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ABSTRACT 

A metric on general phylogenetic trees is presented. This extends the work of most 

previous authors, who constructed metrics for binary trees. The metric presented in this 

paper makes possible the comparison of the many nonbinary phylogenetic trees appearing 

in the literature. This provides an objective procedure for comparing the different methods 

for constructing phylogenetic trees. The metric is based on elementary operations which 

transform one tree into another. Various results obtained in applying these operations are 

given. They enable the distance between any pair of trees to be calculated efficiently. This 

generalizes previous work by Bourque to the case where interior vertices can be labeled, 

and labels may contain more than one element or may be empty. 

1. INTRODUCTION 

It has been postulated that existing biological species have been linked in 
the past by common ancestors. A diagram showing these links is called a 
phylogenetic tree. In the past decade or so a number of such trees have 
been constructed using protein sequence data; for example: Fitch and 
Margoliash [3], Jardine and Sibson [7], (1971) Moore et al. [8], Sokal and 
Sneath [13], Waterman et al. 1141, and Foulds et al. [5]. However it is 
evident that different methods often produce different trees when applied to 
the same data. It is important in comparing different methods to have an 
objective measure of how similar these different trees are. This problem of 
comparison has been studied by Robinson [ 111, Dobson [ 11, Rohlf [lo], and 
Waterman and Smith [14]. However, all of these methods were developed 
for binary trees. The purpose of the present paper is to present a compari- 
son method suitable for general trees, that is, trees whose internal points 

MATHEMATICAL BIOSCIENCES 53: 131- 141 (1981) 

QElsevier North Holland, Inc., 1981 

52 Vanderbilt Ave., New York, NY 10017 

131 

0025-5564/81/01013117$02.50 



132 D. F. ROBINSON AND L. R. FOULDS 

have arbitrary degree. Many phylogenetic trees appearing in the literature 
are of this form, e.g. [5]. 

There are two different approaches to comparing phylogenetic trees. One 
can view them as weighted trees where each line has a weight equal to the 
number of mutations between the sequences it connects. These weights can 
then be taken into account in the comparison method. This has been done 
by Robinson and Foulds [ 121. The second approach is to ignore weights and 
compare the structure or topology of the trees. This was the line of all the 
authors previously cited who presented comparison methods for binary 
trees, and we adopt it in this paper. 

We present a metric d on the set of all phylogenetic trees labeled with n 
species. The metric defines a distance, d( T,, T,) between any two trees 
T,, T2 in the set. This provides an objective measure for comparing trees 
produced by different methods. The distance d(T,, T,) can be efficiently 
calculated for any pair of trees. 

Bourque [2],’ in Chapter 3 of his doctoral thesis on the Steiner problem 
in geometry, discusses operations on trees. He introduces the notion of a 
space of all tree topologies, the pendant vertices of whose trees are assigned 
nonempty distinct labels from some given finite set. [In the present paper 
the labels can be assigned to interior vertices as well and may contain more 
than one element or be empty.] He defines the “distance” between two 
topologies to be the smallest number of transformations required to obtain 
one topology from the other. He presents several metrics and shows that 
three of them are equivalent and that two of the others provide upper and 
lower bounds respectively on the distance. 

2. OPERATIONS ON PHYLOGENETIC TREES 

The graph-theoretic concepts used in this paper are explained in [6]. 
Let S be the given set of n (> 1) species. 

DEFINITION 

By a phylogenetic tree T* on S we mean a tree T with points p,, . . . , p,,,, 

together with a partition of S into disjoint, possibly empty, subsets 

S,,&,..., S,,,, so that Si is assigned as the label of pi; each member of S 
appears in exactly one label. Points of degree 3 or more may have empty 
labels, but points of degree 1 or 2 must have nonempty labels. 

The set of points of T is P, and the set of edges (lines in [6]) is E. We 
then use the notation T= (P, E). 

The set of all phylogenetic trees on S is ys. 

