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ABSTRACT 

The problem of assigning optimal character states to the hypothetical ancestors of an 

evolutionary tree under the Wagner parsimony criterion is examined. A proof is provided 

for the correctness of Farris’s well-known, but previously unproven, algorithm for solving 

this problem. However, the solution is not, in general, unique, and Farris’s method obtains 

only a subset (generally only one) of the possible solutions. Algorithms that discover other 

solutions and that resolve ambiguities through the imposition of ancillary criteria are 

developed and discussed. A method for determining the optimal length of a given tree 

without actually assigning character states lo hypothetical ancestors is described. 

1. INTRODUCTION 

Several numerical methods have been developed for estimating phylo- 
genetic trees under the principle of maximum parsimony [14]. These methods 
share the goal of finding minimum-length trees: those that minimize the 
total amount of evolutionary change needed to explain the variation in a 
given set of data. In the “Wagner method” for inferring phylogenies, 
character states are measured on an interval scale and no a priori restrictions 
are imposed either on the reversibility of character changes or on the number 
of times in which particular character-state transitions may occur [7, 211. 
Algorithms that strive to optimize Wagner parsimony have achieved 
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widespread popularity in phylogenetic analysis, largely because of their 
presumed freedom from assumptions about the nature of the evolutionary 
process. We will not address the validity of this presumption here; see 
Felsenstein [14] and Sober [27] for an interesting discussion on the use of 
parsimony in phylogenetic analysis. 

Farris [7] described an algorithm for assigning optimal character states to 
each of the hypothetical ancestors (interior nodes) on a tree so as to 
minimize the tree length under the Wagner parsimony criterion. Since this 
procedure minimizes the totuf amount of change, it also minimizes the 
amount of extra change or homoplasy: character-state transitions that occur 
independently in different regions of the tree (parallelisms) and transitions 
that reflect a reversal in the evolutionary tendency of a character (reversals). 
When all characters are fully consistent on a tree (i.e., they can evolve on the 
tree with no homoplasy), Fan-is’s procedure yields a unique solution: only 
one possible set of character-state assignments will be optimal for the 
specified tree topology. However, in the presence of homoplasy, there are 
often many different sets of character-state assignments that minimize the 
tree length [l, 12, 20,22,23], only some of which will be found by Farris’s [7] 
method. If we are interested only in estimating the branching pattern of the 
tree, this ambiguity poses no particular problem, for any of the optimal 
solutions minimizes the length required for a given topology, and alternative 
topologies may be evaluated by comparing their optimized lengths. Fre- 
quently, however, we are interested not only in the branching pattern but 
also in the evolutionary hypothesis [9]: a phylogeny coupled with the 
reconstructed states of the characters in the hypothetical ancestors. This 
evolutionary hypothesis permits us to interpret branch lengths as minimal 
amounts of evolutionary change and to make inferences about the evolution 

of the characters themselves (e.g., [29]). 
When multiple, equally parsimonious character-state reconstructions ex- 

ist, we must be careful in interpreting any one solution. In this paper, we 
first describe a method for finding all equally parsimonious reconstructions 
and then introduce several procedures for reducing the arbitrariness in 
choosing among them. The implications of these results for actual biological 
studies will be expanded upon in a subsequent paper. 

2. BASIC CONCEPTS 

We are given a set of n operational taxonomic units (OTUs) whose 
phylogenetic relationships are summarized by an evolutionary tree or clado- 
gram. The tree can be described mathematically (e.g., [16, 171) as a con- 
nected acyclic graph comprising an ordered pair of sets (I’, E), where I/ is a 
nonempty, finite set of nodes (vertices) and E is a set of unordered pairs 
{ u, , u, }, u, , u, E V, representing branches (edges). (Because some biologists 
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TABLE 1 

Notational Conventions 

Notation Meaning 

201 

UEA 

A\B 

AUB 

AnB 

A@B 

card(A) 

R 

Pd+ 

Set membership: u is an element of set A. 

Set difference: A \ B is a set con- 

taining all elements of A that are 

not also elements of B. 

Union: A u B is a set containing 

all items that are either elements of 

set A, of set B, or of both A and 

B. 

Intersection: A n B is a set con- 

taining all items that are elements 

of both A and B. 

