
support measures in reference to the optimality criteria
employed.As employed here, the hypothesis that explains

*Corresponding author:
E-mail address: taran.grant@pucrs.br

� The Willi Hennig Society 2008

Cladistics

10.1111/j.1096-0031.2008.00231.x

Cladistics 24 (2008) 1051–1064



the evidence with the fewest transformation events (steps)
is optimal under parsimony, whereas the hypothesis of
greatest posterior probability (Bayesian inference) or
maximum likelihood is optimal according to statistical
criteria. Numerous efforts have been made to understand
parsimony as a method of statistical estimation (i.e. by
identifying the conditions under which the most parsi-
monious solution is also the best statistical estimate),
specifically a maximum likelihood method (e.g. Farris,
1973; Goldman, 1990; Tuffley and Steel, 1997; Goloboff,
2003), but advocates of parsimony generally deny the
applicability of statistical methods because of the detailed
information about evolutionary processes that is required
by the statistical models (Farris, 1983), the necessary
uniqueness of the historical events phylogenetic methods
aim to discover (Siddall and Kluge, 1997; Kluge, 2002),
and the superfluity of the assumptions of statistical
models (Kluge and Grant, 2006).

Support, optimality, and other concepts

In the most general terms, support, S, is an empirical
knowledge claim about the strength of competing
hypotheses, h1, h2, . . . hn, in relation to a body of
evidence, e, given specific background knowledge, b
(which constitutes the minimal assumptions required of
a scientific inference). Together, e, h, and b are the
necessary and sufficient parameters for inferring phy-
logeny (Kluge, 1997). Symbolically, this may be
expressed as

Sðh j e; bÞ:

Optimality, O, is also an empirical knowledge claim
about the strength of competing hypotheses in relation
to a body evidence, given specific background knowl-
edge, expressed as

Oðh j e; bÞ:

Optimality is assessed by applying an optimality
criterion, a rule with an epistemic justification, for
identifying and selecting the strongest hypotheses. Pop-
ular optimality criteria in phylogenetic inference include
parsimony, maximum likelihood, and posterior proba-
bility, and an extensive literature exists on the theoret-
ical bases and relative merits of these criteria.

Given that both support and optimality are empirical
knowledge claims about the strength of hypotheses in
relation to evidence given background knowledge,
support and optimality are logically related such that
they vary in direct proportion to each other, or

Sðh j e; bÞ / Oðh j e; bÞ:

The terms ‘‘support’’ and ‘‘optimality’’ are often used
interchangeably because of the close logical relationship

between the two concepts. For example, in maximum
likelihood inference the maximum likelihood hypothesis
is both the optimal hypothesis and the most supported
hypothesis (see below), and the clades present in the
optimal cladogram are also supported clades. Similarly,
reports on optimality, such as tree length, extra-steps,
branch lengths, and consistency and retention indices,
are often discussed in the context of support (Grant and
Kluge, 2003; Egan, 2006). However, support and
optimality are not synonymous. Optimality is concerned
with the absolute strength of hypotheses, whereas
support is concerned with the relative strength of
hypotheses. That is, optimality criteria identify the
strongest hypothesis (e.g. the most parsimonious tree),
whereas support measures evaluate the strength of some
hypothesis (usually the optimal hypothesis) relative to
one or more competing hypotheses (e.g. the frequency of
cladograms that contain specified clades in a parsimony
jackknife sample). Furthermore, following the concep-
tualizations and terminology developed by Grant and
Kluge (2003, 2005), optimality is scientific, whereas
support is heuristic.1 As such, although optimality and
support are logically related, optimality is epistemolog-
ically prior to support. Finally, in phylogenetic analysis
support is usually (but not always, e.g., the total support
of Källersjö et al., 1992) concerned with individual
clades rather than whole topologies.

The directly proportional relationship between opti-
mality and support may be illustrated with an example
under parsimony. Figure 1 (modified from Ramı́rez,
2005) shows the optimal tree of 35 steps and the tree-
lengths (steps) of the relevant competing hypotheses for
the terminals H, I, J and K, L, M. These tree-lengths
provide a basis to rank hypotheses according to their
absolute strength, i.e. their optimality:

Oðhð...ðHðIJÞÞÞ j e; bÞ ¼ Oðhð...ðKðLMÞÞÞ j e; bÞ >
>Oðhð...ðIðHJÞÞÞ j e; bÞ>Oðhð...ðLðKMÞÞÞ j e; bÞ ¼
¼Oðhð...ðMðKLÞÞÞ j e; bÞ:

1This use of ‘‘heuristic’’ is in the sense of ‘‘allowing or assisting to

discover’’ (Oxford English Dictionary), as applied in standard English

and philosophy of science (e.g. Lakatos, 1978). Related but specialized

meanings of ‘‘heuristic’’ occur in many fields, including law, engineer-

ing, psychology, and computer science. It has been pointed out by W.

Wheeler (pers. commun.) that our usage may lead to confusion given

the common application in phylogenetics of ‘‘heuristic’’ in the

specialized sense of computer science, i.e. in reference to any method

that aims to solve a problem, often through trial and error, but ignores

whether the solution can be proven correct, e.g. a heuristic algorithm.

Ideally, we would replace one of these uses with a different word to

avoid confusion. However, we have failed to discover a replacement

that retains the intended meaning and connection to the broader

literature, and we therefore rely on context for clarification.

1052 T. Grant and A. G. Kluge / Cladistics 24 (2008) 1051–1064



Clades IJ and LM are both present in the optimal tree.
Clade HJ is present in a tree one step longer and
therefore less optimal than the tree with IJ and LM, but
that tree is one step shorter than the optimal trees for
KM and KL, which are equally suboptimal. As such, the
rank order of the optimal trees that contradict these
clades present in the most parsimonious tree is HJ >
KM = KL. Although the trees that contain clades IJ
and LM are equally optimal and therefore have the
same absolute strength, the extent of the suboptimality
of the contradictory hypotheses provides a basis for
ranking IJ and LM according to their relative strength,
i.e. their support. Because the optimal trees that
contradict LM are more suboptimal than the optimal
tree that contradicts IJ, it follows that the relative
strength of LM is greater than the relative strength of IJ,
LM> IJ. As such, support and optimality vary in direct
proportion to each other; the greater the optimality of a
given tree, the greater the support for its constituent
clades.

The accuracy of a hypothesis relates only to its
correspondence to truth regardless of the existence or
amount of evidence for or against it. At least logically,
support (and optimality) and accuracy are unrelated.

