Cladistics 15, 407-414 (1999)

®
Article 1D clad.1999.0121, available online at http://www.idealibrary.com on IDE %l.

The Parsimony Ratchet, a New Method for Rapid

Parsimony Analysis

Kevin C. Nixon

L. H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853

Accepted October 27, 1999

The Parsimony Ratchet' is presented as a new method
for analysis of large data sets. The method can be easily
implemented with existing phylogenetic software by gen-
erating batch command files. Such an approach has been
implemented in the programs DADA (Nixon, 1998) and
Winclada (Nixon, 1999). The Parsimony Ratchet has also
been implemented in the most recent versions of NONA
(Goloboff, 1998). These implementations of the ratchet
use the following steps: (1) Generate a starting tree (e.g.,
a “Wagner” tree followed by some level of branch swap-
ping or not). (2) Randomly select a subset of characters,
each of which is given additional weight (e.g., add 1 to the
weight of each selected character). (3) Perform branch
swapping (e.g., “branch-breaking” or TBR) on the current
tree using the reweighted matrix, keeping only one (or
few) tree. (4) Set all weights for the characters to the
“original” weights (typically, equal weights). (5) Perform
branch swapping (e.g., branch-breaking or TBR) on the
current tree (from step 3) holding one (or few) tree. (6)
Return to step 2. Steps 2-6 are considered to be one
iteration, and typically, 50—200 or more iterations are

This method, the Parsimony Ratchet, was originally presented at
the Numerical Cladistics Symposium at the American Museum of
Natural History, New York, in May 1998 (see Horovitz, 1999) and
at the Meeting of the Willi Hennig Society (Hennig XVII) in Septem-
ber 1998 in Sao Paulo, Brazil.

0748-3007/99 $30.00
Copyright © 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved

407

performed. The number of characters to be sampled for
reweighting in step 2 is determined by the user; I have
found that between 5 and 25% of the characters provide
good results in most cases. The performance of the
ratchet for large data sets is outstanding, and the results
of analyses of the 500 taxon seed plant rbcL data set
(Chase et al., 1993) are presented here. A separate analy-
sis of a three-gene data set for 567 taxa will be presented
elsewhere (Soltis et al., in preparation) demonstrating
the same extraordinary power. With the 500-taxon data
set, shortest trees are typically found within 22 h (four
runs of 200 iterations) on a 200-MHz Pentium Pro. These
analyses indicate efficiency increases of 20X—-80X over
“traditional methods” such as varying taxon order ran-
domly and holding few trees, followed by more complete
analyses of the best trees found, and thousands of times
faster than nonstrategic searches with PAUP. Because the
ratchet samples many tree islands with fewer trees from
each island, it provides much more accurate estimates
of the “true” consensus than collecting many trees from
few islands. With the ratchet, Goloboff’s NONA, and
existing computer hardware, data sets that were pre-
viously intractable or required months or years of analy-
sis with PAUP* can now be adequately analyzed in a few

hours or dayS. © 1999 The Willi Hennig Society

408

INTRODUCTION

The problem of finding most parsimonious trees is
NP-complete (in mathematical terms) and the most
effective methods use a brute-force approach of per-
forming branch rearrangements on trees, keeping only
the most parsimonious trees or a subset of suboptimal
trees at each step. Each tree retained is then swapped
(the thoroughness of the search determined by the par-
ticular algorithm employed). The simplest method of
branch swapping has been termed “subtree pruning
and regrafting” or SPR by Swofford (1990). During SPR
swapping, a branch is clipped from the tree and placed
in each of the possible nodes on the remaining tree,
measuring the length of the resulting tree at each step.
The SPR algorithm has been shown to be of limited
value in finding the most parsimonious trees in large
and/or highly homoplastic data sets, although it is
effective in improving tree length when starting trees
are very suboptimal. In contrast to SPR, the most com-
monly used and thorough branch-swapping algo-
rithms employed in modern phylogenetic software are
termed “branch-breaking” (Hennig86; Farris, 1988) or
“tree bisection and reconnection,” often referred to as
TBR (PAUP; Swofford, 1990). Branch breaking first
clips a branch from the tree (the “bisection” of the tree
into two parts) and then places the clipped branch at
every possible remaining branch of the tree; at each
possible place, it reroots the clipped branch to each of
the segments, thus vastly increasing the number of
topologies examined over SPR. Other swapping meth-
ods, such as “nearest neighbor” swapping, are too inef-
fective to be of much use and will not be discussed.

