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Syst. Biol. 42(2)1155-165,1993 

"UNORDERED" VERSUS "ORDERED" CHARACTERS 

Joseph B. Slowinski 

Museum of Natural Science, Louisiana State University, 
Baton Rouge, Louisiana 70803, USA 

Abstract.?Multistate morphological characters have generally been treated as either "unor? 
dered" or "ordered" in phylogenetic analyses using parsimony. Because ordering relations do 
not apply to the states of characters treated under these methods, I prefer "maximally connected" 
character to "unordered" character and "minimally connected" character to "ordered" character. 
This paper formally defines the two character types, compares their properties, and considers 
the consequences of the two methods for both resolution and congruence. The results demon? 
strate that minimally connected characters increase resolution relative to maximally connected 
characters. Minimally connected characters do not, however, necessarily increase congruence 
among data sets. Because both methods produce nonrandom congruence among data sets, both 
character types constitute valid phylogenetic methods. A mixed-parsimony approach is advo? 
cated, wherein multistate characters are treated as minimally connected whenever reasonable 
but treated as maximally connected otherwise. [Multistate character; ordered character; unor? 
dered character; parsimony.] 

Since the introduction of parsimony 
methods for inferring phylogenies, vari? 
ous ways to treat multistate characters have 
been developed (reviewed by Swofford and 
Maddison, 1992), each of which makes as? 

sumptions about the evolution of charac? 
ters. Of these, the relatively unrestrictive 
method of treating character-state relation? 

ships as undirected, such that the number 
of steps in the transformation from any 
state to another is equal to the number of 

steps in the reverse transformation, has 
been the most popular. Several variations 
of this method exist, the most restrictive 
of which assumes that the states of a char? 
acter are related according to a treelike 
transformation series, which constrains the 
transformation between any pair of states 
to proceed through any intermediate states 
defined by the transformation series. The 
least restrictive method places no such con? 
straints on a character, assuming that any 
state can transform directly into any other. 
The most restrictive method results in what 
are traditionally termed "ordered" char? 
acters; the least restrictive method results 
in what are traditionally termed "unor? 
dered" characters. However, for the rea? 
sons discussed below, I prefer "minimally 
connected" to "ordered" character, and 

"maximally connected" to "unordered" 
character. A third method, which results 

in "moderately connected" characters, im? 

poses constraints that are intermediate be? 
tween those imposed by the maximally and 

minimally connected methods by assum? 

ing transformation series with one or more 
closed circuits (Mabee, 1989; Swofford and 
Maddison, 1992). These three methods form 
a continuum in terms of the evolutionary 
constraints imposed on characters. The 

present paper, however, focuses only on 
the two extremes for the simple reason that 
these are the only character types that have 
been commonly employed in parsimony 
analyses. 

Given that there is a choice between 

treating multistate characters as minimally 
or maximally connected, the question nat? 

urally arises whether one method is pref? 
erable to the other. Resolution and accu? 

racy are important criteria to use in 

answering this question. By "resolution," 
I mean the extent to which relationships 
can be recovered; by "accuracy," I mean 
the extent to which the recovered rela? 

tionships are correct. Only one paper 
(Hauser and Presch, 1991) has addressed 
the relative merits of the minimally and 

maximally connected character methods. 
Hauser and Presch tested the assumption 
that minimally connected characters result 
in greater resolution by reanalyzing each 
of 27 published data matrices twice, once 
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with the multistate characters treated as 

minimally connected and again with the 
multistate characters treated as maximally 
connected. Their results indicated that 

minimally connected characters do not 

necessarily result in more resolution than 
do maximally connected characters. Al? 

though Hauser and Presch did not attempt 
to empirically assess the relative accuracy 
of the methods, they did consider the po? 
tential effect of the two methods on accu? 

racy from first principles. They concluded 

(p. 262) that "if one accepts that the most 
reliable criterion for determining the evo? 

lutionary sequence of a multistate charac? 
ter is the cladogram itself .. ., then hy? 
potheses of order are unnecessary." Thus, 
Hauser and Presch seem to recommend that 
multistate characters should generally be 
treated as maximally connected. 