Reliability, stability, and robustness ultimately relate to
the concept of utility, which is also logically unrelated
to support (and optimality), as noted by Hacking
(1965).

The frequentist concepts of confidence interval and
significance level also differ from support, as does the
Bayesian concept of credibility interval. All of these
concepts aim to prevent rejection of one hypothesis in
favour of another unless the rival is ‘‘much better
supported’’ (Hacking, 1965, p. 89), as assessed by
estimating the probability of obtaining the observed
magnitude of support by chance, according to some
assumed distribution. For example, in maximum likeli-
hood inference the maximum likelihood hypothesis has
the greatest support, yet a likelihood ratio test may find
that the degree of support is not significant at the 0.05
level because the test statistic (e.g. L1 ) L2, where L is
the log-likelihood estimate of each of two hypotheses)
falls outside the 95% confidence interval.

Objectivity

Any concept or measure of support that aims to be
objective must relate to a theory of objectivity. Accord-
ing to Popper�s (1979, 1983) theory of knowledge,
knowledge claims are either objective or subjective (see
summary of opposing characteristics in Table 1). As
such, this theory is subject to the logical law of the
excluded middle, asserting either p or not-p and logically
excluding middle cases, such as knowledge claims being
partly objective and partly subjective. This does not
deny the problem of cognitive filtering or the distinction
between phenomena (things as they are perceived) and
noumena (things in themselves), which have preoccu-
pied philosophers for centuries; objective knowledge as
knowledge that is demonstrably true, even by degrees, is
unattainable (Watkins, 1997).

Instead, knowledge claims are objective if and only if
they are open to and withstand rational criticism
(Popper, 1979).2 Objective empirical knowledge is
sought with deductive logic and is controlled actively
by test—rational criticism involving observation and
experiment. It is concerned with the relationship
between hypotheses and evidence given background

Fig. 1. Contrived example showing the optimal tree of 35 steps and
tree-lengths for relevant alternative trees (in parenthetic notation).
Groups discussed in the text are enclosed in boxes. Modified from
Ramı́rez (2005).

2Popper�s theory of objective knowledge is not to be confused with

objectivity of observation in science, where repeatability of observation

across independent investigators is sought, or with the variability in

perception among scientists, such as due to cognitive and cultural

biases (see Kearney, 2007). Typically, the repeatability of measure-

ments and counts used as evidence in systematics is sought in

instrumentation, precisely defined rules, and other technicalities.

Whereas objectivity of observation and theory-free evidence were

central to numerical taxonomy, phylogenetics (e.g. sensu Farris, 1983,

p. 1) emphasizes testability and causal explanation founded in

evolutionary epistemology (contra Kearney, 2007).
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knowledge, not with belief or accuracy. It is based on
the power of causal theories to explain the critical
evidence (those observations that have the potential,
through causal entailment, to refute a particular theory),
i.e. their explanatory power. In the absence of the logical
restrictions required of objective knowledge claims,
there is nothing to prevent the pervasion of idiosyncratic
definitions of support.

Empirical knowledge claims, including claims of
support, that are not derived from explanatory power
(or logically equivalent functions; see Popper, 1983) are
subjective. In practice, subjective knowledge often
derives from a passive, progressive consolidation of
confirming instances that leads to varying degrees of
belief in a hypothesis. As such, subjective knowledge is
often expressed probabilistically in terms of certainty
and confidence, and nowhere does subjectivism have
more influence than in the application of the probability
calculus. In addition, exactness, or precision, is valued,
if only as demanded by that calculus. Ultimately,
subjective knowledge is dependent on one�s belief in
the accuracy of a hypothesis rather than the logic of
deduction and the relationship between hypotheses and
evidence given background knowledge.

Given the minimal evolutionary assumptions of
descent with modification, explanatory power is opera-
tionalized in phylogenetics by summing the patristic

distance (character-state transformations, steps, tree-
length) of a given phylogenetic hypothesis in explaining
the observed character variation (Kluge and Grant,
2006). The fewer the character-state transformations a
phylogenetic hypothesis postulates in explaining the total
(unpartitioned, combined) evidence, the greater its
explanatory power and, in turn, its degree of optimality.
Methods that incorporate assumptions about the prob-
ability of specific classes of transformations in the process
of evolution (e.g. maximum likelihood and Bayesian
methods) or the relative merits of classes of characters or
transformations (e.g. weighted-parsimony methods) do
so at the expense of explanatory power because they (1)
include extra assumptions, in addition to the background
knowledge of descent with modification (what is neces-
sary and sufficient), and (2) postulate superfluous hypoth-
eses of character transformations.

The above explication of explanatory power in
phylogenetic inference differs from that of Farris et al.
(1995, p. 218; see also Farris, 1983), who explicated
explanatory power in terms of minimizing ‘‘the number
of independent ad hoc hypotheses of homoplasy’’
instead of ‘‘minimizing the number of transformation
events required to explain the character-states of the
terminal taxa as hypotheses of homology, where the
concept of homology is restricted to just those inherited
�things� shared by species’’ (Kluge and Grant, 2006,

Table 1
Some distinguishing characteristics of two kinds of empirical knowledge claims (Popper, 1979, 1983)

Objective Subjective

Consists of causal explanations that may be true but whose
truth is unprovable and therefore is scientifically irrelevant,
i.e. they are eternally conjectural

Consists of either acausal descriptions (instrumentalism) or
estimations whose truth is inductively provable

Methods of explanation are demonstrative; they consist of a
logical deduction, one whose conclusion is the explanan-
dum—the statement of the thing to be explained—and whose
premises constitute the explanans—a statement of the
explaining laws and initial conditions

Methods of estimation are non-demonstrative; they consist of
probabilistic assessments of instances of the same kind

Hypotheses are preferred on the basis of their explanatory
power

Hypotheses are preferred on bases other than explanatory power,
including theory compatibility, probability, predictivity, stability,
reliability, descriptive efficiency, and elegance of hypotheses and ⁄
or methods

Methods are constrained by the ontological and epistemologi-
cal considerations required to achieve explanatory power

Methods are unconstrained by ontological and epistemological
considerations and need only be believed to be relevant

Results can only be changed by evidence, i.e. by empirical
refutation; personal belief is irrelevant

Results can be changed by intersubjectivity (i.e. consensus of
personal beliefs)

Empirical evidence must be a severe test of a hypothesis in order
to corroborate that hypothesis

Empirical evidence need only be an instantiation (i.e. a perceptually
similar instance) of a hypothesis in order to verify that hypo-
thesis

The results of previous tests are irrelevant The results of previous tests are relevant

Does not involve expectations Involves expectations, to which belief is closely connected

Exactness, or precision, is valued insofar as it facilitates testing,
i.e. a precise claim may be more easily refuted than a vague
claim

Exactness, or precision, is valued for its relationship to accuracy
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p. 276; see also Grant and Kluge, 2004; Kluge, 2007).
Whereas the former is dependent on the perceived
similarity of objects (i.e. similar objects that evolved
independently), the latter stresses the causality of
evolutionary events.

