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Systematists must frequently deal with substantial un 

certainty in their phylogenetic estimates. Nonparamet 
ric bootstrapping (Felsenstein, 1985) and Markov chain 

Monte Carlo (MCMC) simulations used for Bayesian 
phylogenetic inference (Mau et al., 1999; Larget and 

Simon, 1999; Huelsenbeck and Ronquist, 2001) are two of 
the most popular computational approaches for assess 

ing support for different parts of a phylogenetic tree. Both 
of these techniques produce large collections of trees. A 

majority-rule consensus tree is often used to summarize 
such a collection of trees. As has been discussed (e.g., 
in 1991, and the ensuing debate), a consensus tree is a 

summary of a set of trees, and not necessarily an optimal 
estimator of the phylogeny. 

Here we present a context in which the majority-rule 
consensus tree of samples from the posterior probability 
distribution over trees can be viewed as the optimal tree 

to report. We explicitly rephrase phylogenetic inference 
as the problem of "what tree should I publish for this 

group of taxa, given my data?" The majority-rule con 

sensus tree can be shown to be the optimal tree to report 
if we view the cost of reporting an estimate of the phy 

logeny to be a linear function of the number of incorrect 

clades in the estimate and the number of true clades that 
are missing from the estimate and we view the report 

ing of an incorrect grouping as a more serious error than 

missing a clade. 
The work of Berry and Gascuel (1996) on reporting re 

sults from nonparametric bootstrapping overlaps signif 

icantly with the results presented here. Berry and Gas 

cuel (1996) present arguments from Bayesian decision 

theory, which is also the theoretical basis of our work. 

Berry and Gascuel focus on frequentist properties of es 

timators (type I and type II error rates) and interpret boot 

strapping proportions as measures of the probability of 
a clade being present. In order to apply these decision 
rules to bootstrapping analyses, they study the correla 
tion between bootstrap proportions for clades and the 

posterior probability of those clades. 

Background 

Decision theory is a well-developed branch of statis 
tics. We do not intend to provide a full review of 

Bayesian decision theory here; we refer the interested 
reader to Robert (2007) and chapter 13 of Jaynes (2003) 
for nice introductions to the topic. Despite the large 

Statistical literature on decision theory, these techniques 
have been used relatively rarely in discussions of 

systematic methodology. There are some notable ex 

ceptions. Wheeler (1991) presented a decision-theory 
argument for choosing among trees using a 0-1 loss func 
tion (see the section on ''all-or-nothing" losses below). 

Jermiin et al. (1997) used frequentist and Bayesian deci 

sion theory arguments in the justification for their meth 

ods for constructing a majority-rule consensus of trees 

with likelihoods that are close to the maximum likeli 

hood score. Minin et al. (2003) developed a model selec 

tion methodology from decision theory, and Abdo et al. 

(2005) applied and extended this approach to account for 

uncertainty with respect to the estimated tree. Abdo and 

Golding (2007) recently applied decision theory to the 

problem of assigning new sequences to species groups 
in the DNA barcoding context. Steel and Szekely (1999) 
and Steel and Szekely (2002) both employed techniques 
from statistical decision theory. 
Making a decision without complete knowledge is a 

situation that we all face in everyday life, and clearly 
a rational decision will rest both on what conditions are 

likely to be true and on the consequences of our decision. 

The concept of "what conditions are likely to be true" can 

be captured quite naturally by assigning a probability to 

any possible outcome. When we have some information 

about the system in question, then the posterior proba 

bility is an appropriate choice of probabilities. 
There are many possible ways to quantify the conse 

quences of our choices. Fortunately, when we are mak 

ing a decision, we only need a measure of the cost of one 

choice relative to the cost of another choice?we do not 

necessarily need to have a measure with a value that has 

an absolute meaning. This is helpful because it is easier 

to formulate a system of relative costs than it would be 

to derive the absolute cost of each decision. A common 

formulation of the problem rests on specifying a loss func 
tion. A loss function, L, measures the cost that we would 
have to pay if we took a particular action. Obviously, 
we aim to minimize our loss. For the remainder of this 

paper we are concerned with the decision of what tree 

to report for a dataset, so our "action" can be equated 
with the selection of a particular tree to report. Note that 

the evaluation of a loss function requires an action and 

values of the parameters that we consider to be true? 