Unfortunately, Hauser and Presch's 

(1991) comparison of the merits of maxi? 

mally and minimally connected characters 
is inadequate for two reasons. First, they 
ignored the original treatment of the mul? 
tistate characters sampled, choosing in? 
stead to linearly connect all multistate 
dharacters in their reanalyses. However, 
many of the multistate characters were 

originally maximally connected. Any study 
that purports to compare maximally and 

minimally connected characters must use 
the original hypotheses of character state 

relationships. 
Second, a consideration of phylogenetic 

resolution, although important, is insuffi? 
cient by itself to evaluate the relative mer? 
its of the maximally and minimally con? 
nected methods. An empirical evaluation 
of the accuracy of the methods must be 
made. After all, accuracy should ultimately 
be the most important consideration when 

deciding between competing phylogenet? 
ic methods; what good is improved reso? 
lution if the results are inaccurate? 

The present paper has two major parts. 
The first formally defines maximally and 

minimally connected characters and com? 

pares their properties. The second part em? 

pirically reexamines the rationale for 

choosing between maximally and mini? 

mally connected characters by considering 

the consequences of the two methods for 
both resolution and accuracy. Parsimony 
analyses were performed on 21 published 
data matrices (three of which were also 

analyzed by Hauser and Presch [1991]) us? 

ing the original (minimally connected) hy? 
potheses of character-state relationships 
and again with the characters maximally 
connected. Phylogenetic resolution was 
measured as the number of clusters minus 
one on the strict consensus trees resulting 
from each set of most-parsimonious trees. 

Obviously, it is impossible to directly as? 
sess the accuracy of a phylogeny. Instead, 
I assessed accuracy indirectly by the meth? 
od of taxonomic congruence (Mickevich, 
1978), which examines the extent to which 

phylogenetic trees based on different data 
sets are similar. Congruence among differ? 
ent data sets may provide the best evidence 
available bearing on the accuracy of phy? 
logenies (e.g., Penny et al., 1982; Miyamoto 
and Cracraft, 1991). In practice, however, 
perfect congruence is seldom achieved. 
Nonetheless, it is reasonable to assess com? 

peting phylogenetic methods by their abil? 

ity to produce congruence (Penny and 

Hendy, 1985a, 1986). 

Terminology 

The characters discussed in this paper 
are undirected or symmetrical characters 

(Swofford and Maddison, 1992), for which 
the number of steps in the transformation 
from any state to another is equal to the 
number of steps in the reverse transfor? 
mation. (My usage of "undirected" and 
"directed" with reference to characters is 

equivalent to Swofford and Maddison's 

[1992] usage of those words. Others [e.g., 
Meacham, 1984] have used "undirected" 
and "directed" character synonymously 
with "unpolarized" and "polarized" char? 
acter, respectively.) Undirected characters 
whose states are related according to a tree? 
like transformation series or "character 
state tree" (sensu Farris et al., 1970) are 

commonly referred to as "ordered." If the 
tree is linear, the character is said to be 

"fully ordered"; if the tree is branching, 
the character is said to be only "partially 
ordered" (Swofford and Olsen, 1990). Un- 
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directed characters whose states are al? 
lowed to transform directly into any other 
state are commonly referred to as "unor? 
dered." However, under the strict mathe? 
matical definition of ordering relations be? 
tween pairs of elements (e.g., Roman, 1986), 
the terms "unordered" and "ordered" do 
not apply to undirected characters. For a 
character to be ordered, i > ; or / > i must 
be true for some or all pairs of character 
states i and / under some appropriate sense 
for the binary order relation ">." In the 

present context, the appropriate sense for 
> is "is derived from" (see Estabrook, 1972). 
Thus, i > j means "i is derived from ;." 
However, by definition, no state of an un? 
directed character can be considered to be 

unequivocally derived from another for the 

simple reason that both forward and re? 
verse transformations are allowed; rela? 
tions between pairs of states are unor? 
dered. Ordering relations do apply to 
directed characters, e.g., to Camin-Sokal or 
irreversible characters (Estabrook, 1968), 
because the relationships between states 
are directed. For these reasons, I prefer 
"minimally connected" character, mean? 

ing that the states of the transformation 
series are connected with the minimal 
number of branches, rather than "ordered" 
character. Similarly, I prefer "maximally 
connected" character, meaning that the 
states of the transformation series are con? 
nected with the maximal number of 
branches, rather than "unordered" char? 
acter. 

