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With the realization that multiple equally parsimonious cladograms might exist for a 
given data set (Mickevich, 1978), construction of classifications in such instances 
became a problem. Consensus trees (Adams, 1972; Nelson, 1979), originally developed 
for producing a “compromise classification” (Adams, 1972) between cladograms 
produced from dzferenl data sets, is one possible solution. The consensus tree, 
representing the information on grouping shared by all the competing cladograms, 
might be viewed as a “conservative” classification. Such a viewpoint has been advocated 
by proponents ofdistance techniques in the case ofmultiple trees ofnear-optimal fit (e.g. 
Prager and Wilson, 1978). In this case, such a procedure is a misapplication. The 
consensus tree, being less resolved than any of the cladograms from which it is calculated, 
has less explanatory power (Farris, 1983) than any of them, and so any of the competing 
cladograms would br a better choice as a phylogenetic hypothesis/classification. 
Mickevich and Farris (1981) and Miyamoto (1985) make similar points. The question is 
then how to choose among the cladograms, if this can be done. 

Recently, Brooks et al. (1986) have addressed the issue of choice among multiple 
equally parsimonious cladograms. However, their discussion is deficient. They 
considered three statistics: the consistency index (Kluge and Farris, 1959), F-ratio (a 
simple function of Farris’ (1972) f statistic) and the D measure, an application of the 
Shannon entropy statistic from Gatlin (1972). The consistency index does measure 
evidential support for phylogenetic hypotheses, but this is not true for the other 
measures. The f statistic, developed for application to distance analyses, measures the 
pairwise homoplasies for a given tree, and, to quote Farris (1983:22), “the pairwise 
homoplasies are not independent”. This measure is thus not closely related to the 
concept of evidential support underlying phylogenetic analysis (Farris, 1983), and, in 
fact, a tree optimizing f (hence the F-ratio) may not be most parsimonious for a given 
data set. Brooks et al. (1986) make that last observation, but do not then provide any 
rationale for using the F-ratio. Similar comments apply to their use of D, which they 
characterize as measuring the “ i n z a t i o n  content of the constraints” (Brooks et al., 
1986:572). They provide an example (their fig. 5) where D is optimal for a non- 
parsimonious cladogram, which is reason enough to reject this measure. Brooks et al. 
argue that D can distinguish between autapomorphies and synapomorphies, whereas 
the consistency index cannot. Their discussion of the consistency index is misled. 
Whereas this index is inflated by inclusion of invariant and autapomorphic characters, 
plainly it should be calculated with such features excluded in a proper cladistic 
analysis-a point pheneticists have made (Colless, 1983). Thus, the example shown in 
their fig. 6a-c has an identical consistency index for all three cladograms calculated over 
all the characters. But calculated only on informative characters, their cladogram 6b 
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has a higher index than others (.73 vs. .67). This is because characters 8 and 9 are 
synapomorphies on cladogram 6b but uninformative on the others, either autapo- 
morphic or invariant. Brooks et al. state (1986:576) that: 

“A comparison ofCI values alone will not indicate that one person has found two autapomorphies, thus 
corroborating the monophyly of that taxon, but adding no support to the proposed genealogical 
groupings, while the other has found two synapomorphies corroborating the monophyly of the entire 
clade.” 

This is only true if the consistency indices are calculated na’ively. The consistency index is 
capable of distinguishing between the cladograms in this example in terms of the 
informativeness oftheir underlying data sets. The rationale ofBrooks et al. for employing 
D is therefore specious. 