Grant and Kluge (2003, p. 383) proposed an objective
concept of support in phylogenetics, which they defined
as ‘‘the degree to which critical evidence refutes
competing hypotheses’’. Although this concept of sup-
port is objective and the interpretation was clarified by
subsequent text, the choice of wording is unfortunate
because a hypothesis that is refuted to a greater degree
has less explanatory power and less support than a
hypothesis that is refuted to a lesser degree. We
therefore rephrase our definition of objective support
in logically equivalent (Popper, 1983) but clearer terms
as the relative explanatory power of competing hypotheses
(see also Grant and Kluge, 2007).

The subjectivity of knowledge claims is rarely
acknowledged. Bayesian inference aims to quantify
personal belief in hypotheses and is therefore openly
subjective, but the knowledge claims that result from
operationalist or instrumentalist approaches that eschew
ontology and assert that their operations stand on their
own (e.g. Giribet and Wheeler, 2007) are also subjective
because there is no basis for hypothesis preference
beyond one�s personal belief in the supremacy of the
particular operations. Although predictive (or retrodict-
ive) accuracy and robustness or stability have been cited
as the basis for such belief (Wheeler and Blackwell,
1984; Goloboff, 1993; Siddall, 1995, 2002), they confuse
repeatability with objectivity in the same way that
description may be confused with explanation (Popper,
1957, p. 124; Hull, 1974, p. 97; Farris, 1979, pp. 512–
514) and correlation may be confused with causation
(e.g. Miller, 2003, p. 63). Application of confidence
intervals and significance levels is subjective as well, due
in part to the arbitrary selection of ‘‘acceptable’’ risk of
type I or type II error.

Adequacy conditions

A variety of criteria have been operationalized as
support measures. To evaluate competing criteria it is
standard practice to formulate and apply a set of
adequacy conditions. Such adequacy conditions provide
a logical justification for the criteria deemed adequate,
although they do not justify the resulting empirical
knowledge claims as true (as was claimed by the
discredited philosophy of justificationism; Notturno,
2003).

We propose two adequacy conditions, both of which
must be met in order for a method to provide a measure
of objective support. The first is a general requirement
that the measure satisfy the relation S(h | e,b) � O(h |

e,b), i.e. regardless of the criterion employed in the
evaluation of hypothesis optimality (e.g. parsimony,
maximum likelihood, or Bayesian criteria) or support,
support and optimality must vary in direct proportion
to each other. This adequacy condition ensures internal
logical consistency and prevents paradoxical situations
in which suboptimal hypotheses are considered to have
greater support than optimal hypotheses (although this
latter requirement would be met by any strictly increas-
ing monotonic function, not only direct proportionality;
W. Wheeler, pers. commun.). The second adequacy
condition required for support measures to be objective
is that they quantify support in terms of explanatory
power.

Parsimony support measures

For a given clade present in a most parsimonious tree,
Goodman–Bremer (GB) support is defined as

S0 � S

where S denotes the length of the most parsimonious
tree(s) and S0 is the length of the most parsimonious
tree(s) that lacks that clade (Goodman et al., 1982;
Bremer, 1988, 1994; Källersjö et al., 1992; see also
Grant and Kluge, 2008). In other words, for each clade
in the most parsimonious cladogram GB support
measures the difference in the patristic distance of that
cladogram and the optimal cladogram that lacks each of
those clades. This allows all clades in the optimal tree(s)
to be ranked according to their relative strength (Fig. 2).
GB support is proportional to hypothesis optimality,
such that the adequacy condition S(h | e,b) � O(h | e,b) is
satisfied.

As noted above, explanatory power is operationalized
in phylogenetics as the summed patristic distance, or
tree-length, of a given phylogenetic hypothesis in

Fig. 2. Most parsimonious tree and Goodman–Bremer (GB) support
values for the contrived example in Fig. 1. The relative strength and
GB are greater for LM than for IJ. Groups discussed in the text are
enclosed in boxes. Modified from Ramı́rez (2005).
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explaining the observed character variation in light of
the background knowledge of descent with modification
(Kluge and Grant, 2006). The fewer the character-state
transformations (steps) a phylogenetic hypothesis
postulates in explaining the total (unpartitioned, com-
bined) evidence, the greater its explanatory power.
Given this direct relationship between steps and explan-
atory power, GB support satisfies the second adequacy
condition of calculating support as a function of
explanatory power, making it an adequate measure of
objective support.

Rather than evaluating support as the difference in
patristic distance, as done by GB support, the REP
support index (ratio of explanatory power; Grant and
Kluge, 2007) calculates support as the ratio of the
patristic distances of the optimal tree and the optimal
tree that lacks a given clade, which reduces to

REP = (S0 � SÞ=ðG� SÞ

where G denotes the maximum number of steps required
to explain aligned character-states [Farris, 1989; for the
more general case in which alignment is not assumed
prior to phylogenetic analysis replace G with X, the
number of steps required to explain each unaligned
character-state (e.g. each unaligned nucleotide) as
uniquely evolved]. The numerator of this expression is
GB support, so the REP support for a group is equal to
its GB support divided by the difference in length
between the least parsimonious tree (G or X) and the
most parsimonious tree (S). When S0 = S, the REP
support value is 0 (as is the GB support); when S0 = G
(or X), the REP support value is 1.

Like GB, REP quantifies support as a function of the
relative explanatory power of the competing hypotheses,
and the ranking of clades for a given dataset is identical
for both measures, such that S(h | e,b) � O(h | e,b) is also
satisfied. However, by standardizing GB support rela-
tive to the best and worst possible explanation for each
dataset, REP support also allows meaningful compar-
ison of support across datasets (Grant and Kluge, 2007).
As shown in Fig. 3, the effect of multiplication of
identically distributed data is different for these two
measures. A property of GB (and other methods,
including those that calculate clade support from
jackknife and bootstrap resampling or MCMC sam-
pling; Wheeler and Pickett, 2008) is that multiplied
datasets are assigned higher levels of support, whereas
REP support remains constant. Neither of these effects
is intrinsically good or bad, and the different behaviour
of GB and REP provides different analytical insights.