Symmetric difference: A@ B is a 

set containing all items that are 

either in A or B but not both A 

and B. 

Cardinality: The cardinality of set 

A is the number of elements it 

contains. 

The set of real numbers. 

The set of positive integers. 

may be unfamiliar with the set theoretic notation used throughout this 
paper, we have briefly summarized this notation in Table 1.) Primarily we 
will consider completely bifurcating trees in which V is partitioned into a set 
Vo containing n terminal nodes of degree 1 and a set V, containing n - 2 
interior nodes of degree 3. The terminal nodes, labeled 1,2,. . , n, correspond 
to the original OTUs and the interior nodes, (arbitrarily) labeled n + 1, n + 

2,. . . ,2 n - 2, represent hypothetical taxonomic units (HTUs). A path between 
points nodes j and k in a tree T = (V, E) is a sequence of alternating nodes 
and branches j = uO, {Q, ul}, ul,. , urn-I, {u,,~~, urn}, u, = k, where 

{vi?u,+l }~EforO<i<m. 

It will be useful to impose an arbitrary direction on the tree by desig- 
nating one OTU, denoted p, as the root of the entire tree. In practice, this 
OTU often represents a synthesized “hypothetical ancestor” possessing 
putative ancestral states for each character [7], although this need not be the 
case. The topology of a tree may then be described by an ancestor function f: 
V \ { p } + V, U { p} such that f(k) represents the node adjacent to node k 
on the path between k and p. Let Q be a binary relation on V such that 
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v, Q v, if and only if either v, and v, are coincident or v, lies on the path 
from v, to p. Since < is reflexive, antisymmetric, and transitive, it repre- 
sents a partial order on V. The ancestor function f can easily be transformed 
into the descendant functions g and h. For any interior node k, g(k) and 
h(k) represent the two immediate descendants, respectively, of k [i.e., 
f( g( k)) = f( h( k)) = k]. The decision as to which descendant represents 
g(k) can be made arbitrarily; all results below are invariant to this selection. 

We define a subtree T, as the subgraph ( Vk , Ek) of T, where Vk = { v, E 

Vlv, Q k} and EL = {{v,,f(v,)} E Elv, < k}. (Biologists refer to a rooted 
subtree as a monophyletic section of a tree.) A subtree consisting of a single 
terminal node k, k # p, is called trivial, in which case Ek = 0. The full tree 
T may then be described as the triple (T,, p, e,,), where 6 represents the 
interior node adjacent to p (coinciding with the initial bifurcation of the 
tree) and esP is the basal branch connecting nodes 6 and p. The data consist 
of a pair (T, X), where T is a tree and X is a rectangular matrix that assigns a 
character state x,, to each OTU i for each character j. Originally, X is of 
dimension n by c, where c is the total number of characters. Our task is to 
assign states for all characters to each of the n - 2 interior nodes (HTUs), 
augmenting X to (2n -2) X c. A reconstruction on tree T for character j 
is then given by the pair R(,, = (T,x(,,), where xc,) is a vector con- 
sisting of the original states x1.,, x2 ,,,. ., x,,, followed by the states 
X ,1+1,,, X,,+2,,‘,..‘XZn-Z., chosen for the interior nodes. We will denote a 
reconstruction on the subtree Tk for character j as RCJlk. The length 
associated with each branch of the tree in this reconstruction is then given by 
the Manhattan distance D between its incident nodes, where in general 

D(k,I) = c h., - %,,I 
j=l 

for any pair of nodes k and 1. The total length L(R) of the reconstruction is 
simply the sum of the lengths of the branches: 

L(R) = c D[i,f(i>] 
rcv\p 

= c c lx,,, - x,c,,,,l 
iGv\pJ=l 

(24 

= c c IX!,, - X/(,).,1. (2b) 

Note that the equality of statements (2a) and (2b) allows us to treat each 
character independently; indeed, this independence among characters is a 
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crucial assumption of the Wagner method. Consequently, to simplify the 
presentation, we will usually consider only a single character, dropping 
unnecessary subscripts wherever possible. 