For one data set, the consistency index will be the same for each most parsimonious 
cladogram, whether uninformative characters are included or not, and so offers no 
grounds for choice among the cladograms. I suggest use of a different technique for 
selecting among cladograms; application of successive approximations character 
weighting (Farris, 1969). This character weighting method is developed directly from 
the concept of “cladistic reliability” (Farris, 1969), and thus is related to evidential 
support. In the method, consistency indices are determined for each character on an 
initial cladogram, and are termed unit character consistencies (Farris, 1969). In the case 
of multiple equally parsimonious cladograms, they are average values. These 
consistencies are then used to weight the initial character matrix, and another cladistic 
analysis is performed on the weighted data set. New unit character consistencies are 
calculated for the resulting cladogram (or cladograms), the characters re-weighted, 
another cladistic analysis performed and the process continued until the cladograms on 
successive iterations are identical. The technique thus selects the cladogram (or 
cladograms) based on the set ofmost consistent characters. Such characters are “best” in 
that they provide the strongest evidence. The rationale for weighting at  all is most 
succinctly stated by Farris (1983: 1 1): “No one supposes. . . that characters in general all 
deserve the same weight-that they all yield equally strong evidence.” The successive 
approximation approach, by performing the weighting a posteriori in context of all 
characters, avoids the subjectivity inherent in both a priori (e.g. Hecht and Edwards, 
1977; Felsenstein, 1981; Neff, 1986’) and arbitrary a posteriori methods (e.g. Davies, 
1981 ) . The compatibility approach to phylogenetic inference could possibly be 
characterized as an extreme form of a priori character weighting, but is obviously 
inferior to this finely graded technique (Farris and Kluge, 1979), which is an extension of 
parsimony. 

I have used this technique extensively in analysis ofdata sets assembled in the course of 
studies ofvespid wasps. In the PHYSYS system (Mickevich and Farris, 1984) the 
method may be implemented via a single command loop as follows: 