Goloboff and Farris (2001, p. S30) stated that a
‘‘defect of [GB support] is that it does not always take
into account the relative amounts of evidence contra-
dictory and favorable to the group.’’ They proposed that
‘‘[t]his problem is diminished if support is calculated as

the ratio between the amounts of favorable and contra-
dictory evidence’’, which led them to define the relative
fit difference (RFD) index:

RFD = ðF � CÞ=F :

Given two trees, F is the sum of the differences in steps
(fit differences) of the characters that favour the more
parsimonious topology (i.e. the steps of the characters
that fit the more parsimonious tree better than they fit
the less parsimonious tree), and C is the sum of the
differences in steps of the characters that contradict the
most parsimonious topology (i.e. the steps of the
characters that fit the less parsimonious tree better than
they fit the most parsimonious tree). When a group has
no favourable evidence or is contradicted by as much
evidence as favours it, RFD = 0; when a group is
favoured and uncontradicted, RFD = 1. Goloboff and
Farris (2001) noted that F – C is equal to GB (i.e. S0 –
S), and Goloboff et al. (2003, p. 326) referred to the
RFD based on comparison to the optimal hypothesis as
‘‘relative Bremer support’’. Goloboff and Farris (2001;
see also Goloboff et al., 2003; Ramı́rez, 2005) did not
explicate why support should be calculated on the basis
of the ratio of F and C instead of explanatory power or
why GB support is defective.

GB support includes all evidence and, therefore,
necessarily takes into account the evidence contradic-
tory and favourable to a group. However, it does so in a
way that satisfies both adequacy conditions identified
above, whereas the RFD does not. As shown in Fig. 4,
RFD group ranking can violate the condition S(h | e,b)
� O(h | e,b). Furthermore, as shown in Fig. 5, the RFD
does not quantify support as a function of explanatory
power. The RFD assigns an uncontradicted group
corroborated by a single synapomorphy and an uncon-

Fig. 3. Contrived datasets comparing Goodman–Bremer (GB) sup-
port and REP support. The upper dataset consists of four characters
for five terminals. The lower dataset consists of the same characters
repeated 100 times. GB values are 100 times greater for the lower
dataset, but the REP support values are identical. GB values above
branches. REP support values below branches.
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tradicted group corroborated by 100 synapomorphies
the same support value, scoring both as maximally
supported, even though the relative strength of the latter
hypothesis is clearly greater. The problematic behaviour
of the RFD is further illustrated by adding a single
contradictory synapomorphy to each case. Whereas GB
support values indicate the relative strength of the
competing hypotheses and rank clades accordingly, the
RFD jumps from scoring both clades equally to ranking
the two clades at opposite extremes.

Bootstrap (Felsenstein, 1985) and jackknife (Farris
et al., 1996) character resamplingmethods are commonly
employed as parsimony support measures. Elsewhere we
have criticized the statistical interpretation of resampling
methods (Grant and Kluge, 2003). Goloboff et al. (2003)
and Ramı́rez (2005) also rejected a statistical interpreta-
tion and instead argued that resampling frequencies
quantify support as the relative amount of favourable
and contradictory evidence for each group present in the
optimal topology. Other methods have also been pro-
posed to assess this relationship, such as spectral analysis
(Hendy and Penny, 1993), and Lento et al. (1995, p. 41)
claimed that the only difference between their PB values,
defined as ‘‘the frequency of support minus the frequency
of conflict (S ) C)’’, and bootstrap values is that ‘‘PB
values, derived from theHadTree spectrum, take not only
support for an edge but also contradictory signal values
for that edge into account.’’ As such, the relationship
between these measures and the parameter they aim to
measure warrants inspection.

Ramı́rez (2005) demonstrated that clade rank order
can be contradictory for jackknife resampling and GB
support (Fig. 6). This example also demonstrates that
jackknife resampling does not necessarily vary in direct
proportion to optimality, so jackknife resampling does
not satisfy the adequacy condition S(h | e,b) � O(h | e,b).
Furthermore, according to Goloboff et al. (2003) and
Ramı́rez (2005), jackknife resampling quantifies support
as a relation between partitions of evidence for and
against a hypothesis, whereas explanatory power is
assessed in reference to the evidence treated as a single
partition, the total evidence. Jackknife resampling does
not measure support as a function of explanatory power
and therefore cannot be defended in terms of objective
knowledge.

Fig. 5. Illustration of the difference between Goodman–Bremer (GB)
support and the relative fit difference (RFD). In the upper example,
clades AB and EF have equal (the maximum possible) RFD values,
even though EF is delimited by 100 times as many synapomorphies as
AB. GB correctly indicates the greater explanatory power of EF.
Adding a single contradictory synapomorphy causes RFD to jump
from ranking both groups as maximally supported to ranking them at
opposite extremes. GB does not exhibit this extreme behaviour.

Fig. 4. Most parsimonious tree and relative fit difference (RFD)
values for the contrived example in Fig. 1. Clades discussed in the text
are enclosed in boxes. Modified from Ramı́rez (2005).

Fig. 6. Most parsimonious tree and jackknife support values for the
contrived example in Fig. 1. Jackknife support is greater for IJ than for
LM, even though the relative strength of LM is greater than that of IJ
(see Fig. 2 and text). According to the RFD, CD and FG are both
maximally supported, but according to jackknife resampling neither
group receives maximum support and the support is less for CD than
for FG (Fig. 4). Modified from Ramı́rez (2005).
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Statistical support measures

Maximum likelihood support

Hacking (1965) related likelihood and support
through the ‘‘law of likelihood’’ and proposed the
likelihood ratio as a measure of support (p. 71, italics in
original):

The law of likelihood: If h and i are simple joint
propositions included in the joint proposition e, then e
supports h better than i if the likelihood ratio of h to i
exceeds 1.

Symbolically, the likelihood ratio support measure
derived from the law of likelihood is

P ðe j hh; bÞ=P ðe j hi; bÞ:

Accordingly, the maximum likelihood hypothesis has
the greatest support, regardless of the significance of the
degree of support (which is evaluated in relation to an
assumed distribution, i.e. a likelihood ratio test).