Definitions and Properties of 
maximally and minimally 

Connected Characters 

A character used in parsimony analysis, 
regardless of how it is treated, can be de? 
fined as an exhaustive partition of rn taxa 

(including all outgroup or hypothetical an? 
cestral taxa) into n nonoverlapping subsets 

corresponding to the character states, to? 

gether with a set of "rules" that specify the 
number of units ("steps") in the transfor? 
mation between each ordered pair of char? 
acter states. Generally, the character states 
are a set of distinct features that are hy? 
pothesized to have transformed into each 

other. The characters discussed in this pa? 
per are types of undirected (or symmetri? 
cal) characters (Swofford and Maddison, 
1992), for which D(i, j) = D(j, i) for all char? 
acter states i and /', and where D(i, j) is the 
number of steps in the transformation from 
i to ;. This independence from direction 
facilitates phylogenetic analysis because 

algorithms for finding shortest trees based 
on undirected characters can manipulate 
unrooted trees because tree length is in? 

dependent of the position of the root. Di? 
rected characters are more restrictive than 
undirected characters because the number 
of steps in the transformation between any 
pair of character states depends on the di? 
rection of the transformation (Camin-So- 
kal or irreversible characters are examples 
of directed characters [Swofford and Mad? 
dison, 1992]). 

The rules specifying the number of steps 
between pairs of character states can be 

conveniently represented by connected 

graphs (Swofford and Maddison, 1992). (A 
graph is a set of nodes and branches; a 
connected graph is one in which every pair 
of nodes is connected by at least one path; 
a path is a connected sequence of nodes 
and branches. All graph theory terminol? 

ogy herein follows Harary [1969].) A graph 
used in this fashion is a character state 

graph (CSG), which generalizes the notion 
of a character state tree (sensu Farris et al., 
1970). On a CSG, the nodes correspond to 
character states and the branches represent 
the transformations between pairs of char? 
acter states. The branches of CSGs can be 
directed or undirected to indicate whether 
the character is directed or undirected. 
CSGs can be weighted by assigning a pos? 
itive integer to each branch. For a character 

represented by a CSG, the number of steps 
between any pair of states is the sum of 

weights along the shortest path (path of 
fewest branches) connecting the two states. 

Typically, the branches of maximally and 

minimally connected characters are equal? 
ly weighted with Ts. Hence, the number 
of steps between any pair of states for a 

maximally or minimally connected char? 
acter is simply the number of branches 

along the shortest path connecting the 
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A- 
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Figure 1. Character state graphs (CSGs) for several 
hypothetical undirected equally weighted charac? 
ters, (a) A CSG for a moderately connected character, 
(b) A CSG for a maximally connected character, (c) A 
linear CSG for a minimally connected character, (d) 
A branching CSG for a minimally connected char? 
acter. 

states. Figure 1 depicts CSGs for several 

hypothetical undirected equally weighted 
characters. 

The number R(n) of undirected equally 
weighted CSGs for n character states is 
counted by a recursive formula: 

R(n) = 2 
1 "-1 

,(-;') kR(k) 

(Harary and Palmer, 1973), where 

r\/(r - s)\sl For n = 2-9, R(n) is 1, 4, 
38, 728, 26,704, 1,866,256, 251,548,592, and 
66,296,291,072, respectively. This sub? 
sumes all undirected equally weighted 
characters, including maximally and min? 

imally connected characters and characters 
whose CSGs contain one or more but fewer 

than ( 
" 

I cycles (a cycle is a path that begins 

and ends with the same node). Figure la 
is a CSG of the latter type. Characters of 
this nature, termed "reticulate" by Mabee 

(1989) and "nexus" by Mickevich and Wel? 
ler (1990), place constraints on the evolu? 
tion of characters that are intermediate 
between those of the maximally and min? 

imally connected methods. The maximally 
and minimally connected methods are the 
end points of a continuum of possible un? 
directed methods, with reticulate/nexus 
characters occupying the middle. Reticu? 
late/nexus characters are often formed 

during "transformation series analysis" 
(e.g., Mickevich and Weller, 1990) but have 
been neglected as an a priori way to treat 
characters for phylogenetic analysis. This 

neglect is unfortunate because such char? 
acters could be used in situations where 
the relationships between the states of a 
character are only partially known. 