In analogy to L(R), the length L(R,) of the reconstruction R, is 
defined as the sum of the lengths of the 2 nk - 2 branches included in the 
subtree rooted at k, where nk is the number of terminal nodes in Tk. L*(T) 
and L*(T,) represent the minimum possible lengths of reconstructions for 
the tree T and the subtree Tk, respectively. If Tk is trivial, then xk must be 
assigned the state observed in the data, and both L(R,) and L*(T,) equal 
zero. A most parsimonious reconstruction (MPR) for tree T is a reconstruc- 
tion R for which L(R) = L*(T). As noted by Farris [7], when character 
states take only integer values, the minimum length of a reconstruction can 
be thought of as the number of steps required by the tree. 

In addition to the Manhattan distance function D, we will also refer to 
the distance d between closed intervals in R, the set of real numbers. Let 
S,={y(a,<y<b,}=[a,,b,] and S,={yla,<ygbj}=[aj,b,]. The dis- 
tance between S, and S, is the smallest possible value of ]xi - x,] where 
x, E S, and x, E S,. This distance can also be written 

d(S,,S,)=max(a,-b,,ai-b,,O). 

Similarly, the distance between a real number z and an interval S, is defined 
as the smallest possible value of ]z - xi], where x, E S,: 

d(z,S,)=max(z-b;,a,-z,O). 

The element of S, closest to z is the median of z, ai, and b,, where a, and 
b, are greatest lower and least upper bounds, respectively, of S,. Thus, 
d( z, S, ) can also be computed as 

d(z,S,) -It-median(z,aj,bi)). 

3. STATE SETS AND FARRIS OPTIMIZATION 

Farris’s [7] method for assigning HTU character states so as to obtain the 
minimum tree length required for a given topology consists of an initial pass 
during which state sets are computed for all interior nodes on the tree and a 
final pass in which nonsingleton state sets are replaced by singletons. This 
procedure has been referred to as “Farris optimization” [25] to distinguish it 
from “Fitch optimization” [15, 181 in which character states are unordered 
and any state may transform directly into any other state. 

The state set S; is a closed interval in Cp; the smallest and largest elements 
in this interval place lower and upper bounds, respectively, on the state xi 
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that will eventually be assigned to an interior node i by Farris’s method. He 
provides two rules for computing set S, from the state sets of the im- 
mediately descendant nodes, S,(;, and Shci). The first rule (R-l) dictates that 
S, = S,(;, I-I S,,(i) if this intersection is not empty. If Sgci) and Shci) are 
disjoint, Farris’s second rule (R-2) states that S, is the smallest closed 
interval of the form [a, b] or [b, a], where a E Sgci) and b E Shci). 

It will be convenient to define the operator 0 for the “state set operation”: 
the definition of a state set from two pre-existing state sets according to R-l 
and R-2. Hereafter, a, and bj will represent the smallest and largest 
elements, respectively, of the state set S,; that is, S, = { x(ui < x < bi} = 
[a,, bi]. Farris’s two rules can be expressed jointly as 

S,os,=u\(S;@s,), 

where U = { x]min( u,, a,) < x < max( b,, b,)}. A convenient computational 
formula is 

S,os,=[min(r,z),max(y,z)l, (3) 

where y = median(u,, b,, uj) and z = median( bi, uj, b,). State sets for all 
nodes on the tree are computed according to the following two steps: 

1) For each terminal node i E V, , let S, = { xi }. 
2) Visit an interior node k for which Sk has not been defined but for 

which the state sets of the two immediate descendants, Sgck) and Shck), have 
been defined. Compute Sk = Sgck) 0 Shck) using Equation (3). Repeat step 2 
until state sets have been assigned to each of the n - 2 interior nodes. 

Step 2 is best performed as a postorder traversal of T, (proceeding from the 
tips of the tree toward the initial bifurcation), ensuring that Sgck) and S,,,, 
will have been defined prior to consideration of node k. Hereafter, state sets 
computed in the above manner will be referred to as Furris intervals. Note 
that the Farris interval calculated for an interior node depends on which 
OTU was designated p; subsequent redirection of a tree requires a corre- 
sponding redefinition of its Farris intervals. 