to calculate how bad it would be to report a particular 
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tree we need to compare the estimated tree to the true 
tree. Thus, our loss functions are of the form L(T*, T), 

where T* is the true tree, and T is the tree that we 

report. 
A decision rule, 8, maps data that we can observe, x, 

to actions. In frequentist decision theory, it is common to 
characterize a decision rule by the expected loss over all 

possible datasets. This is referred to as the risk, R, of a 
decision rule 8: 

where P(x\6) is used to weight each loss with the prob 
ability that a dataset identical to x would occur if 9 
were true. Because we do not know the true value of 
9 when we are evaluating the risks of different decision 
rules, frequentist decision theory often focuses on deci 
sion rules that minimize the risk over all possible values 
of 0. 

From a Bayesian standpoint, this is unsatisfying. We 
have data in hand, so we have some information about 
what values of 9 are likely. Furthermore, we may have 

prior information about what values of 9 are probable. In 
a Bayesian framework, the posterior expected loss, p, can 
be calculated from a posterior probability distribution 
over 9: 

and we can select the decision rule that has the low 
est posterior expected loss. Another Bayesian approach 
would entail defining an integrated risk, r, as the expec 
tation of the risk shown in Equation (1) taken over it, the 

prior distribution of the parameters: 

These two approaches are equivalent because choosing 
the action, 8(x), that minimizes the posterior expected 
loss for any dataset, x, is a procedure that minimizes 
the integrated risk (Robert, 2007: 61-63). To paraphrase 
Robert (2007: 62), Bayesian decision theory argues that 
it is better to integrate over unknown quantities (i.e., 9) 
and condition on the observations (i.e., x) than to take 
into consideration values of x that were not observed 
and condition on 9 as if it were known. 

In phylogenetics, we integrate over uncertainty in the 
true tree topology; i.e., 9 = T*. We can also substitute 
the tree topology that would be returned under a de 
cision rule, T, rather than referring to it indirectly as 
the result of the decision, 8(x). Furthermore, all of the 
loss functions considered here ignore errors in branch 

length estimates. So we use the terms "tree" and "tree 

topology" interchangeably and perform a sum over tree 

topologies (rather than an integration over the space of 
all tree topology and branch length combinations). The 

(1) 

(2) 

(3) 

posterior expected loss of a tree is thus 

MD^^unmrix) (4) 
T* 

Bayesian decision theory seeks to minimize the posterior 
expected loss; in Bayesian phylogenetic inference, this 

corresponds to reporting the tree minimizing the poste 
rior expected loss?we refer to this tree as the MPELT 
(the Minimum Posterior Expected Loss Tree). 

Thus far, we have briefly reviewed the basics of 

Bayesian decision theory. But how do we choose a loss 
function for reporting trees? 

All-or-Nothing Loss Functions 

An all-or-nothing approach would be to assign a loss 
of 1 if the tree that we report is not identical to the true 
tree but a loss of 0 if we report the true tree. In this case 

we have: 

Lj(T , T) = 

l 
I ? rp* rp (5) 

where the dagger subscript (f) denotes quantities associ 
ated with this all-or-nothing loss function. The expected 
loss function becomes: 

pt(D = ^/(r #r)P(T*|jc) (6) 
T* 

where I (T* ^ T) is an indicator function that is 1 if T* and 
T are not the same and 0 if they have the same topology. 
Note that this is equivalent to summing the posterior 
probability over all trees that are not T, and, by the law 
of total probability, this sum of posterior probabilities is 

simply 1 ? P(T\x). So 

pf(T) = 1 - P(T\x). (7) 

So under a simple all-or-nothing loss function? the tree 
with the maximum posterior probability is the MPELT. 
This result was first presented by Wheeler (1991). In other 
contexts, this loss function is often referred to as a 0-1 
loss. However, in phylogenetics one could view splits or 

topologies as the focus of inference. 0-1 loss functions 
could be applied to either. Thus, we will use the name 

"all-or-nothing loss" for a 0-1 loss function on trees and 
"per-branch loss" for a 0-1 loss function applied to splits 
(next section). 