Maximally Connected Characters 

A maximally connected character is one 
for which every state on the CSG is directly 
connected to every other state. Thus, D(i, 
j) = 1 if i ?> j; D(i, j) = 0 otherwise (the 
"trivial metric" of Kluge and Farris [1969]). 
Figure lb illustrates a CSG for a maximally 
connected character. Construction of a 

maximally connected character merely en? 
tails identifying the character states; spec? 
ifying the number of steps separating pairs 
of states is trivial. In this paper, only "phy- 
logenetically informative" characters are 
of interest. Phylogenetically informative 
characters are characters that require dif? 
ferent numbers of steps on different trees. 
A maximally connected character is infor? 
mative when two or more character states 
are each present in two or more taxa (Fitch, 
1977). 

Maximally connected characters were 
first formalized by Fitch (1971) as his "min? 
imum mutation model" but were appar? 
ently first suggested by Kluge and Farris 

(1969). Although Fitch (1971) presented an 

algorithm for optimizing maximally con? 
nected characters to phylogenetic trees and 

developed the computer program ANCES? 
TOR to do so, very few or possibly none 
of the phylogenetic analyses of morpho- 
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logical characters published in the 1970s 
and early 1980s employed maximally con? 
nected characters, probably because of a 
mistrust by systematists of maximally con? 
nected characters as too "agnostic" with 

respect to evolution and, hence, less in? 
formative. For example, Mickevich (1982: 
475) labeled the maximally connected 
method as "the nihilistic method." Re? 

cently, however, opinion seems to be 

changing, and maximally connected char? 
acters are being increasingly used. 

Minimally Connected Characters 

A minimally connected character is one 
for which the CSG contains n ? \ branches, 
the minimal number for a connected graph. 
A CSG with n ? 1 branches contains no 

cycles and is, by definition, a tree. A tree 
used in this way is a specific type of CSG 
called a character state tree (CST). Figures 
lc and ld are linear and branching CSTs, 
respectively. 

Minimally connected characters were 

originally formalized by Kluge and Farris 
(1969) and Farris (1970). Any minimally 
connected character for m > 4 is phylo- 
genetically informative, unless the char? 
acter possesses a state with r taxa incident 
on m ? r branches on the CST. 

The polarity of a minimally connected 
character and the relationships of its states 
are distinct concepts (Mabee, 1989; Swof- 
ford and Olsen, 1990). Polarization of a CST 
entails identifying the ancestral state. The 

resulting CST, however, is not rooted. 

Rooting a polarized CST and, therefore, 
directing its branches, would imply irre? 

versibility of the transformations, contrary 
to the definition of undirected characters. 
To avoid confusion, polarized CSTs should 
not be drawn as rooted CSTs, contrary to 
the usual practice. It is preferable to illus? 
trate a polarized CST as unrooted, but with 
an asterisk (or some other symbol) includ? 
ed to denote the hypothesized ancestral 
state. 

The number T(n) of unpolarized CSTs is 
found by a simple formula: 

T(n) = nn~2. 

This equation is often attributed to Cayley 

(1889) but has an earlier history (see Moon, 
1970). Because a CST is polarized by de? 

noting one of its n nodes as ancestral, the 
number of polarized CSTs is n(nn~~2) = nn~x. 
The number of CSTs rises very quickly with 

increasing number of states. For example, 
for n = 3-8, T(n) is 3,16,125,1,296,16,807, 
and 262,144, respectively. The correspond? 
ing number of polarized CSTs is 9, 64, 625, 
7,776,117,649, and 2,097,152, respectively. 

An important distinction exists between 
linear CSTs, i.e., CSTs with no states con? 
nected to three or more branches, and 

branching CSTs, i.e., CSTs with at least one 
state connected to three or more branches 

(Figs, lc, ld). This distinction is important 
because linear CSTs can be represented by 
a sequence of integers or letters for direct 
use in computer-aided parsimony analysis, 
whereas branching CSTs must be decom? 

posed into two or more sequences of in? 

tegers or letters that are jointly equivalent 
to the original character (version 3.0s of 
PAUP [Swofford, 1991a], however, allows 
the states of a branching CST to be entered 

directly into a matrix). By this definition, 
a polarized CST on which the primitive 
state is an interior node and the remaining 
states are connected to one or two branches 
is not a branching CST. The number of 

unpolarized linear CSTs is n\/2, because 
each unpolarized linear CST corresponds 
to two permutations of n states taken n at 
a time. The number of unpolarized branch? 

ing CSTs is simply the difference between 
the number of unpolarized linear CSTs and 
the total number of unpolarized CSTs (i.e., 
nn~2 ? ni/2). The number of polarized lin? 
ear CSTs is n(nl/2) because there are n ways 
to polarize an unpolarized linear CST. The 
number of polarized branching CSTs is the 
difference between the number of polar? 
ized linear CSTs and the total number of 

polarized CSTs (i.e., nn~l - n[n\/2]). 

