
Cladistics 15, 415–428 (1999)

Article ID clad.1999.0122, available online at http://www.idealibrary.com on

Analyzing Large Data Sets in Reasonable Times:
Solutions for Composite Optima

Pablo A. Goloboff
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, Instituto Miguel Lillo, Miguel Lillo 205,
4000 S. M. de Tucumán, Argentina
Accepted October 28, 1999

New methods for parsimony analysis of large data sets
are presented. The new methods are sectorial searches,
tree-drifting, and tree-fusing. For Chase et al.’s 500-taxon
data set these methods (on a 266-MHz Pentium II) find
a shortest tree in less than 10 min (i.e., over 15,000
times faster than PAUP and 1000 times faster than
PAUP*). Making a complete parsimony analysis requires
hitting minimum length several times independently, but

not necessarily all “islands”; for Chase et al.’s data set,

this can be done in 4 to 6 h. The new methods also
perform well in other cases analyzed (which range from
170 to 854 taxa). q 1999 The Willi Hennig Society

INTRODUCTION

Parsimony analysis is well known as a computation-
ally difficult problem. The most widely used strategy
for finding optimal trees is multiple random addition
sequences plus tree bisection reconnection branch-
swapping (RAS 1 TBR). That strategy usually works
well for data sets of less than 100 taxa. The rationale

behind using several independent starting points is
that if local optima exist for the data set, the end point
of the different searches will eventually fall in a
global optimum.

0748-3007/99 $30.00 415
Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
For large data sets, however, this strategy has proved
unsuccessful. The most famous example to date is
probably Chase et al.’s (1993) 500-taxon data set (bap-
tized as Zilla by some authors), which was run for 3.5
months on three Sun Workstations (Rice et al., 1997)
using PAUP (Swofford, 1993), without ever finding
shortest trees. Soltis et al. (1998) considered that analyz-
ing large data sets may be more feasible than suggested
by Rice et al.’s analysis if one uses combined data sets.
However, despite their optimism, none of their PAUP*
(Swofford, 1998) searches for two data sets combined
(over 2800 bp) could finish in an average time of 530
h—even when they used only 193 taxa and only a
few starting points for TBR swapping (they “almost
certainly did not find the shortest trees”: Soltis et al.
1998: 34).

The traditional RAS 1 TBR analyses (like Rice et
al.’s) are extremely unlikely to find shortest trees in
the case of large data sets. Large data sets require a
qualitatively different approach. Using proper meth-
ods, it takes less than 10 min to find a shortest tree for
Zilla. This is about 15,000 times faster than Rice et al.’s

analysis with PAUP. The ratio of 15,000 is, however, a
gross underestimation of the actual speed ratio of the
two methods, since Rice et al. never found a shortest
tree.

and Nixon, in preparation), beta versions of which can
be downloaded from ftp.unt.edu.ar/pub/parsimony
416

METHODS

The sources for the data sets tested here are Chase
et al. (1993) (500 taxa, 1428 characters, minimum known
length 16,218), Liebherr (1998) (170 taxa, 206 characters,
minimum known length 1653), H. Ochoterena (per-
sonal communication) (854 taxa, 937 informative char-
acters, minimum known length 23,005), R. Zander (per-
sonal communication) (77 taxa, 75 characters,
minimum known length 496), Lipscomb et al. (1998)
(439 taxa, 4037 characters, minimum known length
42,116, called Mothra), and D. Eernisse (personal com-
munication) (476 taxa, 1008 informative characters,
minimum known length 17,765). Subtree pruning re-
grafting and tree bisection reconnection are abbrevi-
ated as SPR and TBR, respectively.1 All the timings
reported are on a 266-MHz Pentium II machine, run-
ning under Windows NT, using a single thread of
execution, with programs compiled with a Watcom
C/C11 compiler (version 11). Branch-swapping in
those programs uses Goloboff’s (1996) algorithms, but
with multi-character optimization performed by stor-
ing several characters in a single 32-bit integer (as in
Moilanen, 1999; and Ronquist, 1998). For TBR, the
“union-construct” shortcut of Goloboff (1996) was
modified, producing a slightly more efficient parallel
evaluation of destinations (the method of “node clus-
ters”). In the case of Zilla, evaluating the ca. 9.5 million
rearrangements to complete TBR on a quasi-optimal
tree takes an average time of 5.5 s (i.e., 1.7 million
rearrangements/s). For SPR, algorithms from J. S.
Farris (personal communication) led to dramatic speed
increases (for Zilla, six to seven times) during the initial
stages of the search; further speed increases of almost
50% were achieved with “dual evaluation” of destina-
tions during swapping (the two descendants of each
internal node are evaluated together, using the union
of their state sets, and only when this produces length
increments below the current bound are the two nodes
evaluated individually). Thus, creating a Wagner tree
and completing SPR for Zilla requires an average time

1The terms, introduced by Swofford (1993), are the most commonly
used for these methods. The methods themselves, however, had long
been in use. Subtree pruning regrafting had been in use in PHYLIP

(Felsenstein, 1993) since 1981 as “global rearrangements,” and tree
bisection reconnection is the same as the branch-breaker method
(bb) used in Hennig86 (Farris, 1988).

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
Pablo A. Goloboff

of only 15 s. My implementation of some of these algo-
rithms was somewhat experimental; possibly, more
careful implementations will produce faster analyses.
Since the basic code (e.g., the branch-swappers and
optimizers) was the same in all cases, the different
results presented here can be directly compared. The
methods are incorporated in the program TNT (‘‘Tree
Analysis Using New Technology;’’ Goloboff, Farris,
or www. cladistics.com).

PROBLEMS WITH LARGE DATA SETS

Rice et al. (1997) used PAUP (Swofford, 1993) in their
analysis of Zilla. The shortest trees they could find had
16,220 steps (they counted uninformative characters,
thus adding 313 steps). The shortest trees for Zilla are
16,218 steps long—2 steps shorter than Rice et al.’s
trees. However, the impression that months of search
on three Sun Workstations were not sufficient to find
shortest trees for Zilla when Rice et al. published their
paper is quite inaccurate. When their paper was sub-
mitted, NONA (Goloboff, 1994) was 30 times faster
than PAUP2 and had a better implementation of
RAS 1 TBR.