Per Branch Loss Function 

Although the previous result is intuitive and justifies 
reporting the tree with the highest posterior probability, 
it has the drawback of penalizing slightly incorrect trees 

just as much as ridiculously poor estimates of the tree 

topology. In reality, most systematists would prefer an 
estimate that is close to the truth over a tree with no 

This content downloaded from 137.99.252.6 on Tue, 8 Apr 2014 06:59:10 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


816_SYSTEMATIC BIOLOGY_VOL. 57 

correct clades. To model this preference, we could assign 
a loss function that assigns a penalty for each clade in 
the true tree that is missing and another penalty for each 
clade in the reported tree that is not present in the true 
tree. 

Note that in the case of unrooted trees, we do not know 
whether a group of taxa on one side of an internal branch 
is a monophyletic clade or a paraphyletic grouping. In 
such cases, we should refer to the groupings of taxa as 

splits rather than clades. "Split" refers to the partition 
of the taxa that would be created if we cut a tree in two 

by removing a branch. Because of this tight connection 
between terms "split" and "branch," we will abuse ter 

minology slightly and use the terms interchangeably in 
this paper. 
We can express a loss function based on the number of 

correct clades succinctly if we use B(T) to represent the 
set of internal branches in tree T: 

where I[b ? B(T*)] is an indicator function that is 1 if b 
is a branch not found in T*. a is the cost of each false 

positive (a branch in the reported tree that is not in the 
true tree), whereas (1 

? 
a) is the cost of a false nega 

tive (a branch in the true tree that is missing from re 

ported tree). If a > 0.5, then the loss associated with a 

false-positive branch is higher than the cost of missing a 

branch that is in the true tree. The asterisk subscript (*) 
denotes quantities associated with this per branch loss 
function. The constraint 0 < a < 1 guarantees that the 
neither the false-positive loss nor the false-negative loss 
are negative. Without this constraint, our loss function 

might confer rewards for errors. Note that if T = T*, the 
loss will be zero. Berry and Gascuel (1996) pointed out 
that this form of the loss function can be seen as a loss 
based on a generalization of the Robinson and Foulds 

(1981) distance. In fact, when a = (1 
- 

a) = 0.5, this loss 
function is equivalent to one-half the Robinson and 
Foulds distance between the true tree and the reported 
tree. 

The formula for the posterior expected loss of a tree 
looks daunting: 

(9) 

but can be reorganized by pulling the summations 
over the branches to the outside and recognizing that 

?> *(T.) IIb i B(T)] = EH?iT) nb e B(T*)]: 

p*{T) = a ^2P(T*\x)I[b ?B(T*)] 
beB(T) T* 

+(1 - a) ̂ Yl P(T*\x)I[b ? ?(T*n (10) 
b<?B(T) T* 

In Bayesian phylogenetics, we frequently refer to the 

posterior probability of a split. This can be estimated 
as the proportion of all trees that contain a particular 
branch in a sample generated by MCMC using software 
such as MrBayes (Ronquist and Huelsenbeck, 2001) or 

BEAST (Drummond and Rambaut, 2007). In the context 
of rooted trees, these quantities can be referred to as clade 

posterior probabilities. 
The posterior probability of split b is defined as: 

P(b\x) = J2 PlT*\x)I(b e 23(1*)]. (11) 

If we use B to represent the set of all possible splits for the 
taxa under consideration, then we can rearrange Equa 
tion (10): 

p*(T) =a^[l- P(b\x)] + (1 - a) ]T p(fc W <12) 
beB(T) b?B(T) 

= a 
? tt-P(b\x)) + (l-a) ?)P(fe|z) 
beB(T) L beB 

J2 
beB(T) 

(13) 

= 
(l-a)^P(fe|x)+ ]T {att-P(b\x)]} 

beB beB(T) 

- ltt~a)P(b\x)] (14) 
beB(T) 

We introduce the constant K = (1 ~ot)J2beB P(b\x) to 

simplify the equations because K does not depend on 

T. This substitution yields: 

p*(T) = K+ ]T [a-P(b\x)]. (15) 
b B(T) 

The tree that minimizes Equation (15) is, by definition, 
an MPELT. How can we find this tree, or set of trees? The 

general answer to this seems difficult, but we can make 

progress if we consider different components of the loss 
function in isolation. 