After having computed Farris intervals (state sets) for all nodes on the 
tree steps 1 and 2 above, a final pass over the tree proceeds as follows: 

3) For all interior nodes k whose Farris intervals are singleton, let 

xk=uk( =bk) 

4) Visit an interior node k for which Sk is nonsingleton but for 
which the state set of its ancestor, S,(k,, is singleton. Let xk equal 

median(xf(k)? a,‘, bk). Replace Sk with { xk }. Repeat step 4 until all state 
sets are singleton. 
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Step 4 is best performed as a preorder traversal of Tk (proceeding from the 
initial bifurcation toward the tips), as this ensures that S,Ckj will be singleton 
prior to consideration of node k.’ 

Farris’s [7] method was presented without proof. To provide his proce- 
dure with a more rigorous foundation and to aid in the development and 
proof of our new algorithms, we now state several useful properties and 
implications of Farris intervals. 

THE BASIC LEMMA 

Let TA be a subtree of T rooted at an interior node k. If k’s immediate 

ancestor, f(k), is assigned a state x,(~, = y, then 

min {Wk)-tl 
Xk ER 

xk-Yl} =L*(T,)+d(Y,S,), (4 

where S, is the Farris interval for node k. 

Proof. We must show that 
(a) for any state assignment xk E R to node k, 

(5) 

(b) there exists at least one reconstruction for Tk such that 

L(Rk)+lXk -YI=L*(T,)+d(Y,&). (6) 

Let 9 be the set of rooted subtrees contained in Tk such that T,,, E Y iff 
U, 6 k. Define the poset { .Y, < } where for all T, , To, E .?, T, G T, iff 
v, < vj. The proof proceeds by induction on the part& order of k. As/ the 
basis, consider the situation when Tk is trivial, in which case we must assign 
to node k the corresponding state xk from the data matrix. By definition, 

L(R,) = L*(T,) = 0 and Sk = { xk }. Since Sk is singleton, d( y, Sk) = Ixk - 
y 1, so that Equation (6) is always satisfied. 

To complete the proof, we must show that Equation (4) is true when k is 
an interior node, assuming that the lemma holds for TgCkj and ThCkj. 
Without loss of generality, we can denote nodes g(k) and h(k) as u and v 
such that a, =G a,. For example, if agCkj <a,,(,), the situation can be 
depicted graphically as shown in Fig. 1. The length of the subtree rooted at 

‘Actually, Farris’s [7] algorithm specifies that for all nodes k having nonsingleton 

Farris intervals, xk is obtained as Sk n S,ckj (rule “R-3”). The substitution of our step 4 

results in state assignments identical to those obtained using Farris’s rule when Sk n S,ckj 

is not empty, but also handles the case that sometimes arises where k = 6 and Sk and S,(k) 

are disjoint. 
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. 
. 

f(k) . 
. . -\ 

/*\ 
u=gW v+(k) 

. . . . . * . . . . 
. . . . 

FIG. 1. A region of the tree for which the Basic Lemma is to be proved (see text). 

k can then be written 

L(h) =L(Ru)+I xu - +I+ L(R) + IX” - %I. (7) 

Since we assume that the lemma is true for the subtrees rooted at k’s 
immediate descendants, we have from Equation (4) that for any given value 

xh 7 

min{ L( R,) + Ix, - xkl} = L*( T,) + d( xk , S,) (8) 

and 

min{L(RU)+Ix,-x,1} =L*(T,)+d(x,,S,). (9) 

It follows from Equations (7-9) that the minimum possible length of a 
reconstruction for Tk, given the state xk assigned to k, is 

L*(T,lx,) =L*(T,)+d(x,,S,)+L*(T,)+d(x,,S,). (10) 

Since all terms on the right hand side of Equation (10) are nonnegative, the 
sum of the minimum possible lengths of reconstructions for the subtrees T, 
and q, is a lower bound on the length of an MPR for the subtree rooted at 
k: 

L*(T,) >L*(T,)+L*(T,). (11) 

All possible situations with respect to S,,, S,, and y = x,(~, are considered, 
in turn, below. 
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Cusel. S,nS,#0, YES,. 
Let xk = y. Observe that xk E Sk, Sk G S, and Sk c S,; hence, d( xk , S,) 

= d(x,, S,) = 0. Then from Equation (lo), L*(T,lx, = y) = L*(T,) + 
L*(T,), which is the (unconditional) minimum possible length of a recon- 
struction for Tk[ = L*(T,)]. Since Jxk - yl = d(y, Sk) = 0, Equation (6) is 
satisfied. If we let xk f y, the minimum value of L( Rk) + (xk - yl exceeds 
L*(T,)+ d(y, S,), for even if L(R,) = L*(T,), Ixk - yl> 0 = d(y, Sk). 