The above is a general measure of support, but in
practice one is usually interested in the support for the
maximum likelihood hypothesis, h, versus the optimal
contradictory hypothesis, h0. This may be expressed as

P ðe j h; bÞ=P ðe j h0; bÞ:

In the case of phylogenetic analysis, the degree of support
for each clade in the maximum likelihood tree may be
assessed by calculating the likelihood ratio of the max-
imum likelihood tree to the optimal tree(s) that lacks each
clade in themaximum likelihood tree (the likelihood ratio
support measure). In practice, calculations usually
employ log-likelihoods, and the likelihood ratio support
measure is therefore the anti-log of the difference in
log-likelihoods. A simpler alternative is to report the
log-likelihood of the likelihood ratio support measure
(i.e. log-likelihood difference support measure), as done
by Meireles et al. (1999; see also Lee and Hugall, 2003),
who employed this measure to estimate the strength of
grouping for clades in their maximum likelihood tree.

Instead of calculating support as the ratio of likeli-
hoods (or the difference of log-likelihoods), support may
be calculated for each clade in the maximum likelihood
tree as the difference in likelihoods of the maximum
likelihood tree and the optimal tree(s) that lacks each
clade in the maximum likelihood tree (this support
measure is equivalent to GB support in parsimony
analysis):

P ðe j h; bÞ � P ðe j h0; bÞ:

In these measures hypothesis optimality and support are
both calculated as a function of the likelihood score of
competing hypotheses, so these measures satisfy the
adequacy condition S(h | e,b) � O(h | e,b).

Bootstrap character resampling (Felsenstein, 1985)
was proposed to estimate confidence intervals but is also
commonly interpreted as a maximum likelihood support
measure. The use of bootstrap resampling in maximum
likelihood to estimate confidence intervals has been
questioned for a variety of reasons (e.g. Goldman, 1993;
Holmes, 2003), but an additional criticism applies when
bootstrap frequencies are interpreted as support values.
As discussed above for parsimony support measures and
shown in the example in Fig. 7 and Table 2, bootstrap
frequencies may not vary in direct proportion to
hypothesis optimality, thus violating the adequacy
condition S(h | e,b) � O(h | e,b).

Although the likelihood ratio and likelihood differ-
ence support measures satisfy the first adequacy condi-
tion S(h | e,b) � O(h | e,b), they do not satisfy the second
adequacy condition of quantifying support in terms of
explanatory power. To begin with, maximum likelihood
does not maximize explanatory power because it does
not discern between critical evidence (severe tests) and
mere data (Farris et al., 2001; Kluge, 2001; contra de
Queiroz, 2004). Furthermore, phylogenetic applications
of maximum likelihood require assumptions beyond
those necessary to make a logically valid inference
(Kluge and Grant, 2006); thus, even when maximum
likelihood and parsimony agree on the optimal tree
(for a review see Goloboff, 2003), the maximum
likelihood solution has less explanatory power than the
parsimony solution because it rests on additional
assumptions about the evolutionary process. Addition-
ally, many of those model assumptions concern details

Fig. 7. Maximum likelihood tree (log-likelihood = )6068.56918)
with numbered clades shown in Table 2. Data consist of 1134 aligned
nucleotide characters of nuclear gene A2AB from 13 mammal species
(Stanhope et al., 1998; Treebase matrix accession number M624,
terminals with missing data removed). Analyses were performed using
Garli 0.951 (Zwickl, 2006) under default model assumptions.
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about the evolutionary process that are counterfactual,
i.e. contradicted by empirical evidence (Siddall and
Kluge, 1997). For these reasons, the support measures
derived from maximum likelihood analysis in phyloge-
netic inference cannot be defended as quantifying
objective support.

Bayesian support

A Bayesian measure for the degree of support (or
confirmation) a piece of evidence provides for a given
hypothesis remains an active area of research (Crupi
et al., 2007). However, regardless of the measure used to
calculate the evidential support for a hypothesis, a
Bayesian measure to evaluate the relative degree of
support of two competing hypotheses is simply the ratio
of their posterior probabilities (although implementa-
tions may focus on the likelihood ratio; e.g. Hasegawa
and Kishino, 1989), expressed symbolically as

P ðh1 j e; bÞ=P ðh2 j e; bÞ:

The Bayesian support for the optimal hypothesis, h,
relative to the optimal contradictory hypothesis, h0, is
then

P ðh j e; bÞ=P ðh0 j e; bÞ:

Alternatively, Bayesian support may be calculated as the
difference in those posterior probabilities:

P ðh j e; bÞ � P ðh0 j e; bÞ:

Most current Bayesian implementations use an MCMC
sampler to generate a sample of topologies (and other
parameters) in relation to their prior probabilities and

likelihoods (Huelsenbeck et al., 2002). Provided that
several conditions are met (e.g. the correct acceptance
probability was specified, sampling was sufficient to
reach convergence; Tierney, 1994; Mossel and Vigoda,
2006), the frequency distribution of the sample param-
eter values approximates their posterior probability
density. For example, the frequency with which a given
topology is sampled is an estimate of its posterior
probability, and the topology with the greatest fre-
quency may be interpreted as the most probable point
estimate of phylogeny, i.e. the maximum posterior
probability topology (MAP; Rannala and Yang, 1996;
Yang and Rannala, 1997).

A simple measure of the degree of Bayesian support
for a given clade in the MAP may therefore be
calculated as either the ratio or the difference of the
posterior probabilities of the MAP and the most
probable topology that lacks that clade.3 Because the
frequency of topologies in the MCMC sample is an
estimate of their posterior probabilities, Bayesian sup-
port may be calculated either by dividing the frequency
of the optimal topology by the frequency of the most
frequent topology that lacks the clade of interest
(posterior probability ratio support measure) or by
subtracting the frequency of the best topology that lacks
each clade of interest from the frequency of the optimal
topology (posterior probability difference support mea-
sure). In this approach hypothesis optimality and
support are both evaluated as a function of the posterior
probability of the competing hypotheses, so this mea-
sure satisfies the adequacy condition S(h | e,b) � O(h |
e,b). The posterior probability ratio support measure is
equivalent to REP support in parsimony and likelihood
ratio support in maximum likelihood, and the posterior
probability difference support measure is equivalent to
GB support in parsimony.