No False-Negative Loss 

Setting a = 1.0 means that 1 ? a = 0.0, so there is no 

false-negative penalty. Such a loss function implies that 
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we do not mind if we miss a branch; returning a less 
resolved tree is just as good as returning the true tree. 
The posterior expectation of the loss becomes: 

Unsurprisingly, this odd loss function results in unhelp 
ful behavior: regardless of the dataset, the star tree (tree 

with no internal branches) has the minimum possible 
posterior expected loss (i.e., zero). Trees with internal 
branches that have posterior probability 1.0 will also at 
tain the minimal posterior expected loss, because then 
the sum in Equation (16) over splits in the tree only in 
cludes terms that contribute nothing. But under stan 
dard models and priors, no split will have a posterior 
of exactly 1.0 (though the MCMC estimate of the pos 
terior probability may be 1.0 for some splits), thus this 
loss function would always prefer the star tree. Clearly 

we prefer resolved trees to the star tree (if we have sup 
port for the branches), so a false-negative loss of 0.0 is 

inappropriate. 

A loss function that assigns no penalty to returning a 
branch that does not actually exist would be quite bizarre 
as well. If the true tree contained a hard polytomy then 

most biologists would not be just as happy with a method 
that returned an arbitrary resolution of the polytomy as 

they would be with one that returned the true tree. The 
behavior under this loss function is more difficult to an 

(16) 
beB(T) 

No False-Positive Loss 

alyze; the posterior expected loss becomes: 

p.(T) = K- ]T P(b\x) (17) 
be?(T) 

where the minus subscript (?) recognizes the fact that 
this loss function only penalizes false negatives. If all 

splits have non-zero posterior probability, then the set of 
MPELTs for this loss function will be fully resolved, be 
cause resolving a polytomy will add a branch b to B(J), 
and this will always decrease the loss by P(b\x) rela 
tive to a tree with a polytomy. Intuitively, a tree with 

high posterior probability will probably contain splits 
with high posterior probability, so perhaps the tree that 
maximizes the posterior probability also minimizes the 
loss shown in Equation (17). The counterexample in Fig 
ure 1 shows that this correspondence is not true, in 

general?the tree with maximum posterior probability 
does not necessarily minimize the posterior expectation 
of the loss. The table shows a contrived set of posterior 
probabilities for trees of 5 taxa and the resulting split 
posterior probabilities. The posterior probabilities are ex 

pressed in a general form as the variables p, q, and r. The 
tree probabilities must satisfy the law of total probabil 
ity, so p + q + 2r = 1 in this example. If p > q > r > 0, 
then the tree ((A, B),C,(D, E)) maximizes the posterior 
probability. However if the inequality p < r + q is also 
true, then the tree ((A, E), C, (B, D)) minimizes the pos 
terior expected loss under the no false-positive loss func 
tion given in Equation (17). At least one set of posterior 
probabilities (p 

= 0.27, q = 0.25, r = 0.24) satisfies these 
constraints. Less artificial examples, in which all of the 

Tree Posterior Probability Example 

((A, B),C, (?>,?)) p ?27 
((A,E),C,(B,D)) q 0.25 
((B,D),A,(C,E)) r 0.24 

r 0.24 
all other trees 0 0 

Split Posterior Probability Example 

AE\BCD ^Tr ?49 
BD\ACE q + r 0.49 
AB\CDE p 0.27 
DE\ABC p 0.27 
BC\ADE r 0.24 

CE\ABD r 0.24 
all other splits 0 0 

Tree Posterior Expected Loss Example 

((A, ??),C, (D,E)) K-2p? K - 0.54 
((A, E),C, (?,?>)) K-2(q + r)?_K 

- 0.98 

FIGURE 1. Tables showing the posterior probabilities for four five-taxon trees, the resulting split posteriors, and the variable portion of the 

posterior expected loss for each of the trees under the loss function shown in Equation (17). If p > q > r and p < r +q, the MAP tree is AB \C\DE, 
but the tree minimizing the posterior expected loss under Equation (17) is AE\C\BD. The tree probabilities must also satisfy the law of total 

probability, so p + q +2r =1, but there are combinations of probabilities (such as p = 0.27, q = 0.25, r = 0.24) that satisfy all of these constraints. 

This content downloaded from 137.99.252.6 on Tue, 8 Apr 2014 06:59:10 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


818_SYSTEMATIC BIOLOGY_VOL. 57 

trees have a non-zero posterior probability can also be 
constructed. 