Case2. s,ns,z0, y+ZS, (~<a,). 
Let xk = ak. Note that ak E Sk, S, 5 S, and Sk c S,; hence d(x,, S,,) = 

4-x,, S,) = 0. Then from Equation (lo), L*(Tk(xk = uk) = L*(T,)+ L*(q), 
which is the (unconditional) minimum possible length of a reconstruction for 
T, [Inequality (ll)]. Observe that d(y,S,) = uk - y = (xk - yJ, so that 
Equation (6) is satisfied. To establish Inequality (5) as well, we must show 
that L( Rk) + (xk - yl can be minimized by letting xk = uk. Suppose instead 
that we let xk B ak. Even if L( Rk) = L*(T,), xk - y exceeds ak - y, so 

that L(R,)+ Ixk - yl> L*(T,)+ (uk - yl. Alternatively, suppose that we let 

xk < uk. Note that since uk E [a,,b,]n[a,, b,] and a, 4 a,, uk = a,. Thus, 

4x,, S,) = a, - xk = ak - xk = (uk - xkI. Substituting into Equation (10) 

and recalling Inequality (ll), 

L*(T,lx,<a,)=L*(T,)+d(x,,S,)+L*(~,)+la,-x~I 

> L*( T,) + lak - xk(. 

Thus, when xk ( a,, 

L(h) + lxx -~l~L*(T,)+la,-~~l+l~~-~l. 

Applying the triangle inequality, 

Case 3. S, n S,, f 0 , y P Sk ( y > b, ). 
The proof for this case is analogous to that for Case 2 and is omitted. 

Case4. s,ns,,=0, ysS,. 

Since S, and S,, are disjoint, 4, <b,, < a,, < b,, and Sk = [b,,a,,]. If 

Xh ES, then d(x,, S,,) = xk -b, and d(xk,St,)=a,-x,. Then from 
Equation (lo), 

L*(Tklx,~Sk)=L*(Tu)+L*(T,,)+(xk-bu)+(a,-x,) 

=L*(T,)+L*(T,)+(a,-b,). (12) 

Equation (12) represents the minimum value of L( R,) + Ixk - y 1, subject to 
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xk E Sk, as we can reduce both terms of this expression to their minimum 
possible (conditional) values by letting xk = y. Since d(y, S,) is then zero, 
Inequality (5) and Equation (6) are satisfied iff L*(T,Ix, +% Sk) a L*(T,( 
xk E Sk). Suppose that we let xk < b,. Substituting into Equation (lo), 

L*(T,(~,-+,)=L*(T,)+L*(T,)+~(~,,s,)+(~,-x,) 

3 L*(T,)+ L*(q,)+(a, -xk) 

=L*(T,)+L*(T,)+(a,-b,)+(b,-xk) 

>L*(T,)+L*(T,)+(a,,-b,) 

=L*(TkIxk=Sk). 

Likewise, if we let xk > a,,, then L( Rk) exceeds the value of Equation (12) 
by at least (xk - a,,). Thus, not only have we established the lemma for this 

case, but also we have proven that 

L*( Tk) = L*( T,) + L*( T,) +( a, - b,), (13) 

when S,nS,,=D and u,,>b,,. 

Case5 S,flS,=0, YES, (y<u,). 
As for Case 4, S, = [b,, a,,]. Let xk = uk( = b,). Then d(x,, S,,) = 0 and 

d( xk, s,,) = a,, - xk = u,, - b,. Substituting into Equation (10) and recalling 

Equation (13) 

L*(TkIxk=uk)=L*(Tu)+L*(q,)+(uU-bU) 

= L*(T,). 

Observe that d(y, S,) = uk - y = xk - y = Ixk - y(, hence Equation (6) is 
satisfied. To establish Inequality (5) as well, we must show that L( R, ) + 
Jxk - yJ can be minimized by letting xk = uk. If instead we let xk > uk, then 
even if L(R,) = L*(T,), Ixk - yI exceeds d(y, S,) = uk - y. 