The time necessary to swap completely through a
particular tree increases logarithmically with the num-
ber of taxa. This increase is particularly acute with TBR
swapping, because the number of trees examined for
each bisection is the number of internodes in the main
tree (for placement of a clipped branch) multiplied by
the number of internodes in the subtree (i.e., the num-
ber of terminals in the subtree minus 1). This problem
is exacerbated by the tendency in large data sets for
there to be extremely large (let us say “vast”) numbers
of suboptimal trees that are typically very close in both
topology and length to the shortest trees (and to any
particular tree which is being swapped). This produces
a pattern of tree space that is referred to as “islands,”

Copyright © 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved

Kevin C. Nixon

e.g., Maddison (1991). Because of the nature of the
branch-swapping algorithms, these methods get
“bogged down” in large tree islands, collecting trees
of equal length that differ by minor rearrangements.
If these trees are all kept and swapped themselves, the
search stalls and often the user will simply abort the
search after a given amount of time has passed (often
weeks, months, or even years).

The problem of being trapped in suboptimal islands
can be somewhat reduced by implementing strategies
which maximize the effort of the tree search algorithms.
Several such strategies have been proposed, but the
general aspect common to all is to (1) maximize the
number of distinct starting trees from which each
search is begun (here called a replication); (2) reduce
the number of trees kept during each replication, thus
minimizing the time spent in any particular island;
and (3) collect the results of numerous replications and
use a subset of the results as starting points for more
thorough (or “complete”) analyses, keeping many (or
all) trees. | will refer to this approach as the “NONA”
strategy since it is most easily implemented in that
program.

Even when the NONA strategy is implemented, with
large data sets (>500 taxa) considerable time must be
expended in order to find solutions in which we have
some reasonable confidence. The improvements may
be vast over simply running TBR, but the times are
still prohibitive with most large data sets. An example
is the 500-taxon data set of Chase et al. (1993). The
original analyses were done with PAUP on a Macintosh
Quadra, and after a month of TBR swapping from a
single starting point trees of length 16,225 (corrected
from the original lengths reported, which were incor-
rect) were found. Rice et al. (1997) reanalyzed this data
set, again using the strategy of holding a maximal
number of trees and analyzing with TBR, and found
trees of length 16,220 (corrected) after 11.6 months of
analysis with PAUP on Sun workstations. The Rice et
al. analysis is flawed for two reasons—first they did
not implement any strategy of reducing the number
of trees held (the NONA strategy above) and they
used software (PAUP) which was orders of magnitude
slower than NONA, which was available at the time.
Because they allowed the program to hold as many
trees as RAM could hold, they were only able to per-
form eight separate replications (unique starting trees)
and ended up collecting more than 8000 trees of length

A New Method for Rapid Parsimony Analysis

16,220 (presumably all from one replication, although
this was not reported). Nixon and Davis (in prepara-
tion) have reanalyzed the 500-taxon data set using
NONA on Pentium class computers (no more than
twice the speed of the Sun workstations used by Rice
et al.) and can recover trees of length 16,220 on average
every 78 h using the NONA strategy of holding only
2 trees at each replication and then pooling the results
of 20 replications and holding 100 trees and performing
TBR. By continuing this strategy with the 500-taxon
data set, shorter trees (length 16,218) are found ca.
every 150 h. Adjusting for the speed of the hardware,
this constitutes at least a 50X improvement in speed
over the Rice et al. analysis.

Based on these and numerous other examples, it is
clear that the NONA strategy is much more effective
than a nonstrategy such as simply holding all trees
and performing TBR (e.g., Rice et al.) The reasons for
this increase in speed and effectiveness can be ex-
plained in numerous ways. More islands are examined
because more distinct starting points are used when
the NONA strategy is implemented. This is because
holding fewer trees decreases the time that any particu-
lar replication will spend on an island. The tradeoff is
that each replication is less effective on average than
a replication that holds more trees. The details of this
tradeoff are explored in more detail in Davis et al.
(in preparation).