Examination of Equation (17) reveals that we are seek 

ing the tree with the maximal sum of split probabil 
ities. This is a form of the maximum-weighted split 
compatibility problem, which is known to be NP-hard 

(Day and Sankoff, 1986). Thus, a general, efficient algo 
rithm for finding the solution does not exist, but in many 
cases it may be feasible to find such a tree by creating 
a greedy resolution of the 50% majority-rule consensus 
tree (as discussed in the excellent review of consensus 

methods by Bryant, 2003). 
The asymmetric median consensus tree (Phillips and 

Warnow, 1996) is defined in terms of minimizing the sum 
of the weights of splits present in the collection of trees 
but missing in the consensus tree. For a fixed set of split 
weights, this criterion is identical to maximizing the sum 
of split weights that are present in the consensus tree. 

When split weights are interpreted as posterior proba 
bilities, then this task is identical to finding the tree that 
minimizes the posterior expectation of the loss given in 

(17). Thus, if the posterior distribution is approximated 
using MCMC then the MPELT under the loss given in 

(17) will be identical to the asymmetric median consen 
sus tree of the trees sampled during MCMC. 

Conservative, Per Branch Loss Functions 

It seems prudent to prefer a conservative estimation 

procedure. When we are uncertain of a grouping on the 

tree, we prefer to report a soft polytomy for that por 
tion of the tree. This summary is certainly understood 

by systematists who routinely interpret polytomies as 
statements of uncertainty (rather than hypotheses of si 

multaneous divergence into more than two species). We 
can accomplish this by using a loss function that penal 
izes incorrect branches in the reported tree more than 

missing branches. In other words, choosing a loss func 
tion in which a > 0.5. 
We will demonstrate that when a > 0.5 the (100 x a)% 

majority-rule consensus tree of the collection of trees 
from an MCMC sample will minimize the posterior ex 

pected loss. A parallel result was first presented by Berry 
and Gascuel (1996) in their discussion of which clades 
to include when summarizing trees from nonparametric 
bootstrapping. This majority-rule consensus tree is de 
fined to be the tree that is composed of all splits that occur 
in over (100 x a)% of the trees in the collection. In most 
cases the set of MPELTs will contain only this one tree. If 
some splits occur in exactly (100 x a)% of the trees, then 
the set of MPELTs will contain the (100 x a)% majority 
rule consensus and other trees that resolve this consensus 
tree by adding splits that have estimated posterior prob 
abilities of exactly a. We will refer to the resolution of the 
(100 x a)% majority-rule consensus tree that includes all 

splits that occur in exactly 100 x a % of the input trees as 
the >(100 x a)% majority-rule consensus tree. 

To prove this conclusion, we can characterize the splits 
contained in the MPELT when a > 0.5. We can derive 
one necessary condition for a split that is contained in 
an MPELT by comparing a MPELT, T, with a tree that is 

identical to it except for the fact that one branch, s, has 
been collapsed; this tree will be denoted T/s. By defini 
tion of the MPELT, we have the constraint that: 

p*(T) - p*(J/s) < 0 (18) 

Under our loss function we can restate Equation (15) with 
these two trees in mind: 

p*{T/s) = K + Yl l<*-PQ>\x)] (19) 
beB(T/s) 

p*(T) = K+a- P(s\x) + [a ~ P(k|j)l (20) 
beB(T/s) 

Thus, we can rearrange the inequality in (18) to yield: 

a < P(s\x) (21) 

This places a lower bound on the posterior probability 
of any split that is in the MPELT. 

Note that this constraint is a necessary condition for a 

split to be present in an MPELT?if it is not met, then the 

T/s will have a lower posterior expected loss than T, so T 

will not be a MPELT We have not shown that Inequality 
(21) is a sufficient condition for a split to be included in 

any (or every) tree that is a MPELT. 