Alternatively, suppose that we let xk < 0,‘. Then d( xk, s,) = a, - +. 
Substituting into Equation (lo), 

L*(TkIxk<uk) =L*(T,)+L*(T,)+d(X,,&,)+(U,-X,) 

> L*( T,) + L*( T,) +( a, - xk) 

=L*(T,)+L*(T,)+(u,-b,)+(b,-x,) 

=L*(T,)+(b,-x,)=L*(T,)+lu,-x,J 
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Thus, when xk < ak, 

L(R,) + 1.~ - YI > L*(G) + Ia, - xkl+ 1% -A 
~L*(T,)+la,-yl=L*(T,)+d(y,S,). 

209 

Case6. S,f?S,=0, YES, (y>b,). 
The proof for this case is analogous to that for Case 5 and is omitted. n 

The following result establishes the sufficiency of Farris intervals for the 
purpose of calculating the minimum length required by a reconstruction; the 
actual assignment of character states to HTUs and evaluation of equations 
like Equation (2) is not necessary if our only goal is to determine L*(T) or 

L*(T, ). 

THEOREM I 

Let TA be the subtree of T rooted at node k. Then, 

L*(G) =L*(T,(k,)+L*(T,(,,)+d(S,(,,,S,(,,). (14 

Proof. Observe that 

L(Rk)=~L(R,o,)+IXg(k)-XkI]+[L(Rh(k))+IXh(k)-XkI]. (15) 

We know from the Basic Lemma that for a given value of xk, the minimal 
values of the two bracketed terms on the right-hand side of Equation (15) 

are L*(Tgo,)+ d(x,, Sg& and L*(T,,&+ d(xkr+)), respectively. 
Consider first the case where Sgck) n S,,,,, # 0. If we let xk E S,, then 

xh E Sg(k) and xk E h(k) as well, so that d(x,, Sgck,) = d(x,, S,,ckj) = 0. 
Hence L(R,) = L*(Tgckj)+ L*(Thckj). Since this is the minimum possible 
length of a reconstruction for Tk and d(S,,,, , Shtkj) = 0, the theorem is 
satisfied. Note that if xk e Sk, either d(x,, Sgckj) > 0 or d(x,, Sh(kj) > 0 (or 
both); hence, L(R,) exceeds L*(T,) unless xk E Sk. 

Now consider the case where Sg( k) and Shck) are disjoint. If we let 

x,, ESk, then d(x,, &(k,> + 4 Xk,Sh(k))=(bk-Xk)+(Xk-ak)=bk-ak 

= d&o,, Shckj). Logic identicat to that used in developing Equation (13) in 
the proof of the Basic Lemma then demonstrates that L*(Tgck,) + L*( Thckj) 

+ d(S,(,,, sh,k,) is indeed the minimum possible length, and that L(R,) > 
L*(T,) if Xk e Sk. n 

Thus, to calculate the minimum length of a reconstruction on a given tree, 
we can perform the initial pass of the Farris optimization procedure in the 
usual manner, accumulating the length required for each subtree by succes- 
sive applications of Equation (14) as we proceed from the tips of the tree to 
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the initial bifurcation. When we arrive at node 6 (the initial bifurcation), we 
can obtain the minimum length of a reconstruction for the full tree as 

L*(T) =L*(~)+d(x,&). (16) 

The Basic Lemma guarantees that Equation (16) obtains the minimum value 
of L(R) = L(R,)+ 1x6 - xp]. Elimination of the final pass saves time when 
comparing the lengths of alternative tree topologies. 

Explicit in the proof of Theorem 1 is the following corollary, which is a 
generalization of the “root proposition” of Maddison et al. [24]: 

COROLLARY 1.1. AN MPR FOR Tk IS POSSIBLE IF AND ONLY IF xk E Sk. 

This result establishes that to obtain an MPR for any subtree, it is both 
necessary and sufficient that the state assignment for the root node of the 
subtree be selected from the Farris interval computed for that node. 