‘The authors wish to thank one of the referees for bringing to their attention 

Bourque’s work, of which they were unaware when writing the first version of this paper. 
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FIG. 1. The application of operations a and a -I. 

We consider two phylogenetic trees T,, T2 to be the same in all respects 
(we use the term identical) if their trees T,, T2 are isomorphic, and the 
isomorphism also preserves the labeling. That is, if T, =(P,, E,) and T, = 

( Pz, E2) and the labels are (S{, Sj, . . . , S,!,) on T, and (Sf, Si, . . . , f.3;) on T2, 

there is a one-one correspondence H : P, +Pz such that 

if pipj EE, then h ( pi) h ( pj) E E2, and conversely, 

and if h(pi) =qj then S: = Sj2. We shall not normally distinguish in the 
notation between the phylogenetic tree T* and the underlying tree T, using 
the symbol T for both. 

In Fig. 1 are shown two examples of phylogenetic trees in which 
S= {man, ape, monkey, lemur, shrew, mole, horse, pig}. 

We now describe two operations, a and a-‘, which may be applied to a 
tree in ys to construct new trees on the same species set. 

OPERATION a (“Contraction” of Bourque) 

Let T, be a phylogenetic tree on set S, and let prps be an edge of T,. 

Then we can form a new tree T2 on S by “shrinking” prps to a single point, 
the label of the new point being the union of the labels of p, and ps. An 
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example is given in Fig. 1, in which p7p8 is collapsed to form the new point 
p ,,,. Formally, 

Let 7’,=(P,,Ei)~y~, let P,={p,,p, ,..., p,}, andletp,p,EE,. Let 

E’={PrPi:PrPi EEl, iZs}, 

E”={P,P~:P,P~EE,,~#~}, 

E”={P,P~}. 

Then we define 

Pz =(Pl\{Pr~Ps})u {Pnl+1> 

E~=[El\(Er~ES~ErS)]U{Pm+~Pi~PrPi~E’) 

U{Pm+lPi:PsPiEES]* 

If Sil is the label of pi in T,, and Si, the label of pi in T2, then 

si, = sil if iEP,flP,, 

S (m+l)2=SrlUSsl* 

To indicate that T2 is obtained from T, by shrinking the edge p,p, we 

write 

G =a(Tl> P,P~). 

Given a tree TEys with m points, T has m- 1 edges, each of which 
produces a different tree. Hence m - 1 trees are obtainable by single 
a-operations acting on T. 

OPERA TION a - ’ (“Decontraction” of Bourque) 

We also wish to reverse this operation, by an operation a -‘, which takes 
a point of a tree and divides it into two parts, the new points being joined 
by an edge. In Fig. 1 the upper tree is formed by the lower by replacing the 
point p,,, with two points p, andp,. 

This operation is not defined completely by specifying which point is to 
be split. The edges incident with the chosen point pk may be partitioned 
arbitrarily between the two new points pm+, and P,,,+~, and the label of pk 

partitioned arbitrarily between pm+, and P,,,+~, so long as each receives at 
least one species if its degree is 2 or 1. [Since deg (pm+,)+deg (~,,,+~)=deg 
(p,)+2, they cannot both have degree 1 or 2 unless pk has degree 1 or 2.1 

A number of results concerning these operations will now be presented. 
It will be assumed throughout that 1 S I= n. 
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FIG. 2. A sequence of a- and a - ‘-operations. 

Us is used to denote a tree in ys with E =0 and just a single point, which 
is labeled with S. U, can be obtained from any tree TEAM by a sequence of 
m- 1 a-operations, where T has m points. 

Now suppose T, and T2 dye. Then we can convert T, into Us by a 
sequence of m, - 1 a-operations, and T, into U, by a sequence of mz - 1 
a-operations. By reversing the latter sequence we can convert Us into T, by 
a sequence of m2 - 1 a -‘-operations. Combining the two, we can convert 
T, to T2 by a sequence of at most m L + m2 - 2 operations of the two types, 
via U,. It may of course be possible to reach T2 from T, by a shorter route, 
but the number of steps must be at least Im, -m2 1, the difference in the 
number of edges between the two trees. 