As pointed out by Giribet and Wheeler (in press),
the fact that NONA could retain smaller numbers of
trees during each replication made a big difference.
Saving too many trees per replication is a waste of
time, because the trees found by swapping differ too
little from the original tree(s) and are unlikely to lead
to new optima. That Rice et al. collapsed branches with
the (then only) option of PAUP that retains branches
supported under ambiguous optimizations (“rule 3,”
Swofford, 1993; Coddington and Scharff, 1994) just
made finding shortest trees less likely: collapsing with
stricter criteria makes searches more efficient (Golo-
boff, 1996: 214). Thus, it is better to save fewer trees,
collapse more strictly, and complete a larger number

2Versions of PAUP* after January 1999 are faster, because Swofford
implemented algorithms of Goloboff (1996)—although attributing

them to Ronquist (1998)—and Maddison (unpublished). The pro-
gram, however, still uses RAS 1 branch-swapping as its main
search strategy.

trate on finding trees as short as possible. Ratchet is
to be described elsewhere (Nixon, 1999); I concentrate
Analyzing Large Data Sets

of RAS. Finding every possible tree may be desirable
for some evolutionary studies (although even that is
doubtful in the case of the possibly hundreds of thou-
sands of most parsimonious trees for Zilla). However,
for taxonomic studies there is clearly no point in find-
ing all equally parsimonious trees: if a significant num-
ber of trees from the different global optima is sampled,
the consensus would be identical to that produced by
considering every possible most parsimonious tree.
Farris et al. (1996) have already shown that, in practice,
there is no point in finding all most parsimonious trees
for a data set.

While most of the effort in Rice et al.’s search was
used in needlessly finding (and swapping) thousands
of equally parsimonious trees, by doing RAS 1 TBR
saving few trees per replication with NONA, it was
already possible in 1997 to find shortest trees for Zilla
in 24–48 h, on an ordinary 200-MHz Pentium. This,
however, is a very long time. Most of the replications
never found shortest trees, and thus most of the search
time was effectively being wasted. Better methods are
required. Soltis et al. (1998) have proposed that using
more characters will make parsimony analysis easier,
because fewer equally parsimonious trees exist. More
characters make exact ties less likely and thus produce
fewer trees in a given optimum. However, it is far from
clear that adding more characters will also make it
easier to find a global optimum; it might make it more
difficult (simply multiplying the number of local op-
tima where a search could get stuck), and then the
number of independent replications to actually find
minimum length may be the same or more.

The problem with RAS 1 TBR is that it is extremely
unlikely that a given replication will find a global opti-
mum in the case of large data sets, because of the
existence of composite optima. It is well known that be-
yond 40 or 50 taxa it is common for data sets to exhibit
local optima (“islands” of Maddison, 1991). Large trees
can be thought of as composed of many sectors. A tree
for Zilla could be seen as composed of 10 subtrees of
50 taxa (Fig. 1). Each of those 50-taxon sectors has its
own local optima, and whether a given sector is in
a globally optimal configuration is (to some extent)
independent of whether other sectors are (the lack of
independence between optimality of resolutions for

different sectors simply makes the problem more diffi-
cult). This clarifies why finding a shortest tree is so
unlikely for a given RAS 1 TBR: this requires finding

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
FIG. 1. A large tree, showing sectors. See text for explanation.

a tree where all the sectors are in the proper configura-
tions at the same time. If there is a chance of 0.5 for
each sector to be trapped in a local optimum of its
own, in this particular case the probability of finding
a globally optimal tree in a given RAS 1 TBR is
0.510 5 0.00098. This is, on average, less than 1 in 1000
replications. No wonder Rice et al. never found a short-
est tree—they did only 8 replications.

Large data sets, therefore, require strategies that deal
with the problem of composite optima.

Once the problem has been identified, solutions pres-
ent themselves quite naturally. The solutions are based
on analyzing different parts of the tree separately. Con-
sider the tree of Fig. 1; if sectors A, B, C, and D were
optimal, just starting a new replication will possibly
place other sectors of the tree (say, E, F, and G) in
optimal configurations, but it is unlikely that sectors
A through D are all again in optimal configurations.
Thus, the solution requires that sectors be improved
separately, one at a time—that those sectors which are
suboptimal are improved without worsening the ones
that are already optimal. For this, there are four basic
methods: ratchet, tree-fusing, tree-drifting, and secto-
rial searches. These methods do not attempt to find
multiple trees during swapping, but simply concen-
417
here on the other methods.

TREE-FUSING (TF)

The basic idea in tree-fusing (TF) is exchanging sub-
groups between different trees. The subgroups must

have identical composition. Moilanen (1999) had used
exchanges of subtrees as part of his “natural selection”

versity of trees for subsequent swapping and selection,
while TF addresses the problem of composite optima
418

algorithm, but he only exchanged one randomly cho-
sen subclade at a time, placing it in a randomly chosen
position. Since Gladstein’s (1997) “incremental down-
pass optimization” can be used to calculate the length
obtained by moving a sub-group from one tree to an-
other, all possible exchanges between the two trees can
be evaluated quickly, to make only those exchanges
which improve the tree. As implemented here, the ex-
changes comprise all the groups with five or more
taxa, present in the consensus of both trees, which
are themselves not dichotomously resolved (since the
input trees are found by swapping, it is unlikely that a
five-taxon group will be in a suboptimal configuration;
dichotomously resolved groups need not be analyzed,
because the exchange of their respective subgroups
would produce the same result or better). For Zilla, this
normally requires evaluating the exchange of about 30
subtrees (which can be done in less than a second).
The groups to exchange are chosen in a down-pass; if
a group within a subtree has been changed, the subtree
itself is not changed further.

The best results were obtained when several trees
were input to the procedure, and different pairs of
trees were fused, producing new trees, as follows:

(1) Randomly select a tree (the “target” tree);
(2) Randomly select one of the remaining trees (the

“source” tree). If no trees remain to be fused with the
current target tree, do SPR swapping, save the result
as a new tree, and go back to step 1.

(3) Evaluate the result of moving each clade in the
source tree to the target tree, and go back to step 2.
An alternative to the procedure above is doing the
exchanges in both directions and changing the trees
themselves, but that preserves less of the variability
present in the original set of trees. Step 1 is repeated
several times or “rounds” (normally three to five). Re-
peating the procedure on the same original set of trees,
but selecting the trees in different orders, may produce
different results. The SPR swapping at the end of step
2 on occasion improves the tree.