Here, we are concerned with cases in which a > 0.5. 
This is fortunate because the set of splits with posterior 
probability greater than 50% is guaranteed to be pair wise 

compatible and therefore compatible (Buneman, 1971). 
Thus it is possible for a tree to contain every split that 

satisfies Inequality (21)?in fact, this tree is simply the 

>(100 x a)% majority-rule consensus tree of the poste 
rior distribution over trees. This guarantees that no split 
that is not in the >(100 x a)% majority-rule consensus 
tree can be in any tree that is an MPELT. Such a split, y, 

would have a posterior probability lower than a, and ex 
amination of Equations (19) and (20) reveals that the tree 

T/y would have a lower posterior expected loss than a 

tree, T, which does contain the split y. So we do not need 
to consider trees that are incompatible with, or are refine 

ments of, the >(100 x a)% majority-rule consensus tree. 
If the posterior probablity of a split is greater than 

a, then Equations (19) and (20) show that the posterior 
expected loss of a tree that contains the split will be lower 
than a tree that has the corresponding branch collapsed. 
Thus, every split found in the (100 x a)% majority-rule 
consensus tree will be found in every tree in the set 
of MPELT. If P(s\x) is exactly equal to a, then split s 
is exactly on the cutoff for inclusion and this split will 
not be in every tree in the MPELT set. In this case, T/s 
and T will both be in the MPELT set. This situation 
will be rare. Because a and P(s\x) are continuous vari 

ables, they will almost never be exactly equal. It is pos 
sible that our MCMC-based estimates of P(s\x) will be 

equal to a. Ignoring these rare cases, we can say that the 

(100 x a)% majority-rule consensus tree will correspond 
to the MPELT under this loss function. 
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If no nontrivial split has a posterior probability greater 
than or equal to a, then the star tree will minimize the 

posterior expected loss. 

Per Branch Loss Functions That Emphasize Power 

In the most common context of reporting a phylogeny 
for a group, it seems appropriate to use a loss similar to 
the one described in the previous section?a loss func 
tion with a > 0.5. In some cases we may be more in 
terested in reporting any split that seems plausible. For 

example, one might want to constrain parts of the tree 
because it is not computationally feasible to explore all 
of tree space. In such a context, we might want to make 
sure that our constraints are not ruling out splits that 

might be present in the true tree. Therefore, the penalty 
for missing a branch would be higher than the penalty 
for including an extra branch. 
When a < 0.5, the two incompatible splits can each 

satisfy the necessary condition for a split to be in the 
MPELT (Inequality (21)). If we insist on returning a tree, 
then we must search through trees to find one that mini 

mizes Equation (15); the algorithms introduced by Susko 
(2006) for finding collections of trees with split weights 
above a threshold may provide inspiration for an algo 
rithm for finding the MPELT in this case. 
More importantly, in a situation in which we want to 

penalize missing branches more than false branches, it 

may not be helpful to restrict ourselves to reporting a 
tree. Summarizing all of the splits that satisfy Inequality 
(21) in a consensus network may be the more appropriate 
route to take (see Huson and Bryant (2006), for a helpful 
overview of these approaches). 

Discussion 

We have examined the implications of viewing the re 

porting of phylogenetic estimates from the standpoint of 
statistical decision theory. This leads to (yet) another phy 
logenetic optimality criterion: a preference for the trees 

with the minimum posterior expected loss. In particular, 
we propose a simple, cautious loss function that is ap 
propriate for the routine task of reporting a phylogeny 
estimated by a Bayesian analysis. This loss function (de 
scribed in detail above Conservative, Per Branch Loss 
Functions) expresses a preference for trees with as few 
incorrect branches as possible, but the function also pe 
nalizes estimates that omit a branch that is present in 
the true tree. Furthermore, the false-positive penalty is 

larger than the false-negative penalty. 
If such a per branch loss function is used, then the tree 

that minimizes the posterior expected loss will be the 

majority-rule consensus tree of samples from the poste 
rior probability distribution over trees?exactly the type 
of summary that many systematists already use. This loss 
function is a generalization of the Robinson and Foulds 
distance, and, as Berry and Gascuel (1996) point out, the 
(100 x a)% majority-rule tree is naturally associated with 
this distance. Previously this consensus tree has often 
been viewed as merely a summary tool and not as an 

optimal estimate of the tree under any criterion. 