Differences between Maximally and 

Minimally Connected Characters 

Maximally and minimally connected 
characters differ in several respects. The 
most obvious is the greater degree to which 
a single character constrains the number 
of most-parsimonious trees when the char- 
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acter is minimally connected (Mabee, 1989). 
The number of shortest unrooted dichot? 
omous trees based on a single maximally 
connected character of n states for m taxa is 

N(m - l)N(ax)N(a2)'- 
? N(an)/N(m - n + 1), (1) 

where N(r) = (2r - 3)(2r - 5)- ? -1 and ak 
is the number of taxa possessing the kth. 
state (Carter et al., 1990: based on theorem 
2). The number of shortest unrooted di? 
chotomous trees based on a minimally con? 
nected character is 

N(a1+f1- l)N(a2 + f2-l)-- 
?N(an + /? 

- 1), (2) 

where fk is the number of branches con? 
nected to the kth state on the CST. This 

equation derives from the observation that 
for any single minimally connected char? 
acter, the shortest trees are exactly those 
derived from completely resolving a strict 
consensus tree of the same form as the CST 
with the terminal taxa substituted for the 
character states. Equation 2 counts the 
number of ways to resolve an unrooted 
Strict consensus tree with the same form 
as the CST. Using Equation 1, the number 
of shortest trees for a maximally connected 
character of three states, wherein ax = 3, a2 
= 2, and a3 = 2, is 27. If the states are related 
1?2?3, the number of shortest trees from 

Equation 2 is 9. If ax ? 4, a2 = 3, and a3 = 

3, the number of shortest trees under the 

maximally and minimally connected 
methods (states related as before) is 2,025 
and 675, respectively. 

This difference is due to the different 

ways the two character types treat trans? 
formations between pairs of states. With a 

maximally connected character, every 
transformation is treated equally as com? 

prising one step, resulting in a much larger 
number of trees than if the same character 
is treated as a minimally connected char? 
acter. As correctly argued by Hauser and 
Presch (1991), however, this reasoning does 
not necessarily extrapolate to collections of 
characters; a matrix of maximally connect? 
ed characters will not necessarily result in 
less resolution, hence the need for empir? 
ical tests of the present nature. 

Still another difference between maxi? 

mally and minimally connected characters 
relates to tree length: the shortest trees 
based on a set of minimally connected 
characters will be at least as long and usu? 

ally longer than those based on the same 
characters treated under the maximally 
connected method. This is a simple con? 

sequence of the different way that the char? 
acters are defined, and I agree with Hauser 
and Presch (1991) that it does not consti? 
tute a valid criticism of minimally con? 
nected characters. 

Methods 

The systematics literature was surveyed 
for morphological data matrices contain? 

ing minimally connected multistate char? 
acters. To be included in the analysis, a 
matrix had to be comprised of at least 10% 

minimally connected multistate characters 
whose state relationships were explicitly 
described. 

Two analyses were performed on each 
matrix. The first was designed to compare 
the resolution produced by treating the 
characters as minimally and maximally 
connected. The second analysis was de? 

signed to compare the congruence pro? 
duced by treating the characters as mini? 

mally and maximally connected. 
For the resolution study, each matrix was 

analyzed twice, once with the multistate 
characters minimally connected according 
to the author(s)/s CSTs and again with the 
characters maximally connected. The de? 

gree of resolution was measured simply as 
the number of interior nodes minus one 
on the strict consensus tree (SCT) of the 
shortest trees from each matrix. This index 
of resolution ranges from a minimum of 0 
to a maximum of m ? 3, where m includes 
all outgroup or ancestral taxa. Several au? 
thors (e.g., Swofford, 1991b) have pointed 
out an undesirable property of SCTs; two 
trees that differ only in the placement of 
one taxon can result in a highly or com? 

pletely unresolved SCT. This difficulty with 
SCTs was not considered a problem, how? 
ever, because the goal of this study was to 
assess resolution in a relative sense, not in 
some absolute sense, i.e., are SCTs based 
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on minimally connected characters better 
resolved than SCTs based on maximally 
connected characters? 