Tree-fusing, when provided with a set of suboptimal
trees, almost invariably produces trees which are much
closer to being optimal. For example, doing 10 RAS 1

TBR on Zilla takes about 5 min; while the best trees
found are normally 16,225–16,230 steps, fusing them
goes down to 16,220–16,222 within a few additional

seconds. It is easy to see why TF works so well. If the
10 RAS 1 TBR have been obtained independently, each

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
Pablo A. Goloboff

of the sectors will be in an optimal configuration in at
least one of the trees. What is needed is putting all the
optimal sectors together. Under the ideal conditions
described in the legend to Fig. 1 (independence of
resolution among different sectors and probability 0.5
for each sector to be in an optimal configuration), 10
trees input to the TF procedure would virtually guaran-
tee that an optimal tree is found. Because those ideal
conditions are not met in real cases, TF requires as
input either many more trees produced by RAS 1 TBR
or trees which are closer to optimal.

Moilanen’s (1999) method, which he called crossover,
although useful in the context of his general strategy,
will not produce by itself the dramatic improvements
produced by TF. The purpose of crossover in Moila-
nen’s strategy is mostly preserving and creating a di-
in a more direct way.

SECTORIAL SEARCHES (SS)

SS is a special form of rearrangement evaluation,
needing a tree as starting point. It is based on selecting
different sectors of the tree, reanalyzing them sepa-
rately; if a better configuration is found, it is replaced
on the whole tree. The reduced data sets can be ana-
lyzed very quickly; they are formed by representing
internal nodes by their first-pass state sets (the basal
node must be represented by the first-pass state set
calculated upward). The sectors can be selected in two
ways, randomly or based on a consensus.

Random Sectorial Searches (RSS)

The procedure is as follows:
(1) Select a sector of nodes at random, such that the

reduced data set has S terminals (see Appendix 1 for
an example).

(2) Do R replications of RAS 1 TBR (saving a single
tree) for the reduced data set. If the R replications
produce trees of the same length (thus showing that
the selection S was in a non-conflictive part of the tree),
go to step 3; otherwise, do r additional replications,

and then go to step 3.

(3) Choose the best among the R 1 r replications

16,258 0 0 0 0.1 0

Note. The second line indicates average time per replication (in
seconds).

that another sector be resolved in a less optimal way);
Analyzing Large Data Sets

and the present resolution for the sector and place it
in the whole tree. Go to step 4.

(4) Do a round of global swapping, but only if re-
placements at step 3 have been made more than X
times. Go back to step 1, N times.

Steps 2–4 are skipped if the selection at step 1 pro-
duces a data set with only uninformative characters.
At step 1, the data are repacked; with this, many 3-
state or 4-state characters become binary (which can
be optimized faster), and many characters become un-
informative.

Good results are produced only for certain parame-
ters. The sectors should not be too small (otherwise,
the selection will rarely cover a part of the tree which
has local optima) or too big (otherwise, RAS 1 TBR
will never find optimal or quasi-optimal configura-
tions). The best size seems to be 35 to 55 nodes. For
that value of S, R 5 3 and r 5 3 are enough to make
it likely that an optimal tree for the reduced data set
is found. A round of global swapping of the entire tree
is made every 5 to 10 replacements, as that number
makes it likely that (through clade substitution) the
tree will have become globally suboptimal under TBR.
The number of sector selections needed to produce the
best results varied with data set size: the number of
selections at which it is likely that new sector selections
will overlap with previous ones changes with data set
size. For Zilla, 20 to 25 selections seemed to produce
the best time:result ratio. At this point, further selec-
tions very rarely produced further improvement. For
the 854-taxon data set, improvements were often found
beyond 50- or 60-sector selections.

This method gets down to trees much shorter than
those found by TBR using little additional time. The
profiles of tree lengths for 1000 replications of RAS 1

TBR are compared to those for RAS 1 TBR 1 RSS in
Table 1 and Fig. 2A. Completing a single RAS 1 TBR for
Zilla takes an average time of 30.0 s, while completing a
single RAS 1 TBR 1 RSS takes 50.8 s. For RAS 1 TBR,
the fraction of trees which are 16,225 steps or less is only
2.5%, while adding RSS raises the fraction to 18.8%.
To find as many trees under 16,226 steps as RAS 1

TBR 1 RSS finds in 100 replications, 752 replications
of RAS 1 TBR would be necessary, but this would take
4.4 times longer.

Although far better than TBR alone, RSS rarely finds

a shortest tree for a data set like Zilla. The reasons for
this are clear: (1) the resolution of the different sectors

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
is not really independent (for example, that we find a
resolution optimal for some sector may require in turn
419

TABLE 1

Frequency of Different Lengths, in Five Different Methods of
Analysis, over 1000 Replications (Ratchet Used Only 446
Replications)

MSS 1

MSS RSS Ratchet TBR DFT
Length (46.2) (50.8) (141.8) (30.0) (62.9)

16,218 0.2 0 0 0 1.3
16,219 0.4 0.1 0 0 6.3
16,220 2.5 1.1 5.4 0 12.3
16,221 5.6 1.8 1.1 0 19.3
16,223 7.2 4.1 3.8 0 13.2
16,224 10.7 4.2 6.9 2.5 11.4
16,225 12.0 7.5 9.2 0 9.2
16,226 13.8 8.2 8.3 2.8 4.6
16,227 10.4 8.8 14.3 0.3 3.0
16,228 8.6 9.8 17.0 0.1 1.2
16,229 8.5 8.9 6.9 0.7 0.6
16,230 5.7 7.8 9.2 0.8 0.1
16,231 3.8 7.4 6.5 8.1 0.2
16,232 3.5 4.9 3.8 13.1 0
16,233 2.5 5.4 0.7 1.6 0
16,234 0.8 3.9 4.0 8.4 0
16,235 1.7 2.8 0.5 6.6 0
16,236 0.8 2.9 1.3 6.7 0
16,237 0.6 2.3 0.2 3.6 0
16,238 0.2 2 0.2 1 0
16,239 0.3 1.2 0 8.0 0
16,240 0 1.3 0.2 6.1 0
16,241 0.1 0.4 0.2 5.4 0
16,242 0 0.4 0 3.4 0
16,243 0 0.7 0 5.6 0
16,244 0 0.1 0 7.8 0
16,245 0 0.5 0 2.8 0
16,246 0 0.2 0 3 0
16,247 0 0.7 0 0.5 0
16,248 0 0.2 0 0 0
16,249 0 0.2 0 0.3 0
16,250 0 0 0 0.2 0
16,251 0 0 0 0.1 0
16,252 0 0 0 0 0
16,253 0 0.1 0 0.2 0
16,254 0 0 0 0 0
16,255 0 0.1 0 0.2 0
16,256 0 0 0 0 0
16,257 0 0 0 0 0
and (2) achieving a configuration optimal for the whole
tree may require that some group(s) be moved too far

analysis (data from Table 1). (A) TBR (dark) and RSS (light); (B) 3
ratchet iterations (dark) and MSS (light); (C) MSS (light) and

MSS 1 DFT (dark). All figures drawn to same scale.

away (for example, more than 50 nodes away, when
S 5 40).