THE PARSIMONY RATCHET

The new strategy presented here, the parsimony
ratchet, was developed in order to maximize the start-
ing points and reduce the amount of time spent on
each search from a particular starting point, while at
the same time retaining tree structure from the existing
solution at each point. The parsimony ratchet is imple-
mented in the following way:

1. Aninitial starting tree is generated. Typically, this
tree is generated by randomly ordering the taxa, calcu-
lating a Wagner tree, and then branch swapping (TBR),
holding a few (usually one or two) trees.

2. The tree found in step 1 is used as the starting
point for an iterative search strategy as follows.

3. A random subset of the characters is selected and
perturbed. Typically, the characters selected would be

Copyright © 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved

409

increased in weight (e.g., weight doubled) or jack-
knifed (e.g., weight set to zero). Other weighting
schemes, such as weighting by fit or the inverse of fit,
could also be implemented (but see discussion below).
By experience, a relatively small percentage of charac-
ters is selected, usually between 5 and 25% of the total
number of informative characters.

4. The current tree is swapped using the perturbed
weights to calculate length. Typically, TBR swapping
will be used (but other swapping procedures could be
used). Only one (or few) tree is kept during the search
with the perturbed matrix. This search will end with
a single tree retained that is “optimal” in the sense that
further swapping using the current method will not
result in shorter trees.

5. The weights are reset to the original weights (usu-
ally equal, but they could be any weighting scheme
desired). Using the current tree as a starting point (i.e.,
the final tree found in step 4) swapping proceeds (hold-
ing one or few trees) until an optimal tree is found for
the unperturbed data.

6. Go to 3.

The above general method was originally imple-
mented in the program DADA in March 1998 by gener-
ating command files for the program NONA. It has
since been implemented directly as the command
“nixwts” in recent versions of the program NONA
(Goloboff, 1998) and again as a batch driver for NONA
in the program Winclada (Nixon, 1999). These imple-
mentations allow control over the nature of the search
(SPR, TBR), the number of iterations performed, the
number of characters sampled, and whether characters
are weighted up or jackknifed.

An example batch file for NONA for a data set with
10 characters that would perform three ratchet itera-
tions perturbing 20% of the characters each time fol-
lows:

Wagner; hold 1; max*; // Generate a Wagner tree
and TBR swap holding one tree

Sv rat.tre; // Open a tree file to save trees and save
the starting tree

// lteration 1

ccode/1 .; // set all characters to weight 1

ccode /2 0 5; //set character 0 and 5 to weight 2

hold 1; max*; // TBR swap on the current tree using
perturbed weights

ccode /1 .; // set all characters to weight 1

410

hold 1; max*; 7/ TBR swap on the current tree using
equal weights

sv; // save the optimal tree for equal weights found
in this iteration

// lteration 2

ccode /1 .; // set all characters to weight 1

ccode /2 6 8; // set character 6 and 8 to weight 2

hold 1; max*; // TBR swap on the current tree using
perturbed weights

ccode /1 .; // set all characters to weight 1

hold 1; max*; //TBR swap on the current tree using
equal weights

sv; // save the optimal tree for equal weights found
in this iteration

// lteration 3

ccode /1 .; // set all characters to weight 1

ccode /2 5 8; // set character 5 and 8 to weight 2

hold 1; max*; // TBR swap on tree using per-
turbed weights

ccode /1 .;// set all characters to weight 1

hold 1; max*; 7/ TBR swap on the current tree using
equal weights

sv; // save the optimal tree for equal weights found
in this iteration

sv /; // close the tree file, which contains the starting
tree and 3 trees from the 3 iterations

Keep 0; // clear the tree buffer

Proc rat.tre; // read the trees back into NONA

Best; // filter trees and keep only the shortest

Hold 100; max*; // optional step . . . continue swap-
ping on best trees holding more trees

To generate the above batch file, a program that ran-
domly selects characters from the matrix is necessary.
This is implemented in the “island hopper” function
in DADA (Nixon, 1998) and as the parsimony ratchet
function in Winclada (Nixon, 1999). Note that the batch
file could be simplified by removing the redundant
hold statements, since the value for hold was not
changed after the iterations began. The extra state-
ments were included here for clarity. The above batch
file could be changed to a jackknife ratchet by replacing
the ccode /1 .; with ccode [.; to activate all characters
and ccode] x y; in place of the ccode /2 x y; statements.