If we prefer to be more conservative, then we can make 
the cost of extra branches in a tree higher than the cost 
associated with a missing branch. Implementing such a 

more conservative loss function which penalizes incor 
rect groupings even more strongly amounts to merely 
raising the cutoff for the majority-rule consensus tree. 
For instance, if the cost of a false positive is nine times 

higher than the cost of a false negative, then the cutoff be 
comes 90%; thus only the 90% majority-rule tree would 
be presented. The idea that including an incorrect branch 
in an estimated tree is a more serious mistake than omit 

ting a branch is certainly not new (see Berry and Gascuel, 
1996; Phillips and Warnow, 1996, for example). As noted 
above, in the unlikely event that a grouping has poste 
rior probability that corresponds exactly to the cutoff for 
inclusion in the majority-rule consensus tree, than these 

splits can also be included to produce more trees that 
also minimize the posterior expected loss. So the MPELT 
set under this loss function might include more-resolved 
versions of the majority-rule consensus in addition to the 

majority-rule consensus itself. 
From this decision-theoretic standpoint, the 50% 

majority-rule tree is an elegant summary of the poste 
rior distribution over trees because it allows readers to 
use their own level of aversion to questionable groupings 
by simply looking at the tree and ignoring branches with 

support lower than their own cutoff. Once again, this per 
spective justifies a common practice among systematists: 
the 50% majority-rule tree is often presented with an as 
terisk or other symbol highlighting the branches that ex 
ceed a cutoff which the authors feel comfortable viewing 
as strong support. Much of the discussion in the papers 
then centers around these strongly supported clades. 

It is important to note that the loss function described 
here is meant to reflect the decision of which tree to take 
as a phylogeny worth reporting and discussing. We have 
not attempted to exhaustively sample the universe of 

potential loss functions. Thus, we do not claim to have 
derived the correct loss function for any Bayesian phy 
logenetic analyses. In other contexts, very different loss 
functions may be appropriate, or it may not be helpful 
to consider losses in conjunction with tree estimation. 
For instance, many uses of Bayesian phylogenetics treat 
the tree as a nuisance parameter. In such cases, there is 
not a need to compress the posterior distribution into a 

summary?the entire sample of trees from the posterior 
distribution is helpful in characterizing the uncertainty 
in our estimates of the phylogeny. 

The tree that has the highest posterior probability can 
also be a tree that minimizes the posterior expected loss, 
but it does not have to be the MPELT. If we were forced 
to bet on a single tree topology and we would lose our 
bet if any part of it is incorrect, then our loss function 
would be an all-or-nothing statement about the tree. In 
such a case, the tree with the maximum posterior proba 
bility is always the tree that minimizes the posterior ex 

pected loss. In most contexts our loss function should not 
be all-or-nothing: reporting a tree that is mostly correct 
should not cost as much as reporting a tree that is com 

pletely wrong. In the simple case of a per branch loss 
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function that penalizes false positives more than false 

negatives, the tree with the maximum posterior prob 
ability will only be the MPELT if it is identical to the 

majority-rule consensus tree (using the appropriate cut 
off). Of course, there are many other possible forms of 
loss functions that we have not considered here. There 
are many ways of quantifying how different two trees 
are. Starting from the idea that we would prefer to re 

port trees that are close to the true tree, one could derive 
a set of loss functions for every different measure of tree 
to-tree dissimilarity. Thus there may be many forms of 
loss functions for which the tree with the highest poste 
rior probability is guaranteed to be a MPELT. 
Wheeler and Pickett (2008) recently criticized the prac 

tice of reporting the majority-rule consensus from a 

Bayesian MCMC simulation as leading to "exaggerated 
clade support, inconsistently biased priors, and the im 

possibility of hypothesis testing of cladograms." We will 
not attempt to address all of their arguments here, but 
we do note that their paper concludes that the majority 
rule consensus tree "may perhaps be regarded as state 

ments of support but not as best-supported scientific 

hypotheses of phylogenetic relationships." This state 
ment is in keeping with a tradition of systematists treat 

ing consensus trees as useful summaries but not estima 
tors in the truest sense. For example, Swofford (1991) 
states that "consensus trees are simple statements about 
areas of agreement among trees; they should not be in 

terpreted as phylogenies," because a literal interpreta 
tion of a consensus tree as a phylogeny would imply that 

any polytomies present in the consensus represent the si 
multaneous origin of more than two species. Miyamoto 
(1985) and Carpenter (1988) further caution against some 
uses of consensus trees for summarizing a collection of 
most parsimonious trees, on the grounds that the consen 
sus tree will (often) have a worse fit to the data than any 
of the most parsimonious trees. The example given by 
Barrett et al. (1991) serves as a warning against treating 
the consensus tree from analyses of subsets of the data 
as a "safe" statement of branches that will be present in 

analysis of the full data. 
Here, we advocate the use of the majority-rule con 

sensus tree as an optimal summary in the context of 
a per branch loss function. Our results do not conflict 
with all of the points raised by these authors. For exam 

ple, Swofford's (1991) point about treating polytomies 
in a majority-rule consensus trees as soft polytomies ap 
plies to the summaries that we favor. Nor do our results 

imply that the majority-rule consensus will fit the data 
better (in the sense of higher posterior probability or 

likelihood, or lower parsimony score) than other trees. 