Another problem with the method is that the sectors
are selected at random; ideally, one would want to
select sectors in such a way that they are more likely
to represent areas with conflict. The R 1 r values, to
some extent, evaluate this; another possibility is select-
ing sectors of larger size (which are then more likely
to contain areas of conflict) and analyzing them using
ratchet or tree-drifting; this proved helpful for very
difficult data sets.

Consensus-Based Sectorial Searches (CSS)
This procedure is very similar to RSS, but differs in
the way in which the sector selection is done. The
sector is selected from a consensus calculated (by some

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
Pablo A. Goloboff

means) previously. The polytomies in the consensus
will reflect areas of conflict within the data, and thus
polytomies involving S nodes or more can be selected.
In practice, it is very unlikely that a group of less than
10 nodes will be resolved in a suboptimal way, so for
this method S 5 10. The rest of the parameters are
similar to those in RSS, except that the number of selec-
tions is determined by the number of polytomies in
the consensus. However, as resolutions of the different
polytomies are not completely independent, it is better
to repeat (in turn) the selections Y times (three to five).

The results this method produces are as good as
the consensus tree provided. A good candidate is the
consensus estimated with the method of Goloboff and
Farris (in press). For some data sets, however, that
method produces polytomies involving too many
nodes. The problem then arises that it is rather unlikely
that a few replications of RAS 1 TBR for the reduced
data sets will find an optimal configuration for the
sector (i.e., the “reduced” data sets are so big that one
again faces the problem of having composite optima!).
This was the case for the 854-taxon data set. This could
be solved by analyzing larger sectors using ratchet or
tree-drifting. However, the problem remains that the
method of Goloboff and Farris (in press) may tend to
show some unsupported nodes as supported for some
data sets, and that error would be incorporated into
the procedure.

Mixed Sectorial Searches (MSS)

This is a mixture of RSS and CSS. At each replication,
it starts with RAS 1 SPR. Once SPR is completed, the
consensus of the SPR-optimal tree with the tree from
the previous replication is calculated. That consensus
is then used as constraints to complete TBR (which
takes less time than unconstrained TBR3) and to pro-
duce a CSS. That consensus is produced from only two

3While completing a round of unconstrained TBR on a quasi-
optimal tree for Zilla in TNT takes about 5.5 s, a round of TBR with
250 nodes constrained takes less than 2.5 s. In TNT, the constraints
make searches more than twice as fast because the constraints are
implemented in such a way that rearrangements violating constraints
are not even attempted. PAUP* seems to use a different method,
since a round of TBR with the same 250 nodes constrained takes
420

FIG. 2. Frequency of different lengths, for different methods of
about 80% of the time without constraints (i.e., about 30 s with
constraints, 35 to 40 s without). It seems likely that PAUP* checks
constraints using group membership variables, a slower method.

Analyzing Large Data Sets

trees and is normally more resolved than the estimate
used in the previous method; since its only purpose is
to detect areas with conflict, it does not matter if some
groups not found in shortest trees are present. Once
CSS is completed, the set of constraints is abandoned,
and RSS is performed. Although part of the search is
constrained, the basic structure of the tree (found by
RAS 1 SPR) is not, and the final stage (RSS) is also
unconstrained. Furthermore, the constraints used vary
from replication to replication. It is then very unlikely
that systematic effects (like those introducing bias in
Goloboff and Farris’ method; see Goloboff and Farris,
in press) will cause a problem.

The kind of selections made by RSS and CSS are
based on different principles, so that they are combina-
ble. Thus, this mixed method produces better results
than the previous two. As part of the search is con-
strained, the time used is less than for RSS. The profile
of tree lengths is slightly better than the profile for 3
ratchet iterations (Fig. 2B). Ratchet, however, takes an
average time of 141.8 s per replication, while RAS 1

MSS takes only 46.2 s. For ratchet, the fraction of trees
which are under 16,225 steps is 17.2%, while for
RAS 1 MSS that fraction is 26.6%. To find as many
trees under 16,225 steps as 100 RAS 1 MSS, 154 replica-
tions of RAS plus 3 ratchet iterations would be neces-
sary, which would take 4.7 times longer. The compari-
son is even worse with RAS 1 TBR, as only 2.5% of
the trees are under 16,225; 1064 replications of RAS 1

TBR would be required to find as many trees under

16,225 steps as RAS 1 MSS finds in 100 replications,

but this would take 6.9 times longer.

TREE-DRIFTING (DFT)

In tree-drifting, suboptimal solutions are accepted
during branch-swapping, with a certain probability.
The probability of accepting a suboptimal solution de-
pends on both the relative fit difference (RFD; Goloboff
and Farris, in press) and the length difference between
the new and old solutions. Recall that (given two trees
A and B) RFDAB 5 (F 2 C)/F, where F is the sum
of character step differences in the two trees for the
characters that fit tree A better (evidence “favorable”

to tree A) and C is the sum for the characters that fit tree
B better (evidence that “contradicts” tree A). During

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
421

swapping, a lower bound on the RFD between original
and candidate tree can be estimated quickly, by com-
paring the decrease in length when clipping to the
increase in length when joining the clipped clade to a
given destination (see Goloboff and Farris, in press).
Solutions as good or better than the current one are
always accepted.

Accepting suboptimal solutions with a certain proba-
bility is a well-known technique in difficult optimiza-
tion problems, generally known as simulated anneal-
ing (Kirkpatrick et al., 1983). Tree-drifting could be seen
as a sort of simulated annealing. In parsimony prob-
lems, only Metro (a program formerly included in
PHYLIP) has used simulated annealing before. This
program performed very poorly (see Platnick, 1987,
for benchmarks). Swofford et al. (1996) and Rice et al.
(1997), apparently unaware of Felsenstein’s program,
have suggested that using simulated annealing could
be a way to escape from local optima. However, using
just the length to determine the acceptability of a tree
(as suggested by Swofford et al.) is not an ideal crite-
rion; this will suffer from the same problems as the
Bremer Support, discussed by Goloboff and Farris (in
press). Determining the acceptability of a tree by using
both its raw length difference and the relative fit differ-
ence (RFD) is a better criterion, because this takes into
account actual conflict between characters (and conflict
is in turn what determines local optima). Therefore, in
the present method, suboptimal solutions are rejected
when RFD is greater than Z:

Z 5 X/(F 1 J 2 C),

where X is a random number between 0 and 99 and
J is the length difference between the tree being
swapped and the tree used to start the drift procedure
(if a tree shorter than the original input tree is eventu-
ally found, J is re-set to 0). Factor J ensures that the
tree will not progressively become longer and longer.
Note that F and C are calculated between the tree being
currently swapped and candidate tree, not between
the original input tree and the candidate tree. As imple-
mented here, if the tree is accepted, swapping contin-
ues from the candidate tree. Once a given number of
changes, C, have been made to the tree, a round of
normal swapping is done. The drifting then can be
repeated D times.
The performance of the DFT is improved by con-
straining some nodes during the phase of normal TBR.