I have experimented with various permutations of
the basic ratchet algorithm, as outlined above, includ-
ing weighting characters according to a measure of fit
to the tree, but the performance of such variations is
less than the original method of randomly selecting

Copyright © 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved

Kevin C. Nixon

and upweighting. However, this does not preclude the
possibility that some modification of the ratchet
method using fit as a factor in the weighting process
might be effective.

One additional modification of the method that does
seem to enhance the effectiveness is to randomly con-
strain a subset of groups during each iteration. This can
be accomplished with versions of NONA that allow the
constrain command. An effective strategy is to ran-
domly select between 10 and 20% of the nodes and
constrain these during the weighted (or jackknifed)
search as well as during the equal-weights search of
each iteration. At the beginning of each new iteration,
a different randomly selected set of nodes from the
current tree is selected and constrained. As outlined
below, this increases performance considerably on
some data sets.

PERFORMANCE

For the purpose of this paper, | will only report the
results of analyses of the well-known 500-taxon data
set “Zilla” that was first analyzed by Chase et al. (1993)
and reanalyzed by Rice et al. (1997).

The results of three “typical” ratchet analyses of the
500-taxon data set are presented in Figs. 1-4. These
charts show the length of the tree found during the
equally weighted search at each iteration. The first bar
represents the length of the starting tree found by be-
ginning with a Wagner tree generated with a random-
ized taxon order, followed by a TBR search holding
two trees. The first of these two trees was then selected
as the starting tree for the subsequent ratchet iterations.
Time is not shown on these charts, but 200 iterations
typically will complete within 6 h on a 266-MHz Pen-
tium. Figures 1, 2, and 3 show that while the number
of characters sampled does change search performance
somewhat, typical searches are very effective with
roughly 10% character sampling. The random aspect
of the ratchet prevents a clear relationship from devel-
oping, but the Chase et al. lengths were discovered in
about a quarter-hour or less and the Rice et al. lengths
in times between a half-hour and an hour. The shortest
trees known are obtained in times roughly between
one-and-a-quarter and two-and-a-quarter hours. Fig-
ure 4, labeled ineffective, is provided to show one of

A New Method for Rapid Parsimony Analysis 411

PARSIMONY RATCHET: TYPICAL ANALYSIS

500 taxon rbeL analysis - 60 characters perturbed

Pentium 266 mHz

ﬁm 16227 3 Windows NT
c \ Nona/NT
2 \Chase et al. trees: 16225 steps == 11 minutes
o 16225
L
|—
16223
16221 Rice, Donoghue, al;ns_lt;d;?ew
16219 s —
16218 => 90 minutes ==
16217

iteration # 50

FIG. 1. Performance chart of a typical parsimony ratchet analysis of the 500-taxon rbcL data set. The X axis represents successive iterations
of the ratchet, from left to right. The first bar represents the length of the starting tree obtained by producing a Wagner tree and performing
TBR branch swapping holding two trees. The remaining bars represent tree lengths recovered at each iteration for the equally weighted matrix.

PARSIMONY RATCHET: TYPICAL ANALYSIS

500 taxon rbcL analysis - 40 characters sampled

10243 Pentium 266 mHz
16243 Windows NT
16241 § Nona/NT

16239 §

16237
16235
16233
16231
16229
16227 ‘..I Chase et al. trees: 16225 steps => 16 minutes
16225 4
16223 J
16221
16219
16217

Tree length

Rice, Donoghue, Olmstead trees: 16220 steps => 48 minutes

100 200 iteration # 300
16218 => 72 minutes

FIG. 2. Another typical analysis of the 500-taxon rbcL data set; legend as for Fig. 1.