Figure 2 shows such a sequence of operations in a case in which the 
upper bound is achieved. 

3. A METRIC ON PHYLOGENETIC TREES 

If T,, T, E y,, then the minimum number of applications of operations of 
either type (a or a-‘) necessary to convert T, into T, is denoted by 
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d(T,, T,). It can easily be shown that d has the following properties: 

d( Tr , T2) > 0 if T,, T, E ys, T, not identical to T,, 

d(T,, T2)=0 if T, is identical to T2, 

4T,, Tz)=d(Tz, T,), T,, G EY,, 

d(T,,T,)<d(T,,T,)+d(T,,T,), T,,T,,T,Eys. 

Hence d is a metric. 

THEOREM I 

Zf TEys and ISI=n> 1, then T has at most 2n-2points. 

Proof. 

(a) If T is a tree in which some point u has a label with two or more 
members, then u may be split by an LY - ’ -operation to provide a new tree T 

with one more point, the label of u being partitioned into two nonempty 
sets. 

(b) If T is a tree in which some point u with nonempty label has degree 
greater than 1, then u may be split by an (~-~-operation to provide a new 
tree T’ with one more point, the new point having degree 1 and carrying the 
label of U. 

(c) If T is a tree in which some point u has degree greater than 3, then u 
may be split by an a -’ -operation to provide a new tree T’ with one more 
point, both new points having degree at least 3. The label of u may be 
shared between them in any way. 

Thus a tree T* with given S and maximal number of points consists of n 
points of degree 1, each with a singleton label, and a number of points of 
degree 3 with empty labels. Let this number be q. 

By relating e the number of edges to the degree, 

2e=3q+n. 

On the other hand, in any tree the number of edges is one less than the 
number of points: 

e=n+q-1, 

so 

q=n-2. 

Hence T* has 2n - 2 points, and for any tree TEAM, T has at most 2n - 2 
points. W 

Consider a phylogenetic tree T= (P, E) E ys. The removal of an edge e 
creates two subtrees Td and Td’ of T. Let the union of all the labels of points 
in TJ be S:, and the union of all the labels of points in Ti’ be Si . Since both 
T: and T/ contain pendant points of T, S: and Sz are both nonempty. 
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THEOREM 2 

Zf e,, e, are two edges in T= (P, E), then S may be partitioned into three 

sets X, Y, Z such that with appropriate assignments, 

s;, =x, s; = YUZ, 

se* = Y, s; =xuz. 

ProojI Suppose e, and e, deleted from T. Then T falls into three 
components A, B, C. In general e, =ab and e2 =cd with a, b, c, d all differ- 
ent. Then as at least one of the four belongs to each component, some 
component contains two of them (arising from different edges) and the 
others one each. Suppose A contains a, B contains d, and C contains b and 
c. It is however possible for e, and e2 to have a point in common. When this 
happens we let e, =ab with aEA and e, = bd, with dEB as before, and 
bEC. 

Let X, Y, Z be the sets of species associated with points in A, B and C 
respectively. 

Then we may set 

s&t, =x, s; = YUZ, 

se’, = Y, se’: =xu z, 

as required. n 

For a given tree Teys with edge set E, we define a function f from E to 
the set Z, of all partitions of S into two nonempty subsets by 

f(e)= {S,l, S:‘} 

and call f the partitioning function of T. The deletion of e would create 
subtrees with species sets Sl and .$” respectively. Bourque [2, p. 551 
introduces this concept of label partitioning and discusses a number of its 
properties complementing those given here. 

THEOREM 3 

Zf e,, e, are edges in T= (P, E) such that 

e, =e2. 

That is, f is one-to-one. 
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proof. Assume e, #e,. Then by Theorem 2 we may put 

Lq =X, s;, = Y, q = YUZ, S; =XuZ. 