(17,765)

Note. For each data set, minimum known length is indicated in
422

This “hard drift” takes the original tree and drifts it,
then creates the consensus of the original tree and the
tree resulting from the drift and uses that consensus
as constraint tree (for each of the D cycles of drifting,
a different consensus will be used as constraint). This
does not significantly decrease the effectiveness of the
method, but it decreases execution times. The advan-
tage of a hard drift is that the round of normal swap-
ping becomes focused on the areas of conflict; the areas
which are identical in both trees are unlikely to lead to
improvements. To ensure optimality under TBR, every
certain number of constrained TBR cycles (5 to 10,
depending on the total number of drifts to do), a round
of unconstrained TBR is performed. This hard drift
method is helpful in very difficult data sets, which
require a lot of drifting.

Tree-drifting normally produces further improve-
ments to the results of previous methods, with little
additional time. For Zilla, the time for MSS alone is
46.2 s, and adding DFT (C 5 30, D 5 3) takes an
additional 16.7 s (62.9 s total). Figure 2C and Table 1
show the length profiles for MSS 1 DFT. To find as
many trees within 16,223 steps as 100 replications of

MSS 1 DFT find, 329 replications of MSS alone would

be necessary, but this would take 2.4 times longer.

COMBINED STRATEGIES

The method of TF can produce optimal trees only
when fed with large numbers of very suboptimal trees
or fewer trees which are close to optimal. SS and/or
DFT are the best means to produce quickly nearly-
optimal trees, which can then be used for TF. For the
most difficult data sets, the best results were obtained
when the trees to be fed to TF were also subject to SS
and DFT combined (using DFT to analyze sectors of
larger size). The strategies were run either by means
of a batch file that called the search programs and
then called itself again or by a driver program that
supervised execution of the search programs. Table 2
shows the summary results of the test runs.

(1) RSS 1 TF
The searches used 16 replications of RAS 1 TBR 1

RSS (S 5 40, N 5 20, R 5 3, r 5 3, X 5 5), followed

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
parentheses.

by 3 instances of TF (with three rounds each). The
average time per run for Zilla was 16.0 min. This ran
60 times in 16.0 h, finding trees of 16,218 steps 45 times,
16,219 steps 14 times, and 16,220 steps only once. This
produced shortest trees every 21.3 min.

(2) CSS 1 TF

This was tested with Zilla, using as constraint the
250 groups produced in a conservative estimation with
Goloboff and Farris’ method (the strict consensus of
16 replications of RAS 1 SPR, collapsing the trees on
SPR rearrangements with a relative fit difference of
0.20 or less and an absolute step difference of 2 or less;
it takes about 5 min to produce the estimation). The
searches used 10 replications of RAS 1 TBR 1 CSS,
with parameters as in the previous case, except that
S 5 10 and Y 5 4. The routine ran 154 times in 14.9
h, finding 16,218 steps 119 times, 16,219 steps 27 times,
and 16,220 steps 8 times. This produced shortest trees
every 7.5 min.

(3) MSS 1 TF
Pablo A. Goloboff

TABLE 2

Summary Results of Test Runs for Different Combined Strategies

Data Run time Times min. Average time to
set Method (h) length hit min. length (min)

1 16.0 45 21.3
2 14.9 119 7.5

Zilla 3 15.4 59 15.6
(16,218) 4 4.6 26 10.5

5 15.3 100 9.2
6 24.1 140 10.3

Mothra 5 20.3 25 49.3
(42,116)

7 134.1 14 576.0
854 taxa 8 100.2 11 546.0
(23,005) 10 19.0 0 .1140

11 140.6 25 337.2

476 taxa 11 72.9 6 728.7
The searches used 10 replications of RAS 1 MSS
(R 5 3, r 5 3, X 5 5; for CSS, S 5 10, Y 5 4; for RSS,

Analyzing Large Data Sets

S 5 40, N 5 20), tree-fusing the results 3 times (with
three rounds each). For Zilla, this routine ran 85 times
in 15.4 h, finding 16,218 steps 59 times, 16,219 steps 23
times, and 16,220 steps 3 times. This produced shortest
trees every 15.6 min.

(4) MSS 1 TF under Driver

Since many of the searches in the previous methods
often find a shortest tree within the first 5 or 6 min of
the search, the rest of the time is really wasted. There-
fore, when one already knows the minimum length
for a data set, it is possible to make more efficient
searches, by searching until that length is found, and
then starting over with the next search. A simple driver
program was designed, which calls another program
that runs a given number of replications of multiple
MSS (with other parameters as in previous methods);
those trees are input to TF (three times, unless a shortest
tree is found first, using three to six rounds each), and
if no shortest trees are found, the program that does
multiple MSS is called again to do a smaller number
of replications (with the resulting trees added to the
file containing the trees that failed to produce a shortest
tree under TF); this last step is repeated until a shortest
tree is found. The driver changes the number of replica-
tions according to how often the number currently in
use produces shortest trees (if three or more of five
main cycles found shortest trees without having to
search additional MSS trees, the number of replications
is decreased; if fewer than two found shortest trees
without additional MSS trees, or additional MSS
searches must be repeated several times in a row, the
number is increased). The initial value of MSS replica-
tions (i.e., trees to be input to TF) was set to 6 (plus 3
more, if the previous ones failed to produce a shortest
tree). For Zilla, this program was left running for 4.55 h,
finding 26 shortest trees (a shortest tree every 10.5 min).