/DIAGNOSE,“cladograms”,“characters”,,“weights 1”; 
WEIGHT, 
WAGNER. S; 
DIAGNOSE,,,,“weigh ts2”; 
WEQUAI,, “weights 1 ”,“weigh ts2”; 
SWAP,“weights l”,“weights2”; 
REPEAT/. 

~~~~ 

‘Actually, NelT’s paper merely argues for careful homology decisions, which should be given. 
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Here, “cladograms” and “characters” refer to the initial cladograms and data. The 
DIAGNOSE command calculates the mean unit character consistencies and places 
them in the weight data set “weightsl”. The WEIGHT command weights the initial 
character matrix by simply multiplying the character scores by these weights, and the 
WAGNER.S performs another cladistic analysis with branch-swapping on the weighted 
data. The next DIAGNOSE command calculates a set ofunit character consistencies for 
the new cladogram or cladograms and places them in a second weight data set 
(“weights2”). The WEQUAL command tests for equality of the two weight data sets. If 
they are identical the procedure terminates, since the cladograms are identical; if not, 
the SWAP command interchanges. the second weight data set with the first and the 
REPEAT command loops through the command sequence again using the second set of 
weights. Successive approximations can also be done as a series of several steps in the 
PAUP program (Swofford, 1985), which does not have a similar recursive capability. 
Unit character consistencies for the cladograms from an initial analysis can be obtained 
with the CHGLIST command, mean values calculated manually, and these values 
input as character weights using the WEIGHTS command. These steps can then be 
repeated until inspection shows the cladograms on successive iterations to be identical. 

Note that the weighting is a simple linear function. Farris (1969) originally used four 
other functions. Defining the proportionp(i) for a binary character i as ( ( t -  l)c(i))-’ ,  
where t is the number of nodes on the cladogram and c ( i )  is the unit character 
consistency for character i, these weighting functions were “linear”, 1 - p ( i ) ;  “convex”, 
1 - ( p ( i ) ) k ,  k > 1; “concave and bounded”, (1  - p ( i ) ) k ,  k > 1; and “concave and 
unbounded”, ( p ( i ) ) - k -  1, k2 1. In simulations, his concave functions worked better 
than the others a t  finding a correct cladogram in the presence of unreliable characters. 
Most effective ofall was the most drastic (unbounded) concave function. This is a much 
stronger weighting function that the one employed here. In my applications ofsuccessive 
approximations it has not always converged on a single cladogram, although in these 
cases it has always reduced the number ofcladograms to be considered. Use ofone ofthe 
stronger functions might be more effective, as might a weight proportional to the 
consistency index raised to a power greater than 1. Further investigation of this point is 
highly desirable. 

Felsenstein (1981) suggested that, for large values of parameter k,  weighting binary 
data with Farris’ bounded concave function could yield a compatibility technique. The 
concave functions weight strongly the highly consistent characters, which in the extreme 
might approach the all-or-none weighting of compatibility methods. But this then 
suggests that in such cases successive approximations might itself converge on a 
cladogram which is not parsimonious for the unweighted data. This could possibly occur 
for some data sets with very low consistency indices for most characters, in which case the 
technique might have failed but a less parsimonious cladogram based on the “better” 
characters may as well be considered. Obviously this would be very different from the 
situation where the f and D statistics achieve their optima for non-parsimonious 
cladograms; the selection in this case would be choice among characters and so would 
still be related to evidential support. Thus, successive approximations may only be a 
partial solution to ambiguous data sets, but by restricting attention to those cladograms 
based on the most consistent characters i t  focuses on the best evidence. The necessity of 
reanalysis (or introduction ofnew data) remains in such cases, but at least the process of 
“checking, correcting and rechecking” (Hennig, 1966) might be usefully directed. 

I t  should be noted that when applying this technique to multistate characters additive 
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Table 1 
Stenogastrine data integer-coded. 

~ 

000000000 Liostenogaster 
10101 1 1  1 1  Parigchnogaster 
10001 1 1 1 1 Holischnogarter 
1 0000 1 1 10 Metischnogasfer 
1 00 I000 I0 Anischnogaster 
1 I2200000 Stenogaster 
1 1 1200000 Eustenogaster 

Liosfenogaster 

Me t ischnogoster 

Parischnogoster 

Holischnogaster 

Anischnogaster 

Stenogaster 

Eusfenogoster 

Liostenogaster 

Amschnogasfer 

Metischnogoster 

Parischnogaster 

Holischnogas fer 

Stenogas fer 

Eustenogaster 

Fig. 1 .  Alternative cladogram (a) and (b) for the data ofTables 1 and 3. 
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Table 2 
Weights for characters in Table 1 

I 2 3 4 5 6 7 8 9 
1 .ooo 1 .ooo 0.667 0.833 1 .ooo 1 .ooo 1.000 0.750 I .ooo 

binary coding rather than integer coding should be used. This is because higher integers 
may result in greater weight being given to a particular character simply as a function of 
scoring, whereas additive binary coding avoids this by evaluating each state of each 
character individually. Farris ( 1969: 382) recommends this procedure: “Use of additive 
binary coding and separate evaluation of steps is also one way to extend the successive 
weighting technique to multistate characters.” A simple example illustrates this point. 
Table 1 is a data set drawn from a study ofthe genera ofhover wasps (Carpenter, 1988). 
The  characters are integer-coded. The branch-and-bound routine in PHYSYS 
(XWAGNER) produces two most parsimonious cladograms, shown here as Figs l a  and 
b. The  weights for the characters ofTable 1 derived from these cladograms are shown in 
Table 2; these are simply the mean consistency indices for the characters scaled from 0 to 
1. Successive approximations character weighting selects the first cladogram (Fig. la) .  

Table 3 
Stenogastrine data recoded in additive binary form 

00000000000 Liostenogaster 
1010001 I 1  I 1  Parischnogaster 
100000 1 I 1 1 1 Holischnogaster 
1000000 I 1 I0 Metischnogaskr 
I000 10000 I0 Anischnogaster 
1 11 I 1100000 Stetlogaster 
1 11 01 100000 Eustenoguler 

Table 4 
Weights for characters in Table 3. 

1 2 3 4 5 6 7 8 9 10 1 1  
1.000 1.000 0.500 1.000 0.750 1.000 1.000 1.000 1.000 0.750 1.000 

When the data are recoded into additive binary form (Table 3) and a new set ofweights 
calculated (Table 4), successive weighting results in both cladograms being retained. 
Because character 4 in Table 1 (5 and 6 in Table 2) has “2” as one ofits states, i t  achieves 
greater weight than character 8 in Table 1 (10 in Table 2),  which is binary. Conflict 
between these two characters is solely responsible for the ambiguity in the data sets, as 
the cladograms differ only in the placement of Anischnogaster, which shares apomorphies 
with two different clades. It has the state of “1” for both characters, and when character 
4 is recoded in additive binary form, weighting does not converge to one of the 
cladograms. 
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