The congruence study utilized halfling 
analysis (Penny and Hendy, 1985a, 1986). 
Each matrix was randomly divided once 
into two disjoint submatrices of equal sizes 

("halflings"), and the two halves were an? 

alyzed separately, once with the characters 

maximally connected and again with the 
characters minimally connected. The re? 

sulting SCTs from the shortest trees based 
on each submatrix, analyzed by either the 

maximally or minimally connected meth? 
od, were compared with the partition met? 
ric, which counts the number of interior 
branches not shared between two trees (see 
Penny and Hendy, 1985b). Two interior 
branches on different trees are considered 

equivalent if their deletion partitions the 
taxa into the same subsets. If trees are root? 
ed, the partition metric counts the number 
of unshared clades. One problem with the 

partition metric is that a pair of trees dif? 

fering only in the placement of one taxon 
can have a large dissimilarity value (Penny 
and Hendy, 1985b; Swofford, 1991b). 
Again, because only relative congruence is 
of interest in this study, the partition met? 
ric is appropriate. Furthermore, the parti? 
tion metric is available in PAUP 3.0s (Swof? 
ford, 1991a) and is easily interpreted, and 
its probability distribution is known for up 
to 16 taxa for dichotomous trees (Penny et 
al., 1982; Hendy et al., 1984). 

When two trees contain polychotomous 
nodes, application of the partition metric 
will result in a low dissimilarity value, 
which implies a high degree of similarity, 
when in fact the dissimilarity is low simply 
because the trees lack interior branches that 

might conflict. One solution is to convert 
the value of the partition metric, d, to the 
maximum value, dmax, possible if the poly? 
chotomous nodes on two trees are consid? 
ered to represent unresolved relationships. 
This conversion is done by adding to d the 
number of interior branches that would be 

gained on two trees by resolving the po? 
lychotomous nodes. This strategy is em? 

ployed in this study. The formula dmax = 

2m + d ? tx ? t2 ? 6, where t{ is the res- 

olution index for tree i, was used to cal? 
culate dmax from d. 

The usefulness of halfling analysis for 

assessing phylogenetic accuracy depends 
on character independence, and especially 
with morphological characters, this con? 
dition is probably often not met. None? 
theless, halfling analysis is the best method 
available for comparing the accuracy of 

competing phylogenetic methods. Other 

investigators may wish to compare the 

minimally and maximally connected 
methods using other measures of reli? 

ability (e.g., bootstrapping, etc.). 
All parsimony analyses were carried out 

with PAUP 3.0s (Swofford, 1991a) on a 
Macintosh computer using the branch and 
bound (for m < 15) or general heuristic 
search (for m > 15) commands together 
with the collapse zero-length branches op? 
tion. Before each branch-and-bound run, 
an upper bound to the number of steps was 
estimated from the results of a general heu? 
ristic search to reduce run times. Charac? 
ters treated as maximally connected by the 
author(s) were treated that way in all anal? 

yses. The original outgroup(s) or hypo? 
thetical ancestral taxa were included to root 
the trees. 

For the congruence study, the tree-to- 
tree distances command of PAUP 3.0s was 
used to calculate d for pairs of SCTs based 
on the halflings. The equation described 
above was then used to calculate dmax. 

Results 

Twenty-one published matrices were 

analyzed (Table 1). Three of the sampled 
matrices were also analyzed by Hauser and 
Presch (1991): Crother et al. (1986), Ladiges 
et al. (1989), and Churchill et al. (1984) 
(cited as Humphries [1981] by Hauser and 

Presch). It was difficult to find acceptable 
matrices for this study because many pub? 
lished studies do not explicitly describe the 
CSTs for minimally connected characters; 
some studies do not even mention how the 
characters were treated, i.e., whether max? 

imally or minimally connected. Hauser and 
Presch (1991) noted the same problem. 

Resolution typically was greater for the 

minimally connected analyses. The SCTs 
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Table 1. Resolution and congruence (dmax) for 21 published data matrices reanalyzed treating characters 
as maximally (max) or minimally (min) connected. 