This ability to calculate support directly from the
MCMC sample, without additional searching, has been
considered an important practical advantage of Bayes-
ian phylogenetic analysis over maximum likelihood
(Larget and Simon, 1999; Randle et al., 2005). However,
to our knowledge none of the Bayesian support
measures previously proposed in phylogenetics assesses
support as suggested above. Instead, they employ the
frequency of clades among the sampled trees (i.e. the
MCMC clade frequencies) as a Bayesian support
measure. Following Larget and Simon (1999), MCMC
clade frequencies are often interpreted as clade posterior

Table 2
Support measures for clades in the maximum likelihood tree in Fig. 7
(log-likelihood = )6068.56918) and log-likelihoods of optimal trees
contradicting each of those clades. The rank order of clades according
to their bootstrap frequencies is 6 = 10 > 5 > 1 > 4 > 7 > 3 =
8 > 2 > 9. The rank order of clades according to their log-likelihood
difference support (LLD) values is 10 > 6 > 2 > 5 > 8 > 1 >
7 > 9 > 4 > 3. Analyses were performed using Garli 0.951 (Zwickl,
2006) under default model assumptions

Clade

Bootstrap
frequency
(·100)

Log-likelihood
of contradictory
tree

LLD support
value

1 79 )6072.50919 3.94001
2 51 )6103.99962 35.43044
3 67 )6068.57111 0.00193
4 74 )6069.17414 0.60496
5 97 )6085.97068 17.4015
6 100 )6103.99969 35.43051
7 68 )6071.78813 3.21895
8 67 )6073.30530 4.73612
9 39 )6069.36604 0.79686
10 100 )6218.17912 149.60994

3Another alternative, not explored here, is to compare the two

topologies using Bayes factor, which measures the ratio of the

posterior odds to the prior odds and therefore evaluates the change

in support due to the evidence (Kass and Raftery, 1995; Lavine and

Schervish, 1999), and to assign that value as the support for the clade

in question (for similar applications in phylogenetics see Huelsenbeck,

2001; Suchard et al., 2005).
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probabilities, whereby the posterior probability of each
clade is taken as the sum of the posterior probabilities of
all the topologies that contain that clade; however, the
statistical validity of this interpretation is questionable
given that sampling is done over individual topologies,
not individual clades. Bayesian sampling theory justifies
interpreting the frequency of topologies in the MCMC
sample as posterior probabilities, but topologies are sets
of multiple clades, and the relationship between the
frequency of clades and the frequency of topologies is
complex. For example, given that the most probable
topology is composed of clades, it follows that the clades
that constitute the most probable topology are them-
selves most probable. However, the frequency of con-
tradictory clades may be greater because the sum of
suboptimal topologies with a given contradictory clade
may be greater than the frequency of the optimal
topology (Fig. 8; for an empirical example see Wheeler
and Pickett, 2008). The extent to which this complex
relationship leads to under- or over-estimation of clade
posteriors has not been investigated. It has been shown
that uniform topological priors are not equal or
equivalent to uniform clade priors (Pickett and Randle,
2005), which are in fact impossible to specify (Steel and
Pickett, 2006). Regardless of the consequences for
Bayesian inference (Alfaro and Holder, 2006; Velasco,
2007), this illustrates the difference between clade
probabilities and topology probabilities.

As a measure of Bayesian support, MCMC clade
frequencies do not satisfy the adequacy condition

S(h | e,b) � O(h | e,b) because, as noted above, MCMC
clade frequencies do not necessarily vary directly with
optimality (posterior probability). An important conse-
quence of this is that clades present in the most probable
estimate of phylogeny (and which are therefore most
probable) may be absent from the majority rule
consensus representation of trees in the MCMC sample
(i.e. the Clade–Bayes topology; Wheeler and Pickett,
2008) due to low frequency among suboptimal trees,
while clades that are absent from the most probable
estimate (and which are therefore relatively improbable)
may be present in the Clade–Bayes topology due to
higher frequencies among suboptimal trees. Therefore,
the common practice in Bayesian analysis (e.g. Huel-
senbeck and Ronquist, 2001; Ronquist and Huelsen-
beck, 2003) of drawing phylogenetic inferences from
Clade–Bayes topologies may be misleading (Wheeler
and Pickett, 2008). More fundamentally, Clade–Bayes
topologies have no associated optimality values, which
are necessary to compare and test competing hypotheses
(Wheeler and Pickett, 2008).

Bayesian inference aims to quantify belief in hypoth-
eses and is therefore concerned with subjective knowl-
edge. Furthermore, like other statistical approaches to
phylogenetic inference, Bayesian methods require
assumptions beyond those necessary to make a logically
valid inference (Kluge and Grant, 2006), and many of
those assumptions about the evolutionary process are
counterfactual, i.e. contradicted by empirical evidence
(Siddall and Kluge, 1997). For these reasons, no support
measure derived from Bayesian analysis quantifies
objective support. As such, Bayesian support measures
do not satisfy the second adequacy condition of quan-
tifying support in terms of explanatory power, although
the posterior probability ratio and posterior probability
difference support measures satisfy the adequacy condi-
tion S(h | e,b) � O(h | e,b).

Discussion

The adequacy of support measures

The two adequacy conditions we formulated provide
a common framework for the analysis of support
measures, independent of the optimality criterion
employed. The first adequacy condition, that support
and optimality vary in direct proportion to each other,
or S(h | e,b) � O(h | e,b), ensures internal logical
consistency. The second adequacy condition, that sup-
port must be quantified as a function of explanatory
power, is required for the method to be a measure of
objective support. Methods that eschew objectivity as a
requirement of scientific knowledge claims, such as
Bayesian inference, will obviously also eschew the
requirement that support measures quantify objective

Fig. 8. Contrived example illustrating the potential conflict between
MCMC clade frequencies and MCMC topology frequencies. The most
frequent (0.4) and probable topology possesses clade CD and lacks
clade BD. The less frequent alternative topologies (0.2 each) are less
probable but all possess clade BD, resulting in an MCMC clade
frequency of 0.6, greater than the frequency of the optimal clade CD.
For an empirical example see Wheeler and Pickett (2008).
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support, but they are still bound by internal logical
consistency to satisfy the first adequacy condition, S(h |
e,b) � O(h | e,b).

Several of the parsimony and statistical support
measures examined satisfy the first adequacy condition.
The parsimony support measures of GB and REP
support satisfy this adequacy condition and also quan-
tify support as a function of explanatory power, making
them measures of objective support. The equivalent
statistical support measures are the likelihood ratio and
likelihood difference support measures in maximum
likelihood and the posterior probability ratio and
posterior probability difference support measures in
Bayesian inference. These statistical support measures
satisfy the adequacy condition S(h | e,b) � O(h | e,b), but
they do not quantify support in terms of explanatory
power and therefore do not measure objective support.