The components A and B, each being cut off by the deletion of a single 
edge, must each contain a pendant point of T. The corresponding labels 
must be nonempty; hence X# Y. Thus the sets must be paired: 

s,, = se’; and Se’: = S;, , 

so that 

z=0. (7 

Hence every point in C has an empty label. Therefore every point in C has 
degree 3 or more in T. But as C is a tree, there must be at least two points 
pendant in C. None of these can be pendant in T, for then they would have 
nonempty labels. Hence C can have as pendant points only the point(s) b 
and c incident with e, and e,. As they are pendant in C, such points have 
degree 2 in T. Thus they must have nonempty labels. This contradicts (*). 
Hence the hypothesis that e, #e, is false. n 

Consider now Tl = (P,, E,) and T2 = ( Pz, E,) in ys with partitioning 
functions fi, f2 respectively. 

DEFINITION 

Edges e, E E, and e, E E, are said to be matched if and only if 

For example, in Fig. 1 edges pep7 and p6p ,,, in T, and T, respectively are 
matched. 

Because each edge e, E E creates a unique partition of S, ei will be 
matched to no more than one edge of T,. Also the matching relation is 
symmetric; hence there will be a one-one correspondence between matched 
edges in T, and T2. 

Define the sets 

E; = {e2 EE2:3e, EE, s.t.f2(e2)=fi(el)}. 

The edges in E,\E; and E,\E; create partitions of S which do not corre- 
spond to edges in T, and T, respectively. It is possible for E; and E; to be 
empty. 
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THEOREM 4 

T, = (P,, E,), T, = ( Pz, E2) E ys are identical if and only if there is a 

one-one correspondence h : E, +E2 such that e E E, +e and h(e) are matched. 

Proof. j: As T, and T2 are identical, there exist one-one correspon- 
dences: 

P: E,--+Ez, 

4: P,‘Pzr 

such that 

and 

uoEE, * p(uu)=q(u)q(u) (1) 

wEP, * &v = qcw, 2 (2) 

where Si is the subset of S assigned to point i. Consider any edge UVEE,. 

Let the partition of S created by uu be {S’, S”}. As T, and T, are identical, 
by (1) and (2) each subgraph of T, created by the removal of p(uu) is 
identical with a subgraph of T, created by the removal of uu from T. Hence 
uu and p( uu) are matched. Hence 

h=p 

is the desired one-one correspondence. 
+: We observe first that if h exists, then T, and T, have the same 

number of edges. 
We now restate Theorem 3. If e=uu, we may, instead of writing 

{S,‘, Sl }, write { S,U, So). As SE and S,O are complementary, any nonempty 
subset W of S corresponds to at most one edge-point pair (e, u) of T, by 

w=s,u. 

The given one-one correspondence h can therefore be converted into a 
one-one correspondence between edge-point pairs, where the edge and 
point must be incident. We may write 

k(e, u)=(h(e),w), 

and then define v and x by 

e=uv, h(e)=wx. 

It will then follow that 

k(e, u)=(h(e),x). 
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We must next show that k acts consistently at points. That is, if e’ is 
another edge of Ti incident with u, and k(e’, u) =(h(e’), w’), then w= w’. 
The alternative is that h( e’) = wx’ and k(e’, u) = (h( e’), x’). 

But looking at Theorem 2 for e and e’ in T,, we may set 

s:=ruz, s,“=x, SE’=Xu Y, 

and k then implies that in T, 

s&q = Yu z, S&e, =x, s&d, =xu Y, 

SO Sl&‘, =Z, which conflicts with the form established in Theorem 2. 
The function k is thus a one-one correspondence consistent on both 

edges and points, so that we may define one-one correspondences 

P: E,+J%, q: P,-+Pz 

with k(e, u)=(p(e), q(u)) and 

The isomorphism is thus established. That q preserves labels follows 
from the relationship that the label S, of LI is the intersection over all edges e 
incident with u of SF. 