Copyright © 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved

412 Kevin C. Nixon

PARSIMONY RATCHET: TYPICAL ANALYSIS

500 taxon rbeL analysis - 50 characters sampled

L
§> Pentium 266 mHz
o 16227 § Windows NT
ot ; Nona/NT
= Chase et al. trees: 16225 steps => 7 minutes e
16225
16223
16221
16219
16217
100 iteration # 200
16218 => 135 minutes
FIG. 3. Another typical analysis of the 500-taxon rbcL data set; legend as for Fig. 1.
PARSIMONY RATCHET: INEFFECTIVE ANALYSIS
500 taxon rbcL analysis - 50 characters sampled
L
© 16233 A
= Pentium 266 mHz
o 16231 48 Windows NT
(] | Nona/NT
~ 16229
N Chase et al. trees: 16225 steps = 18 minutes
16225
16223
16221
16219 y . 4
Rice, Donoghue, Olmstead trees: 16220 steps => 178 minutes
16217

100 iteration # 200
FIG. 4. A “poor” analysis of the 500-taxon rbcL data set; legend as for Fig. 1.

Copyright © 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved

A New Method for Rapid Parsimony Analysis

the poorest levels of performance attained with the
ratchet with this data set. In this trial, the ratchet found
the Chase et al. lengths in 18 min and Rice et al. lengths
in 178 min, but was unable to find the shortest known
trees in 200 iterations. Thus, even the ratchet can get
stuck on suboptimal islands, and it would be better to
implement five trials of 200 iterations than one trial of
1000 iterations.

On a 200-MHz Pentium Pro computer running
NONA, a run of 200 iterations holding one tree at
each iteration and randomly sampling 70 characters
requires approximately 6-8 h to complete. Each itera-
tion takes less than 2 min. The amount of time required
is reduced by approximately 30% when nodes are ran-
domly selected and constrained at a level of about
20%; the constraints also generally improve the rate
of finding the shortest trees known for this data set.
Because approximately three of four runs of 200 itera-
tions attain a length of 16,218, the shortest trees known
for this data set, there is a greater than 95% probability
that a user would find shortest trees within 22 h. This
should be considered in light of the fact that Rice et al.
failed to find trees of this length in 11.6 months of
computer analysis of the same data set. Even account-
ing for a 2Xx difference in processor speed, a typical
ratchet analysis performs several thousand times better
than the Rice et al. analysis.

DISCUSSION

There are several ways to explain the effectiveness of
the parsimony ratchet in breaking islands and finding
optimal trees much more rapidly than previous meth-
ods. Probably the most intuitive explanation is that
each iteration generates a new “starting tree” that re-
tains much of the information in the last tree found,
but is sufficiently different to allow breaking the island
within which that previous tree was bound. This new
starting tree is found, in the case of the 500-taxon tree,
in a matter of seconds (usually less than 1 min) and will
generally have a length (when mapped with equally
weighted characters) that is within a few steps (or even
the same length) as the previous tree. To accomplish the
same thing with a traditional method would require on

Copyright © 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved

413

average a minimum of 30—60 min (ca. 15 min to gener-
ate a much longer starting tree followed by some sig-
nificant amount of branch swapping to get within
range of the previously found optimal tree). Further,
with such an approach, all of the progress made (e.g.,
the general structure of the tree) must be reconstructed.
Thus, the parsimony ratchet can be viewed as a much
more effective way to generate new starting trees that
retain a significant amount of structure already at-
tained, thus allowing most of the computing time to
be spent improving on the current tree and breaking
islands.

Other explanations of the effectiveness of the ratchet
involve the nature of the tree space of suboptimal trees
and the relationships of tree island structures to each
other. The “weighted” (or jackknifed) search during
each iteration will typically result in between 5 and
10 rearrangements (based on observation of program
behavior during runs). These rearrangements, while
favored by the particular weighting, move the topol-
ogy away from the previous topologies with branch
moves that would have produced longer trees and thus
not be accepted under equal weights. However, these
are not random moves, since they produce trees that
are more optimal for only slightly perturbed data. By
allowing rearrangements to accumulate that are more
than a single TBR rearrangement away from the previ-
ous topology, the search in essence moves into new
tree space and potentially into new islands that may
allow access to shorter trees.