(5) MSS 1 DFT 1 TF under Driver

This was similar to the previous one, but added DFT
to each MSS replication. The initial number of MSS 1

DFT replications was set to 5 (with C 5 30, D 5 3, for
DFT). The driver ran Zilla for 2.9 h, finding minimum
length 18 times (a shortest tree every 9.7 min). The

addition of DFT after MSS increased speed, but only
by a small factor; possibly, the improvement in length

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
423

by DFT would have been easily achieved with the
subsequent TF. Running the same routine with less
drifting (C 5 25, D 5 2) produced apparently better
results (minimum length hit 100 times in 15.3 h, a
shortest tree every 9.2 min), but the difference may be
non-significant. This strategy (with MSS followed by
DFT with C 5 30, D 5 3) was also used in the 439-
taxon data set, hitting 42,116 steps 25 times in 20.5 h
(a shortest tree every 49.3 min). The 439-taxon data set
takes much longer than Zilla (in part because it has
many more characters: 4037 instead of 1398), but it still
runs reasonably fast.

(6) RAS 1 TBR 1 DFT 1 TF under Driver

This strategy places more emphasis on the drift,
rather than on SS. For CSS, N 5 1 and S 5 10; for RSS,
N 5 2 and S 5 40; the DFT stage used C 5 35 and
D 5 3. When run with the driver program, this routine
hits minimum length for Zilla 140 times in 24.1 h (a
shortest tree every 10.3 min). Thus (in the case of Zilla,
at least), MSS followed by TF produces about the same
results as DFT followed by TF; MSS 1 DFT followed
by TF produces slightly better results (10% faster).

(7) MSS 1 RSS Using Ratchet 1 TF

This strategy was used in the 854-taxon data set,
which is much more difficult than Zilla. Reasonably
good results were obtained by running 50 replications
of RAS 1 MSS (S 5 45, N 5 60) followed by analysis
of randomly chosen sectors (S 5 80, N 5 10) with 15
iterations of jackknife-ratchet. Being larger, the sectors
to be analyzed with ratchet were more likely to cover
conflictive areas, and since they covered larger parts
of the tree, a lower number of them was selected. The
extra ratchet analysis of larger sectors normally pro-
duced further improvements on the tree, without tak-
ing as long as ratchet on the entire tree. A round of
global TBR swapping was done every 10 replacements
to the tree (X 5 10). The routine ran 26 times in 134.10
h, finding 23,005 steps 14 times (every 9.6 h), 23,006
steps 7 times, and 23,007 steps 5 times.

(8) MSS 1 RSS Using Ratchet 1 DFT 1 TF
under Driver
The addition of DFT (C 5 30, D 5 3) did not signifi-
cantly improve results over the previous method. The

For the 476-taxon data set, this strategy found mini-
mum known length 6 times in 72.9 h (minimum length
424

driver program ran for 100.2 h, hitting 23,005 steps 11
times (every 9.1 h).

(9) MSS 1 Ratchet 1 RSS

This strategy does some number of ratchet iterations
to the tree produced by MSS; when the character
weights are re-set to the original ones, RSS (instead of
just TBR) is used for further improvement before the
next ratchet iteration. It never uses TF. The results of
this strategy for Zilla were highly variable, with mini-
mum length sometimes hit very fast (within the first
2 or 3 min) and sometimes never in 15 min or more.
The average results seemed inferior to those using TF,
although no detailed timings were done.

(10) Multiple MSS 1 Ratchet 1 RSS 1 TF
under Driver

For the 854-taxon data set, this strategy seems infe-
rior to the others tried. Minimum length was never
found in 19 h, using the driver program, with initial
number of MSS replications set to 20 (for CSS, S 5 10,
N 5 4; for RSS, S 5 50, N 5 50), each followed by
eight ratchet iterations and RSS (same parameters).

(11) Multiple MSS 1 RSS Using DFT 1 Hard
DFT 1 TF under Driver

This method produced the best results for the 854-
taxon data set. The strategy is similar to strategy 8,
but used more exhaustive drift and selected a larger
number of sectors to be analyzed with DFT (instead
of ratchet). Therefore, the number of MSS replications
was lower, initially set to 8 (changed by the driver
during runs to 10–12). The other parameters used were
for CSS, S 5 10, N 5 3; for RSS, S 5 50, N 5 50, X 5

15; for RSS analyzed with DFT, S 5 100, N 5 15, X 5

15, analyzed with eight rounds of hard DFT; and for
the global DFT, C 5 40, D 5 25, doing unconstrained
TBR every 7 cycles of drifting. The resulting trees were
subject to TF. This method hit 23,005 steps 25 times in
140.6 h (minimum length hit every 5.6 h). A similar
strategy was also the one that produced the best results
on the 476-taxon data set from Doug Eernisse, the most

difficult data set analyzed here (the parameters were
similar to those for the 854-taxon data set, except initial
number of replications set to 10, changed by the driver

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
Pablo A. Goloboff

to 22; for RSS, S 5 45, N 5 25, X 5 10; for RSS analyzed
with DFT, N 5 10; and for the global DFT, D 5 80,
doing unconstrained TBR every 15 cycles of drifting).
every 12.1 h).4

DISCUSSION

Aside from SS, TF, and DFT, the best existing method
for complex data sets is the parsimony ratchet (Nixon,
1999). Ratchet does partial changes to a tree, without
changing all the tree structure; it has the advantage,
over SS, that the changes made to the tree are based
on character conflict—which is in turn what deter-
mines the existence of local optima. Thus, ratchet is
better than SS at identifying areas of conflict. However,
ratchet must complete TBR twice in every iteration,
for the entire tree. The method of SS makes several
faster searches. For Zilla, the results with SS 1 DFT 1

TF were superior to the best results obtained with
ratchet alone (possibly, minimum length every 2 or
4 h) and superior to the best results obtained with
ratchet plus TF (minimum length twice per hour, but
using constraints). Ratchet eventually reaches mini-
mum length in almost every case (artificial cases where
it never does can be constructed). SS alone (or with
only a few cycles of DFT) usually gets stuck at some
non-minimal length, but it gets down to that point
faster than ratchet, and then it is an ideal method to
use in combination with TF.

Zilla, despite its size, seems a rather “clean” data
set. In other words, Zilla seems to be a very good case
of composite optima, with little interaction between
the resolution for the different sectors in the tree. Other
data sets take almost as much work to find shortest
trees, despite being smaller. The (highly islandic) 170-
taxon data set was also run with the driver program;
MSS 1 DFT 1 TF found minimum length trees every

4If 12.1 h seems a long time, consider that the best trees PAUP*
found for this data set after 86 h (with 274 RAS 1 TBR, saving up
to 10 trees per replication, collapsing the trees with “amb 2”) were

17,778 steps—13 steps away from minimum known length. For the
present strategy, trees of 17,778 steps are almost always found within
the first 15 min of each individual replication.