Neither the RFD nor any of the parsimony or
statistical support measures based on clade frequencies
(character resampling clade frequencies in parsimony
and maximum likelihood, MCMC clade frequencies in
Bayesian inference) satisfy the adequacy condition S(h |
e,b) � O(h | e,b). In parsimony analysis, Goloboff et al.
(2003) noted the difficulty in interpreting low (<50%)
resampling frequencies of optimal hypotheses and pro-
posed a number of methods to mitigate this problem in
the extremes (i.e. where the resampling frequency of
optimal hypotheses is less than for contradictory sub-
optimal hypotheses), but those solutions do not address
the more general problem of resampling frequencies not
varying in proportion to hypothesis optimality. Indeed,
Ramı́rez (2005) underscored the potentially contradic-
tory ranking of clades as a strength of resampling
methods. In Bayesian analysis, the common practice of
employing the majority rule consensus of MCMC
topologies (the Clade–Bayes topology) as the basis for
phylogenetic inferences is inadvisable as it can contra-
dict the optimal, most probable topology.

In addition to violating this general adequacy condi-
tion, the RFD and clade frequency methods do not
calculate support as a function of explanatory power.
Consequently, none of these measures produces objec-
tive knowledge claims. Minimally, there is a contradic-
tion when hypothesis optimality is assessed according to
one criterion (explanatory power, likelihood, posterior
probability) and hypothesis support is assessed accord-
ing to a contradictory criterion (the ratio of F and C,
clade frequency). Regardless of the intended use of
character resampling measures and the RFD in parsi-
mony, their interpretation requires clarification, espe-
cially when one considers that the rank order of
hypotheses for the two measures may disagree, even
though they both aim to calculate support as the relative
amount of evidence contradictory and favourable to a
hypothesis (whether directly or indirectly; see Goloboff
et al., 2003, p. 326). As illustrated in Figs 4 and 6,

according to jackknife resampling, support is less for
clade CD than for clade FG and neither clade receives
maximum support, but according to the RFD CD and
FG are both maximally supported.

In spite of the inadequacy of the RFD and clade
frequency as support measures, they may be useful for
other purposes. In the case of character resampling
methods, at least one such purpose is immediately
apparent. Although it has come to be recognized
primarily as a method of measuring support for groups
present in the optimal solution, Farris et al. (1996)
introduced the parsimony jackknife as a more efficient
method than neighbour-joining for analysing large
datasets, and the various improvements to resampling
methods proposed by Goloboff et al. (2003) and Ram-
ı́rez (2005) only increase its importance in that regard.
As such, the parsimony jackknife may be a heuristic
method insofar as it helps to identify most parsimonious
solutions (as do other heuristic procedures such as
trajectory searches), but once the preferred hypothesis
has been identified it is inadequate as an objective
support measure. Similarly, MCMC clade frequencies
are not adequate measures of Bayesian support and are
questionable estimates of clade posterior probabilities,
but they may be useful as credibility intervals for the
clades of the most probable tree (cf. Alfaro and Holder,
2006), and MCMC sampling is useful in estimating
topology posterior probabilities.

Regardless of the optimality criterion employed, the
support measures that satisfy the adequacy condition
S(h | e,b) � O(h | e,b) are all derived from the
comparison of optimal and suboptimal hypotheses.
For a given clade present in the optimal hypothesis,
this comparison may be expressed as the ratio of
optimality scores of the optimal hypothesis (h) and the
optimal hypothesis that lacks that clade (h0), O(h |
e,b) ⁄O(h0 | e,b), or the difference between the optimality
scores of those hypotheses, O(h | e,b) – O(h0 | e,b). The
REP, likelihood ratio (calculated as the difference in
log-likelihoods), and posterior probability ratio support
measures calculate support as a ratio using parsimony,
maximum likelihood, and posterior probability as
optimality criteria, respectively. Similarly, the GB,
likelihood difference, and posterior probability differ-
ence support measures calculate support as a difference
using parsimony, maximum likelihood, and posterior
probability as optimality criteria, respectively.

Wilkinson (1994, p. 362) also noted that measures
equivalent to GB support could be developed under any
optimality criterion, and he proposed a ‘‘general support
measure as the difference in optimized quantity between
the most optimal tree that includes a particular item of
cladistic information and the optimal tree that does not
include this item’’. This measure is not strictly equiva-
lent to GB support because ‘‘the most optimal tree that
includes a particular item of cladistic information’’ may
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not be the globally optimal tree, and the definition does
not consider the possibility of calculating support as a
ratio instead of a difference, but the approach is
generally consistent with ours.

As the difference in steps, GB support provides clearly
interpretable information that is not provided by REP
support (Grant and Kluge, 2007). However, it is unclear
what advantage may obtain from calculating statistical
support as a difference instead of a ratio, and inmaximum
likelihood the size of numbers makes subtraction of raw
likelihood scores impractical. Nevertheless, like the sta-
tistical support measures based on ratios, these measures
satisfy the adequacy condition S(h | e,b) � O(h | e,b) but
do not quantify support in terms of explanatory power.

Concepts of support

Although we considered several parsimony and sta-
tistical support measures, many other criteria of support
are often employed, either formally or informally, in
phylogenetic inference (for references see Grant and
Kluge, 2003). Clades delimited by ‘‘unique and unre-
versed’’ or relatively less homoplastic character-states
are often considered more strongly supported, as are
clades delimited by the origin of especially complex
character-states. Clades delimited by synapomorphies
from multiple partitions (e.g. morphological and DNA
sequence characters, multiple loci, transitions and
transversions, first, second, and third positions) are
often considered better supported. Clades delimited by
characters that are adaptive may be interpreted as
especially strongly supported, as may those delimited by
character-states that are believed to be non-adaptive or
neutral. Hypothesis longevity is often employed implic-
itly as an informal criterion of support, with groups that
have been recognized for a long time deemed more
credible than novel hypotheses of relationship. Agree-
ment with biogeographical scenarios is another criterion
of support, as is taxic agreement, whereby strong
support is attributed to groups that share the same
biogeographical or coevolutionary patterns. Many of
these criteria are used qualitatively but could be
transformed into quantitative measures. This list is far
from exhaustive, but it shows that many approaches to
inferring support can be and have been employed in
phylogenetic inference, all of which may be evaluated in
terms of the adequacy conditions proposed above.