Data source 

No. 
No. char- 
taxaa actersb 

Resolution0 

Max Min Max Min 

Hulbert and MacFadden, 1991: table 1 14 39(24) 7 8 18 (1.9E - 2) 12 (1.2E - 5) 
Heyer, 1974: table 2 30 50 (33) 23 22 52 (1.2E - 1) 54 (1.0) 
Crother et al., 1986: table 1 5 30 (6) 1 1 4 (1.0) 4 (1.0) 
Smith and Koehn, 1971: table 1 17 30 (19) 3 ll 24 (1.6E - 2) 26 (1.2E - 1) 
Crumly, 1982: table 4 15 26(11) 2 2 24(1.0) 24(1.0) 
Ladiges et al., 1989: appendix 16 26 (12) 10 7 24 (1.6E - 1) 20 (1.3E - 3) 
Beehler and Swaby, 1991: table 2 7 17(12) 4 4 4 (5.6E - 2) 2 (9.5E - 3) 
Eckenwalder and Barrett, 1986: appendix 1 37 42 (16) 25 15 60 (2.0E - 4) 64 (1.6E - 2) 
Taber, 1990: table 1 24 33 (ll) 17 21 36 (1.9E - 3) 40 (1.2E - 1) 
Hood and Smith, 1982: table 2 ll 6 (3) 5 6 16 (1.0) 14 (1.9E - 1) 
Jensen and Barbour, 1981: table 1 7 26 (ll) 4 4 4 (5.6E - 2) 4 (5.6E - 2) 
Trueb and Cannatella, 1986: table 3 7 27 (6) 3 4 4 (5.6E - 2) 2 (9.5E - 3) 
Thiele and Ladiges, 1988: table 3 12 29(19) 0 5 18(1.0) 18(1.0) 
Nussbaum, 1979: appendix 2 14 43 (10) 9 10 20 (1.7E - 1) 14 (1.0E - 3) 
Duellman and Trueb, 1983: table 2 8 8 (3) 2 5 10 (1.0) 10 (1.0) 
Davis, 1986: table 1 15 8 (4) 1 3 22 (1.7E - 1) 22 (1.7E - 1) 
Montanucci, 1987: table 6 13 36 (12) 7 9 12 (2.0E - 4) 16 (2.0E - 2) 
Deharveng and Bedos, 1991: table 1 15 15 (8) 6 8 24 (1.0) 22 (1.7E - 1) 
Thewissen, 1992: table 1 8 10 (4) 2 2 8 (2.4E - 1) 10 (1.0) 
Churchill et al., 1984: table 4 10 47 (5) 5 7 14 (1.0) 12 (2.0E - 1) 
Page et al., 1992: table 8 ll 9(6) 5 6 14 (1.9E - 1) 14 (1.9E - 1) 
a Includes all outgroup or ancestral taxa. 
b Numbers in parentheses are number of multistate characters. 
c Number of interior nodes minus one on the strict consensus tree of the shortest trees. 
d Maximum possible value of the partition metric between the strict consensus trees from each pair of halflings. Numbers 

in parentheses represent cumulative probabilities of dmax values (based on Hendy et al., 1984: table 4; aE ? b = a x 10~fc). 
For n > 16, these probabilities were calculated using the asymptotic equation of Hendy et al. (1988). 

based on minimally connected analyses 
were better resolved for 13 matrices, the 
SCTs based on maximally connected anal? 

yses were better resolved for 3 matrices, 
and the remaining analyses resulted in ties. 
This pattern is statistically significant, us? 

ing a two-tailed binomial test (P = 0.021). 
The greater resolution of the minimally 
connected analyses resulted from the fact 
that, on average, matrices analyzed under 
this method resulted in fewer shortest trees 
than did the same matrices analyzed under 
the maximally connected method. 

The results of the congruence study in? 
dicate that minimally connected characters 
do not necessarily result in greater con? 

gruence. The minimally connected analy? 
ses resulted in greater congruence for eight 
matrices, the maximally connected analy? 
ses resulted in greater congruence for six 
matrices, and the remaining analyses re? 
sulted in ties. For each dmax, a cumulative 

probability was calculated using table 4 of 

Hendy et al. (1984). For matrices of n > 16, 

it was necessary to use the asymptotic 
equation of Hendy et al. (1988) because 
table 4 of Hendy et al. (1984) only applies 
for n < 16. The probabilities (Table 1) rep? 
resent the chance that two randomly cho? 
sen dichotomous trees will share at least 
as many clades as they do. The inverse of 
each probability (P_1) was calculated, and 
the 21 pairs of probabilities were compared 
using a Wilcoxon signed-rank test. The re? 
sult was not significant (P > 0.10), indi? 

cating no significant tendency of either 
character method to produce greater con? 

gruence. 