Then T, and T, are identical. n 

Theorem 4 implies that in order to convert T, to T,, operation cy must be 
used to remove all the unmatched edges in E,, and cr -’ must be used to 
create all the unmatched edges in E,. Thus 

d( T,,T,)>IE,\E;j + JE,\E;(. (3) 

THEOREM 5 

Zf T,,T2Eysthend(T,,T2)=lE,\E;I+IE,\E;I. 

Proof. Consider the tree F, (T,) obtained from T,(T,) by removing all 
the edges of E,\Ei (E,\E;) with cr-operations. ?;1 (r,) has edges E’ (E;). By 
the nature of the a-operation each edge in Ti (T,) will partition S in the 
same way as the corresponding edge in T, (T,). 

If Ei = E; =0, then 

?;,=Fz=u,, (4) 

and T, and T, are identical. However, if (4) does not hold, there is, by 
definition, a one-one correspondence between Ei and E;, the edge sets of T, 
and p2. Hence by Theorem 4, i=, and T, are identical and it is possible to 
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convert T, into T2 by 1 E,\E;I o-operations followed by 1 E,\E;I a-‘- 

operations, the reverse of those o-operations required to transform Tz into 
F.. Therefore 

d(T,,T,) <IE,\E;I+(E,\E;1. 

So (3) implies the result. n 

The significance of Theorem 5 is that d( T,, T2) can be calculated without 
having to find the actual sequence of (Y- and o-‘-operations contributing to 
d( T,, T,). The identical trees T, and r?;2 are denoted by T,AT,. 

COROLLARY 

For T, , T, E ys there exists a unique tree, T, A T2 E ys such that: 

(1) T, AT, can be obtained from both T, and T, by I E,\E; I and I E,\E; I 

ff-operations respectively. 

(2) d(T,, T,)=d(T,, T,AT!)+d(T,r\G>Tz) 

(3) Zf 

E, =E;, 

that is, every edge of T, is matched to an edge of T,, then 

and 

l-%l=lE;l=lE;l 

d(T,,T,)=lE,\E;I=n,-n2, 

where T, and Tz have n, and n2 points respectively. 

(4) d(T,,T,)=d(T,,U,)+d(U,,T,)-2d(T,r\T,,U,) 

This last equation is given in [2, p. 621. 

DEFINITION 

For each positive integer II we define d, to be the maximum distance 
between two phylogenetic trees on n species. 

THEOREM 6 

Zf n=2, then d, = 1. Zf n>2, then d, =3n-6. 

Proof. If n=2, there are only two possible trees, and these are 1 apart. 
If n =3 the argument below does not work, but the formula can be 

verified by constructing all 8 possible phylogenetic trees, and considering 
the effects of the operations. 

We may therefore assume that n > 3. We proceed by discovering features 
of pairs of trees T,, T, which are a maximal distance apart. 
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FIG. 3. Creation of an empty label for a point of degree 3 or more. 

(a) If T,, T, have matched edges, we can construct new trees T;, T; by 
collapsing the matched edges. The remaining edges are unmatched and 

d(T,‘, T;)=d(T,, T,). 

We may therefore assume that T, and T, have no matched edges. 
(b) Suppose T, has a point u with degree greater than 2 and a nonempty 

label. Then by an a - ’ -operation u can be split into two points: u’, which 
has the same degree as u and empty label, and u”, which has degree 2 and 
the same label as u. This is shown in Fig. 3. The problem to be guarded 
against is that the new edge might match an edge of T,. It can be shown, 
using Theorem 2, that if a trial splitting with u“ in one edge of T, yields 
such a matching, then it suffices to put u” into another edge to avoid a 
matching. The new tree T3 thus created has one more edge unmatched with 
T2 than T, has, so that 

d(G, G)=d(T,, T,)+ 1. 

Hence if T,, T2 are at maximal separation, then in both T, and T, all points 
of degree 3 or more have empty labels. 