Analyzing Large Data Sets

7.6 min, while ratchet alone found them every 20 min.
The difference in time between ratchet and MSS 1

DFT 1 TF for this data set was smaller than for Zilla.
Apparently, both SS and TF require some structure in
the data—which is normally the case for real data
sets. For the (very poorly structured) 77-taxon data set
ratchet was about three times faster than MSS 1 TF:
the driver found a shortest tree every 30–40 s, while
ratchet (numerous replications of RAS 1 35 ratchet
iterations) found them every 10 s. For large random
data sets (150 taxa and 200 characters), ratchet was also
far better than MSS 1 TF. In each iteration, ratchet can
freely change most of the tree structure, if necessary,
which is not the case for either SS or TF.

Through the use of the relative fit difference, the
rearrangements tried by DFT are determined by char-
acter conflict much more than those tried by SS or TF,
and DFT can make radical changes to the tree structure.
Therefore, DFT performs much better than SS 1 TF
in the case of random or poorly structured data sets,
outperforming even ratchet. The difference from
ratchet arises in part because ratchet actually tries to
find an optimal tree for the re-weighted data; DFT
simply finds a series of (possibly suboptimal) solutions,
without completing TBR. If ratchet is modified such
that the re-weighted search is not completed (but sim-
ply finishes when some number of rearrangements
have been done), perhaps run times (and results)
would be more comparable to those for DFT.

For small data sets (i.e., below 100 taxa) neither SS
nor TF are usually of much help. Small data sets are
difficult to analyze only when very poorly structured.
That situation is best analyzed by doing multiple
RAS 1 TBR followed by extensive DFT. For the 77-
taxon data set, 100 such replications (with C 5 30,
D 5 25) found minimum length 63 times, in a total
time of 4.31 min (minimum length every 4.1 s).

For large data sets, TF has two important advantages
over other methods. First, it uses suboptimal trees, as
long as they have some sectors in optimal configura-
tions. Therefore, one is not forced to throw effort away
when a series of replications did not succeed in finding
shortest trees. If a set of trees did not produce optimal
trees under TF, it is possible that adding a few more
trees will. Second, TF provides an additional way to

test for global optimality. If the best length found sev-
eral times independently does not produce better trees
under TF, it is likely that length is indeed the minimum

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
425

possible for the data set. In the case of Zilla, all methods
used here show an asymptotic approach to optimality;
without the driver, 16,218 is found in 50 to 75% of
the cases. During the development of these methods,
length 16,218 has been hit more than 1000 times. Possi-
bly more significant is that 300 trees of minimum length
(from about 100 independent hits) were used as input
for TF, but TF did not produce any improvements.
Therefore, it is very unlikely that shorter trees exist
for Zilla.

The best results for the two most difficult data sets
analyzed here (strategy 11, above) were obtained when
increasing the exhaustiveness of each replication to
use as input for TF, rather than greatly increasing the
number of replications. This suggests that, possibly,
the most significant improvement to the driver will be
having it change during the run not only the number
of replications, but also the exhaustiveness of each rep-
lication (i.e., the number of sector selections to be ana-
lyzed with DFT and the number of global DFT cycles).

The methods described here do not attempt to find
multiple equally parsimonious trees during swapping
(they can indirectly find multiple trees, of course). As
discussed above, finding all equally parsimonious trees
for large data sets is entirely unnecessary. In fact, it is
unnecessary to hit all islands of most parsimonious
trees. If each of the 10 sectors in the tree of Fig. 1 has
two global optima (and they are independent), then
there are 210 or 1024 global optima not connected
through TBR rearrangements. As islands were defined
by Maddison (1991), all 1024 combinations of the differ-
ent optima for each sector are in different islands. How-
ever, it is possible to produce a consensus identical to
that from the 1024 trees by using only 2 trees, as long
as each sector is in a different global optimum in both
trees and the trees are collapsed with the TBR algorithm
(as in Goloboff and Farris, in press). Therefore, an anal-
ysis does not require that all islands are hit, only that
minimum length is hit independently a given number
of times, to make sure that all optima for each sector
are sampled at least once. The real problem is that
some optima are more difficult to sample, simply be-
cause there are few trees in those optima. This is the
same problem encountered by Goloboff and Farris (in
press), and it will affect any search method. Moilanen
(1999) suggested that his method might find some most

parsimonious trees not easily found by other methods,
but it seems most likely that his method—just like

426

any other—will find optima with many trees more
commonly than optima with few trees. The best solu-
tion for this problem is using a number of hits to mini-
mum length such that even uncommon optima are
sampled. Whether minimum length has been hit
enough times to produce an accurate consensus can
be determined by means of the same criterion that has
long been used to determine whether a search is likely
to have found minimum length: when a number of
additional hits to minimum length does not further
de-resolve the consensus, the consensus is stable, and
the search is finished. For Zilla, the driver program
was used to supervise such a search, re-calculating the
consensus every 3 hits to minimum length, until it
became stable (for this data set, stability was usually
achieved with 12 to 18 hits to minimum length). To
make it less likely that errors were produced, the con-

sensus was re-calculated again after having become

if (!marker[x] && (cur sz 2 clad s
marknodes (inlist, x, 1, marker) ;

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
Pablo A. Goloboff

was stable again or until it had the same number of
nodes in the consensus calculated the first time. The
final result was calculated as the strict consensus of
both consensus trees. The average run time for this
procedure was 4.04 h and it produced the exact result
(i.e., no spurious nodes at all, of 498) in 9 of 11 cases.
The two exceptions had 2 and 1 spurious nodes,5 thus
producing an average error rate (sensu Goloboff and
Farris, in press: number of spurious nodes divided by
number of nodes recovered) of 0.068%. Note that this
is about the same error rate in Goloboff and Farris’
method, when high cutoff frequencies are used (the
present method uses a strict consensus), and it obvi-
ously depends on the structure of Zilla. If the consensus
was re-calculated until stability is reached three times
instead of two (which would probably take about 6 h
instead of 4), the error rate would essentially disappear.
5Rice et al.’s consensus (based on 8975 trees from a single hit to

length 16,220) has 46 spurious nodes (of 434) or an error rate of 10.6%.stable (also every 3 hits to minimum length), until it

APPENDIX 1

C function to select, at random, a sector of the tree having no more than “sector sz” nodes as terminals and
no less than “min sz.” Once the nodes are selected, the function create matrix() re-packs the data (returning 0
if no informative characters are present). The number of terminals in the entire tree is ntax (terminals are numbered
from 0 to ntax-1, internal nodes from ntax to root 5 2*nt-2). The root node is never selected. Other global variables
used are anc[i] (ancestor of node i), list[i] (the ith node in the list of nodes descended from the selected node),
clad sz[i] (the number of terminals included in node i), marker[i] (takes value 2 if node i is selected as terminal
for the reduced data set, 0 if node is within the sector chosen but not selected, 1 if node is outside), lefdes[i] and
rigdes[i] (the left and right descendants of node i), and inlist[i] (a list for an internal loop).