Rather, the decision-theory framework gives us an ar 

gument for viewing the majority-rule tree as more than 

merely a summary. It can be seen as the optimal sum 

mary. In fact, if we need to report one tree and accept the 
tenets of the loss function described above (a per branch 
loss with a > 0.5), then the (100 x a)% majority-rule tree 
is superior (in terms of expected loss) to the tree that has 
the highest posterior probability. If one were to view hard 

polytomies as impossible and assign polytomies a prior 

probability of 0, then all trees with polytomies would 
have a posterior probability of 0. Even in this context, 
a majority-rule consensus that has polytomies can still 
be viewed as the optimal tree to report from a decision 
theoretic viewpoint. Despite the fact that the tree has no 
chance of being a completely correct representation of 
the phylogeny, it does the best job of conveying group 
ings of which the analysis is confident while avoiding 

weakly supported groups. 
We agree with the statement by Wheeler and Pickett 

(2008) that the majority-rule consensus tree is a "state 
ment of support" rather than the tree topology that has 
the highest probability of being a completely correct rep 
resentation of the evolutionary history of the group. This 
does not imply that we agree with most of their objec 
tions to the majority-rule consensus tree. For example, 

Wheeler and Pickett (2008) mention the fact that prior 
probabilities of different-sized clades are not necessarily 
equal in Bayesian analyses (except in cases of trees with 

very few taxa); this fact has been mentioned by authors 

including Pickett and Randle (2005), Randle and Pick 
ett (2006), and Yang (2006: 176). Although this fact may 

make some systematists reluctant to use clade posterior 
probabilities, we refer readers to the work of Steel and 
Pickett (2006) and Velasco (2007), which demonstrate that 
the nonuniform priors are the direct consequence of un 

problematic statements about uncertainty with respect 
to the tree shape. The priors are fundamental aspects 
of probability statements on trees and do not indicate a 

problem with the Bayesian approach to phylogenetic in 
ference. Interested readers should also consult Brandley 
et al. (2006). 
We note that there are other contexts in which the 

majority-rule tree can be viewed as an optimal tree. A 
median tree refers to the tree closest to all members of 
collection of trees, in the sense that it has the smallest sum 
of distances to all of the trees in the collection. Barthelemy 
and McMorris (1986) showed that the 50% majority-rule 
consensus of a collection of trees is the median tree when 
the symmetric distance is used as the metric for compar 
ing trees (note that if the number of trees is even then 
the set of median trees may contain trees that resolve 
the 50% majority-rule tree by adding splits which oc 
cur in exactly half of the input trees). McMorris (1990) 
extended that work and pointed out that if we treat the 

splits that are present in a collection of trees as data, then 
we can use a simple model to calculate a likelihood for 

any summary tree. In McMorris's model there is a prob 
ability p that a split will occur in an input tree if the split 
is present in the summary tree. For each split present in 
an input tree but absent in the summary tree, the proba 
bility 1 ? p is used in the likelihood. For any value of p 
in the range 0.5 < p < 1.0, McMorris demonstrated that 
50% majority-rule tree is the summary that maximizes 
the likelihood. The model is hard to justify as good de 

scription of which splits are likely to occur in a collection 
of estimated trees (for one thing the presence of each split 
is treated as an independent datum in McMorris model). 

Recently, Steel and Rodrigo (2008) have proposed a more 
realistic model of errors in tree topologies in the context 
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of their ML supertree methodology. Although the in 

terpretations of majority-rule consensus trees given by 
Barthelemy and McMorris (1986) and McMorris (1990) 

highlight interesting properties of this consensus tech 

nique, we feel that the decision-theoretic interpretation 
presented here provides a more intuitive interpretation 
of the role of a majority-rule consensus of a sample from 
a Bayesian analysis. Berry and Gascuel (1996) also found 
this decision-theoretic perspective helpful in the context 
of reporting the results of bootstrapping. 
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