At first, there may seem to be a close similarity be-
tween the parsimony ratchet and methods such as sim-
ulated annealing that utilize a time-dependent proba-
bility function to relax periodically the optimality
criterion and search longer trees. There are important
differences. First, in simulated annealing, in general
more trees would be held and thus more time spent on
each island. Only after some search effort is expended
within a certain island is the criterion relaxed to collect
longer trees. However, because these trees are optimal
in terms of the same data matrix, they generally will
be much more similar to the trees already being
swapped. The need to hold more trees, and the fact
that merely collecting suboptimal trees is less effective
at breaking islands, means that simulating annealing
cannot perform as well as the parsimony ratchet. How-
ever, one might improve simulated annealing by im-
plementing a periodic reweighting or jackknifing as

414

the means of relaxing the optimality criterion. It seems
unlikely that even with this improvement a simulated
annealing approach could reach the efficiency levels
of the parsimony ratchet.

Because the parsimony ratchet tends to sample many
different tree islands, another advantage is that even
with fewer trees collected these typically represent a
much broader sample of tree space than can be attained
by accumulating many trees from a single island (e.g.,
as in the case of the Rice et al. analysis). This can be
shown with an example from a relatively small data
set (149 rbcL sequences from Rubiaceae; Ochoterena,
in preparation). In this case, the consensus of 50,000
trees collected from 1000 distinct starting points using
traditional methods is identical to the consensus of the
best trees from less than 200 trees collected from four
ratchet runs. Thus, collecting ratchet trees in much
smaller numbers is a more effective approach in esti-
mating the “true” consensus than is collecting many
more trees from a single island, as is typically done.

In summary, the parsimony ratchet is a novel method
that searches tree space more effectively by reducing
the search effort spent on generating new starting
points and retaining more information from existing
results of tree searches. Speed is further enhanced be-
cause the method requires holding only one (or few)
trees during searching, so time is not spent swapping
through almost identical trees. By sequentially generat-
ing new trees that differ within a limited number of
rearrangements and are optimal for slight perturba-
tions of the data, islands are effectively broken and the
efficiency of tree searches is vastly improved. For a
given amount of search time, the parsimony ratchet is
more likely to encounter shortest trees and collects

Copyright © 1999 by The Willi Hennig Society
All rights of reproduction in any form reserved

Kevin C. Nixon

a broader sample of trees of any given length than
previously used search strategies. Such an increase in
performance will permit analysis of very large data
sets without sacrificing rigor.

ACKNOWLEDGMENTS

| thank D. Lipscomb and J. W. Wenzel for improving the manu-
script. | also thank J. Davis, P. Goloboff, J. Carpenter, H. Ochoterena,
S. Borgardt, D. Little, and L. Vazquez for help and discussions.

REFERENCES

Chase et al. (1993). Phylogenetics of seed plants: An analysis of
nucleoti de sequences from the plastid gene rbcL.. Ann. Missouri Bot.
Gard. 80, 528-580.

Farris, S. J. (1988). Hennig86. Software and manual. Published by the
author, Port Jefferson, NY.

Goloboff, P. (1998). Nona. Computer program and software. Published
by the author, Ticuman, Argentina.

Horovitz, 1. (1999). A report on “One Day Symposium on Numerical
Cladistics.” Cladistics 15, 177-182.

Maddison, D. R. (1991). The discovery and importance of multiple
islands of most-parsimonious trees. Syst. Zool. 40, 315-328.

Nixon, K. C. (1998). Dada ver. 1.9. Software and manual. Published
by the author, Trumansburg, NY.

Nixon, K C. (1999). Winclada (beta) ver. 0.9. Published by the author,
Ithaca, NY. [Available at http://www.cladistics.com]

Rice, K. A., Donoghue, M. J., and Olmstead, R. G. (1997). Analyzing
large data sets: rbcL 500 revisited. Syst. Biol. 46, 554—-563.

Swofford, D. L. (1990). PAUP: Phylogenetic Analysis Using Parsi-
mony, ver. 3.0. lllinois Natl. Hist. Surv., Champaign, IL.

	INTRODUCTION
	THE PARSIMONY RATCHET
	PERFORMANCE
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