int selectem (void)
{ int a, x , items, nod, min sz, cur sz ;
min sz 5 (sector sz * 80) / 100 ;
for (nod 5 rand () % root ; clad sz[nod] , min sz ;) nod 5 anc [nod] ;
if (nod 55 root) nod 5 lefdes [root] ;
if (!nod) nod 5 rigdes [root] ;
items 5 marknodes (list, nod, 0, marker) ;
for (a 5 items ; a-- ;) if (list[a] , ntax) marker[list[a]] 5 2 ;
if (clad sz [nod] .5 sector sz) {
cur sz 5 clad sz[nod] 1 1 ;
for (a 5 0 ; a , items ; 11a) {
x 5 list[a] ;
z[x]) 1 1 .5 min sz) {

427
Analyzing Large Data Sets

marker[x] 5 2 ;
if ((cur sz 25 (clad sz[x] 2 1)) ,5 sector sz) break ; }}}

marker [nod] 5 2 ;
return (create matrix (list, items)) ; }

int marknodes (int * lst, int from, int val, int * where)
{ int a 5 0, b 5 1, x ;

int * dede [2] ;
int side ;
dede [0] 5 lefdes ;
dede [1] 5 rigdes ;
lst [0] 5 from ;
while (a , b)

{ where [x 5 lst [a11]] 5 val ;
if (x .5 ntax) {

side 5 1 & rand () ;
lst [b11] 5 dede [side] [x] ;

lst [b11] 5 dede [1 2 side] [x] ; }}

return (b) ; }
ACKNOWLEDGMENTS

I thank Jim Carpenter, Doug Eernisse, Steve Farris, Kevin Nixon,
Claudia Szumik, Ward Wheeler, and Mike Whiting for discussion,

comments, and encouragement. Support from PEI 0324/97 and PICT

01-04347/98 was deeply appreciated.

REFERENCES

Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H.,
Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y.-
L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J.
R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark,
W. D., Hedren, M., Gaut, B. S., Jansen, R. K., Kim, K.-J., Wimpee,
C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q.-Y.,
Plunkett, G. M., Soltis, P. S., Swensen, S. M., Willimas, S. E.,
Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn,
G. H., Jr., Graham, S. W., Barret, S. C. H., Dayanandan, S., and
Albert, V. A. (1993). Phylogenetics of seed plants: An analysis of
nucleotide sequences from the plastid gene rbcL. Ann. Mol. Bot.
Gard. 80, 528–580.

Coddington, J., and Scharff, N. (1994). Problems with zero-length

branches. Cladistics 10, 415–423.

Farris, J., Albert, V., Källersjö, M., Lipscomb, D., and Kluge, A. (1996).

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
Parsimony jackknifing outperforms neighbor-joining. Cladistics
12, 99–124.

Felsenstein, J. (1993). PHYLIP: Phylogeny Inference Package. Univer-
sity of Washington, Seattle.

Giribet, G., and Wheeler, W. The position of the arthropods in the
animal kingdom: Ecdisozoa, islands, and the parsimony ratchet. Mol.
Phylogenet. Evol., in press.

Gladstein, D. (1997). Efficient incremental character optimization.
Cladistics 13, 21–26.

Goloboff, P. (1994). NONA: A Tree Searching Program. Program and
documentation. Available at ftp.unt.edu.ar/pub/parsimony.

Goloboff, P. (1996). Methods for faster parsimony analysis. Cladistics
12, 199–220.

Kirkpatrick, S., Gellat, C., and Vecchi, M. (1983). Optimization by
simulated annealing. Science 220, 671–680.

Liebherr, J. K., and Zimmerman, E. C. (1998). Cladistic analysis,
phylogeny, and biogeography of the Hawaiian Platynini (Coleoptera:
Carabidae). Syst. Entomol. 23, 101–136.

Lipscomb, D., Farris, J., Kallersjo, M., and Tehler, A. (1998). Support,
ribosomal sequences and the phylogeny of the eukaryotes. Cladistics
14, 303–338.

Maddison, D. (1991). The discovery and importance of multiple islands
of most parsimonious trees. Syst. Zool. 40, 315–328.

Moilanen, A. (1999). Searching for most parsimonious trees with simu-
lated evolutionary optimization. Cladistics 15, 39–50.
Nixon, K. C. (1999). The parsimony ratchet a new method for rapid
parsimony analysis. Cladistics 15, 407–414.

428

Platnick, N. (1987). An empirical comparison of microcomputer parsi-
mony programs. Cladistics 3, 121–144.

Rice, K., Donoghue, M., and Olmstead, R. (1997). Analyzing large
data sets: rbcL 500 revisited. Syst. Biol. 46, 554–563.

Ronquist, F. (1998). Fast Fitch-parsimony algorithms for large data
sets. Cladistics 14, 387–400.

Soltis, D., Soltis, P., Mort, M., Chase, M., Savolainen, V., Hoot, S.,

and Morton, C. (1998). Inferring complex phylogenies using parsi-
mony: An empirical approach using three large DNA data sets for
angiosperms. Syst. Biol. 47, 32–42.

Copyright q 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved
Pablo A. Goloboff

Swofford, D. (1993). PAUP: Phylogenetic Analysis Using Parsimony,
version 3.1. Program and documentation. Laboratory of Molecular
Systematics, Smithsonian Institution, Washington, DC.

Swofford, D. (1998). PAUP*: Phylogenetic Analysis Using Parsimony
(* and Other Methods), version 4. Sinauer Associates, Sunder-
land, MA.

Swofford, D., Olsen, G., Waddell, P., and Hillis, D. (1996). Phylogenetic
inference. In “Molecular Systematics” (D. Hillis, C. Moritz, and

B. Mable, Eds.), 2nd ed. pp. 407–514. Sinauer Associates, Sunder-
land, MA.

	INTRODUCTION
	METHODS
	PROBLEMS WITH LARGE DATA SETS
	FIG. 1.

	TREE-FUSING (TF)
	SECTORIAL SEARCHES (SS)
	TABLE 1
	FIG. 2.

	TREE-DRIFTING (DFT)
	COMBINED STRATEGIES
	TABLE 2

	DISCUSSION
	APPENDIX 1
	ACKNOWLEDGMENTS
	REFERENCES