(c) Suppose a point u of tree T, has degree 2 and its label contains more 
than one member. Then u may be split into two points u’, u” by an 
a -‘-operation. Each of the new points has degree 2 and may be assigned a 
nonempty label by a partition of the label of u. This is shown in Fig. 4. If 
the new edge u’u” should match an edge in T, it suffices to interchange the 
labels of these points to avoid such a matching. Following a similar 
argument to that in (b), we may assume that in T, and T, all points of 
degree 2 are labeled with a single species. 

(d) If a pendant point u of the tree T, has a label containing more than 
one species, we split u into two new points: a new pendant point u’ with 
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FIG. 4. Splitting a point of degree 2. 

label one of the species in the label of u, and a point uN with degree 2 and 
labeled by the rest of the species set of u. It may not be possible to avoid 
matching in this case, but such matching as does occur can be confined to 
edges pendant in both T, and T,. 

(e) We thus have that T, and T2 may be assumed to have all labels 
consisting of a single species for points of degree 1 or 2, and empty for 
points of higher degree. If some species is assigned to points of degree 2 in 
both trees, we may split the corresponding point u in one of them into u’ of 
degree 3 and empty label, and u” a pendant point labeled with the species. 
We may therefore assume that every species forms the label of a pendant 
point in at least one of the trees. Matching occurs only between pendant 
edges. 

(f) We may therefore count off the species as follows: 

x species labeling pendant points in both T, and T2, 
y species labeling pendant points in T, only, 
z species labeling pendant points in T, only. 

We have that 

x+y+z=n. 

We also know from Theorem 1 that a tree with m pendant points has m - 2 
points of degree 3. Thus in T, there are 

x+y points of degree 1, 
z points of degree 2, 
x+y-2 points of degree 3. 

Then if T, has e, edges, 

2e, =(x+y)+2z+3(x+y-2), 

e, =2x+2y+z-3, 
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FIG. 5. Phylogenetic trees with maximum separation for n > 5 species. 

of which e, -x are unmatched. In the same way T2 has 

e,=2x+2z+y-3 

edges of which e, -x are unmatched. Hence 

d(T,,T,)=(e,-x)+(e,-x) 

=(x+2y+z-3)+(x+2z+y-3) 

=(3x+3y+3z)-x-6 

=3n-x-6. 
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FIG. 6. Four phylogenetic trees. 

As x>O, d(T,,T,)<3n-6 as required. 

To see that the bound is exact for n > 5, consider the pairs of phylo- 
genetic trees for n respectively odd and even shown in Fig. 5. No edges are 
matched, and the number of edges is 3 n - 6 in both cases. The case n = 4 is 
covered by Fig. 2. n 

4. AN EXAMPLE 

As an example of the use of this distance consider the four trees in Fig. 
6. These are obtained from figures given by: 
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I Fitch [4] 
II Penny [9] 
III, IV Foulds et al. [5] 

by suppression of the weights associated with the edges in those papers. 
The distances are as follows: 

Thus I and II are similar, as are III and IV, but the pairs are relatively 
dissimilar. On the other hand with seven species the maximum possible 
distance is 15, so there is still considerable agreement. This agreement could 
be assessed in terms of the probability of two phylogenetic trees being at 
most a certain distance apart. This probability depends on the number of 
phylogenetic trees on a given set of species, and on detailed knowledge of 
the numbers of trees obtainable from a given tree by single (Y- and 
(Y -‘-operations and by combinations. These are at present unsolved prob- 
lems. 

5. CONCLUSION 

We have presented a method for expressing the agreement between two 
phylogenetic trees on the same species. We have established a quick way of 
calculating the distance by means of testing edges for matching and 
counting the unmatched edges. The calculation of distance therefore pre- 
sents no difficulties for practical-sized problems. 

By comparing distances it is possible to say that a tree T, is closer to a 
tree T, than it is to T3. We have not yet reached the position of being able 
to say that agreement between trees is significant at a given probability 
level. 
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