We are now in a position to prove that Farris optimization does indeed 
obtain an MPR. From the corollary above, we know that an MPR for the 
subtree T, is possible if xg is chosen from the interval S, as defined during 
step 2 of the initial pass. Therefore we can obtain an MPR for the full tree 
by choosing x8 E S, so that the length of the basal branch, Ix8 - xp], is 
minimized. This length is minimal when x8 = median(x,, as, bs) according 
to step 4 of the algorithm. [The Basic Lemma guarantees that L(R,)+ 

1x8 - xp] cannot be reduced further by letting x8 E S,.] Having established 
that there exists an MPR with x8 chosen according to Farris’s final pass, we 
now can show by induction that further application of Farris’s method 
indeed does obtain state assignments that yield an MPR. That is, for any 
node k, if an MPR exists with f(k) assigned a state x,(~) according to 
Farris’s final pass, then an MPR also exists with xk assigned according to 
the algorithm. This induction step follows directly from the Basic Lemma 
and the fact that choosing xk = median( ak , b, , xrck,) minimizes d( x,(,), S,). 

4. MULTIPLE SOLUTIONS 

The proof of the validity of Farris’s [7] optimization algorithm establishes 
that no reconstruction exists which yields a shorter length than the one 
obtained using his method. The possibility that other equally parsimonious 
reconstructions exist is not excluded, however. The simplest possible case 
where equally most parsimonious reconstructions exist is illustrated in Fig. 2. 
Fig. 2A shows a tree topology in which the terminal nodes take the states 
indicated for a particular character. Fig. 2B shows the state sets calculated 
according to the initial pass of the Farris algorithm. In Fig. 2C, these state 
sets have been replaced by the states assigned according to the final pass. 
Obviously, the reconstruction shown in Fig. 2D has the same length (2 steps) 
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FIG. 2. An example illustrating the existence of alternative equally most parsimonious 

reconstructions. A: States taken by OTUs l-4 are shown in parentheses, node labels in 

boldface. B: State sets assigned according to Fanis’s rules. C: Reconstruction obtained 

using Farris optimization. D: Another reconstruction requiring the same length as C. E: A 

less parsimonious reconstruction, 

as that of Fig. 2C. This example makes clear the reason for the failure of 
Farris’s [7] algorithm to find all MPRs. Although L(R,) is minimal only if 
x6 = 1 (Corollary l.l), we can permit a less parsimonious reconstruction for 
T, if the difference can be made up elsewhere, in this case the branch 
connecting HTU 6 to OTU 4. If the direction of the tree in this example is 
not arbitrary (i.e., if we have assumed that state 0 is plesiomorphic), the two 
reconstructions lead to very different interpretations of the mode of evolu- 
tion of the character: Fig. 2C implies a reversal from state 1 to state 0, 
whereas Fig. 2D implies parallel transformations from state 0 to state 1. 
Of course, this is not a novel point; numerous authors have recognized 
the existence of alternative equally most parsimonious reconstructions 
(e.g., [l, 2, 6, 12, 20, 221). 
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Unfortunately, the discovery of equally parsimonious reconstructions is 
seldom as easy as the example above might indicate, particularly when 
characters are not binary (0,l). One approach to recognizing the existence of 
alternative MPRs is to determine, for each interior node k on the tree, the 
set of states that might be assigned to k in at least one MPR. We will denote 
this set .Yk and will refer to it informally as k’s MPR-set. If 8 is singleton 
for all interior nodes i on the tree, the reconstruction is unique. Otherwise, 
alternative MPRs exist. Faith [6] described an algorithm for discovering 
“equivocal” character state assignments for binary data (actually a special 
case of Fitch’s [15] method for unordered multistate characters), but this 
method does not apply to the general case where characters are measured on 
an interval scale. Nonetheless, any character with linearly ordered states can 
be decomposed into a set of additive binary characters that, for our pur- 
poses, are jointly equivalent to the original single character [13]. Thus we 
could, at least in principle, use Fitch’s method on the binary-coded data and 
obtain the MPR-sets for the original character by backtransforming the 
resulting single-character MPR-sets. However, this approach is both tedious 
and unnecessary; the methods we describe below apply equally well to 
binary and (linearly ordered) multistate character data. Furthermore, operat- 
ing directly on the ordered characters removes a potentially confusing 
transformation and adds a simpler geometric interpretation, aiding compre- 

hension of the algorithms. 
Suppose that we are interested in determining the MPR-set for some 

interior node k (Fig. 3A). To simplify the notation to follow, let u = g(k), 
u = h(k), and w = f( k). We can reroot the tree so that node k is the 
ancestor of the entire tree, producing a basal trichotomy in the otherwise 
bifurcating tree (Fig. 3B). Now calculate the Farris intervals S,, S, , and S, 
by performing the initial pass of Farris optimization on the three subtrees 
descending from node k. The following result then provides a simple method 

for calculating Y;, . 