Discussion 

The question of how multistate charac? 
ters should be treated in phylogenetic 
analysis is obviously important. The recent 
trend seems to be one of an increasing pref? 
erence for maximally connected characters 
over the morfe traditional minimally con? 
nected characters. This preference seems 
to be motivated by a conviction that min- 
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imally connected characters entail a risk of 
error that should be avoided, that of mis- 

connecting character states. But, as Page et 
al. (1992) correctly pointed out, useful in? 
formation is lost when a correct "ordering" 
is discarded. Hence, "there is a tradeoff 
between the increased information gained 
by assuming an order versus the more se? 
vere consequences suffered if the assump? 
tion is wrong" (Page et al., 1992:639). The 
best way to resolve the dilemma posed by 
this trade-off is through an empirical eval? 
uation of the ability of each method to pro? 
duce resolution and congruence (as an in? 
direct estimator of accuracy). 

The results of this study demonstrate that 

minimally connected character analysis re? 
sults in greater resolution than does max? 

imally connected character analysis. Min? 

imally connected character analysis does 
not, however, necessarily increase congru? 
ence; congruence was greater for mini? 

mally connected analyses in some cases but 
not in other cases (see Table 1). The cu? 
mulative probabilities for the dmax values 
for both character methods were generally 
low (see Table 1). Only 12 halfling com? 

parisons (out of a total of 42) resulted in 

complete dissimilarity (dmax = 2n ? 6). If 
the 42 pairs of SCTs used to generate the 

dmax values had been chosen randomly, the 

majority would show complete dissimilar? 

ity. I tested the hypothesis that each col? 
umn of dmax values could have come from 
42 randomly chosen pairs of trees, using 
Fisher's combined probability test (Sokal 
and Rohlf, 1981). Both columns of values 
were highly significant (maximally con? 
nected dmax values: P <: 0.0001; minimally 
connected dmax values: P <c 0.0001), which 
means that the SCTs generated from the 

halflings analyzed under both methods 
shared more clades than expected by 
chance. More to the point, neither method 
can be rejected outright based on congru? 
ence; both methods have the potential to 

produce nonrandom congruence and are 
valid phylogenetic methods. 

Considering the above, I recommend a 

"mixed-parsimony" approach, whereby a 
multistate morphological character is min? 

imally connected when one CST is clearly 
superior to the others (e.g., as with the 

morphocline small?medium?large) but 
treated as maximally connected otherwise. 
When one CST is clearly favored, useful 
information is gained by constraining the 
character's evolution according to that CST. 
Several methods exist for determining 
CSTs. The most commonly used method? 
which might be termed the "classical" 
method?chooses the CST that implies the 
least amount of change between states, but 
other methods exist as well, including the 

ontogenetic criterion (reviewed by Hauser 
and Presch [1991]). 

A Caveat on Choosing CSTs 

Although I have supported minimally 
connecting characters when feasible, I cau? 
tion against the tendency to linearly con? 
nect all characters with four or more states. 
The majority of multistate characters in the 
literature (as well as the characters used in 
the present study) are three-state charac? 
ters, for which only linear CSTs are pos? 
sible. However, for characters with four or 
more states, branching CSTs are also pos? 
sible. Yet, in conducting the survey of lit? 
erature for this study, I noticed that char? 
acters with more than three states were 

usually connected in a linear fashion. I can 
think of no reason why an individual char? 
acter state could not give rise to two or 
more descendant states. In fact, if every 
possible unpolarized CST is considered 

equiprobable, the probability that a CST of 
n states will be branching, which is 1 ? 

(nl/2nn~2), rises very rapidly. For example, 
when n = 4, the probability that a CST will 
be branching is 0.25, but when n = 6, the 

probability is 0.72. It might be informative 
to investigate the predictions of a more 
realistic model, such as one where every 
state has an equal probability of giving rise 
to the next descendant state. These consid? 
erations are offered as a warning that non? 
linear CSTs should also be considered for 
characters with more than three states. 
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