In one of the few studies to discuss the concept of
support explicitly, Wilkinson et al. (2003, p. 129) con-
sidered evidence to support a hypothesis ‘‘to the extent
that the hypothesis provides a better explanation of the
evidence than some alternative hypothesis’’, which
appears to be similar to the concept we endorse.
However, Wilkinson et al.�s (2003) interpretation of
both ‘‘a better explanation’’ and ‘‘the evidence’’ departs
significantly from ours. As they clarified (p. 129),

‘‘[w]hen we say that a character (or a data matrix)
supports a hypothesis, we imply that it fits that
hypothesis better than it fits one or more incompatible
hypotheses’’, and their concept of support was intended
to apply ‘‘to the entire data set treated as a whole, to
subsets of the data (by taxa or characters), and to
individual characters’’. This conceptualization of sup-
port in terms of fit and partitions instead of explanatory
power and the total (unpartitioned, combined) evidence
can lead to paradoxical situations in which a refuted,
suboptimal hypothesis may be ‘‘supported’’ and a
corroborated, optimal hypothesis may be ‘‘unsup-
ported’’ [thus violating the adequacy condition
S(h | e,b) � O(h | e,b)], and also in which one or more
characters may both refute and ‘‘support’’ a hypothesis,
depending on which other evidence is included in the
partition (Goloboff et al., 2003).

The relevance of support

Throughout this paper we have examined the ade-
quacy of support measures, but we have paid little
attention to their relevance to the science of phyloge-
netic systematics. Ramı́rez (2005, p. 88, italics in
original) observed that ‘‘before using any support
measures (regardless of the intended use or application),
these measures need to be calculated first’’ (see also
Sanderson, 1995, p. 311), but this does not make the
case for the scientific relevance of these methods.
Aesthetics aside, methods have no intrinsic value; they
are valuable only to the extent that they further the
goals of science, either directly by testing hypotheses (i.e.
they are scientific) or indirectly by pointing to new or
highly testable problems and hypotheses (i.e. they are
heuristic; for details see Grant and Kluge, 2003).
Support measures are not scientific because they do
not test phylogenetic hypotheses. However, support
measures are heuristic because by evaluating the relative
degree of evidential support they identify those hypoth-
eses that require less evidence to be overturned (Grant
and Kluge, 2003).

Ramı́rez (2005) also noted that one cannot identify
more weakly supported groups without also identifying
those that are more strongly supported. However, the
heuristic interpretation proposed by Grant and Kluge
(2003) does not merely replace a positive interpretation
of support (i.e. claiming greater reliability for more
strongly supported groups) with a negative interpreta-
tion of support (i.e. claiming less reliability for more
weakly supported groups). Rather, it is mute on the
question of reliability; objectively, all groups present in
the most parsimonious tree are least refuted and provide
the best explanation of the critical evidence. Neverthe-
less, although there is no rational basis to claim that
more weakly supported groups are less reliable, less
contradictory evidence is required to overturn them,
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which provides a rational basis for designing future
studies (see also Grant and Kluge, 2007).

Consequently, even when support is conceptualized
objectively as the relative explanatory power of com-
peting hypotheses, degree of support does not provide a
rational basis for greater confidence or disbelief in a
group as more or less accurate, reliable, probable, or
worthy of formal taxonomic recognition. All groups
present in the strict consensus of most parsimonious
trees are supported by the available evidence and are
objectively optimal. Should this criterion of objectivity
be abandoned as the basis for recognition or acceptance,
then, minimally, workers must indicate the degree of
support required for a group to merit recognition—1%
better than competing hypotheses? 0.5% better? 10%
better?—and why that particular value is preferred.

As noted by Sanderson (1995) and Grant and Kluge
(2007), the interpretation of support in systematics as an
indication of the relative strength of hypotheses and not
as a predictor of future samples or the probability that a
hypothesis is true is related, both conceptually and
historically, to the interpretation of support in statistics
according to the logic of maximum likelihood (e.g.
Hacking, 1965). We have attempted to establish a
general framework for the analysis of support by
relating the concepts of optimality and support, formu-
lating adequacy conditions that may be applied to all
support measures in systematics—independent of con-
cept, interpretation, or optimality criterion—and devel-
oping equivalent support measures in parsimony,
maximum likelihood, and Bayesian analysis.
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M.J., 2003. Improvements to resampling measures of group
support. Cladistics 19, 324–332.

Goodman, M., Olson, C.B., Beeber, J.E., Czelusniak, J., 1982. New
perspectives in the molecular biological analysis of mammalian
phylogeny. Acta Zool. Fennica 169, 19–35.

Grant, T., Kluge, A.G., 2003. Data exploration in phylogenetic
inference: scientific, heuristic, or neither. Cladistics 19, 379–418.

Grant, T., Kluge, A.G., 2004. Transformation series as an ideographic
character concept. Cladistics 20, 23–31.

Grant, T., Kluge, A.G., 2005. Stability, sensitivity, science and
heurism. Cladistics 21, 597–604.

Grant, T., Kluge, A.G., 2007. Ratio of explanatory power (REP): a new
measure of group support. Mol. Phylogenet. Evol. 44, 483–487.

Grant, T., Kluge, A.G., 2008. Credit where credit is due: the
Goodman–Bremer support metric. Mol. Phylogenet. Evol., doi:
10.1016/j.ympev.2008.04.023.

Hacking, I., 1965. The Logic of Statistical Inference. Cambridge
University Press, Cambridge.

Hasegawa, M., Kishino, H., 1989. Confidence limits of the maximum-
likelihood estimate of the hominoid tree from mitochondrial-DNA
sequences. Evolution 43, 672–677.

Hendy, M.D., Penny, D., 1993. Spectral analysis of phylogenetic data.
J. Classif. 10, 5–24.

Holmes, S., 2003. Bootstrapping phylogenetic trees: theory and
methods. Stat. Sci. 18, 241–255.

Huelsenbeck, J.P., 2001. A Bayesian perspective on the Strepsiptera
problem. Tijdschr. Entomol. 144, 165–178.

Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference
of phylogenetic trees. Bioinformatics 17, 754–755.

Huelsenbeck, J.P., Larget, B., Miller, R.E., Ronquist, F., 2002.
Potential applications and pitfalls of Bayesian inference of
phylogeny. Syst. Biol. 51, 673–688.

1063T. Grant and A. G. Kluge / Cladistics 24 (2008) 1051–1064



Hull, D.L., 1974. Philosophy of Biological Science. Prentice-Hall, Inc.,
Englewood Cliffs, NJ.
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