THEOREM .? 

The set 9, of states xk that may be assigned to node k in an MPR is 

Proof Let us create the new nodes p, q, and r as shown in Fig. 3C. 
Consider the problem of finding all possible states that might be assigned to 
node p in an MPR. We can do this by rooting the tree at p (Fig. 3D) and 
calculating the resulting Farris interval Sp = (S, 0 S,) 0 S,. By Corollary 1.1, 
S, contains all states that may be assigned to p in at least one MPR 
(regardless of the tree direction), so that S‘ = Yp. Likewise, we can reroot the 
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FIG. 3. Computing the MPR-set for node k (see text). A: Original tree. B: Tree after 

redirection with k as the root. C: Addition of nodes p, q, and r. D: Tree C after rerooting 
at node p. 

tree, in turn, at nodes q and r, obtaining $ = (S, 0 S,,,) 0 S, and 9: = 
(S, 0 S,,) 0 SW. First, we must show that any state in Yp n Y4 n 9, is also in 
~9’~. Root the tree once more at node p (Fig. 3D). Let us assign any state 
xy E 9, n Yq n Yr to node q. After this assignment, we can simply treat 
node q as a terminal node (pruning off the portion of the tree descending 
from q) and minimize the length of the remainder of the tree. Then the 
(revised) Farris interval for k is equal to { xq } 0 S,,,. If xq E SW, then 
Sk = ( xq}, and thus there exists an MPR with xk = xq (as would be 
obtained in the final pass of Farris optimization). If instead xg e S,,,, then xq 
must be either the least or greatest element of Sk according to the rules for 
the calculation of Farris intervals. Since xq E $ n 9, n Yr, it is also con- 

tained in Yp. Consequently, xp may equal xq in an MPR, and hence we 
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may also assign xq to node k (again according to the final pass of Farris 
optimization). Thus any xq E 9” n Y4 fl q can be assigned to k in an MPR. 

Next, we must show that any state in Y;, is also in Z$ n 9, n sll,. 
Consider Fig. 3C. Suppose xk is any element of Yk and we have an MPR 
with xk, xp, xq, and x, assigned to nodes k, p, q, and r, respectively. The 
state xk must be the median of xp, xq, and x, [7]. Let us take the case 
where xp Q xg = xk < x,; other cases can be argued analogously. There exists 
another MPR having the same state assignments as this one for all nodes 
other than p and r, but with p and r assigned xk as well (any increase in 
]xp - x,] is exactly countered by a decrease in Ix,, - xk] and likewise for 

(x, - xk( and Ix, - xw]). Consequently, there exists an MPR with xk as- 
signed to nodes p, q, r; hence, xk E Yp”,, xk E Yq, and xk E 8. n 

By examining all possible cases with respect to the intersection of Yp, Yq, 
and sPr, we can show that Y;, may also be calculated as follows. Choose a 
pair of intervals from S,, S,, and S, that are maximally distant (breaking 
ties arbitrarily). If, for example, d(S,, 5’“) is maximal, then Yk = 
(S,, 0 S,,) 0 S,,,; calculation of the other two terms in (17) is unnecessary. 
While recognizing the most distant pair of intervals and applying the 
appropriate sequence of state set operations is easier for hand computations, 
application of Theorem 2 is more efficient in computer implementations, 

since it avoids the need to evaluate max[ d( S,, , S,), d( S,, S,,,), d( S, , S,,,)] and 
then branch to separate instructions for computing Yk. 

A COMPUTATIONAL ALGORITHM 

To obtain the MPR-sets for all interior nodes, we could visit each interior 
node in turn and appiy Theorem 2 to each. However, this approach would 
require considerable duplication of effort (in calculating the Farris intervals); 
the following two-pass algorithm is much more efficient. Note in particular 
that only the original direction of the tree need be considered; successive 
rerooting and recomputation of Farris intervals for each rooting is unneces- 

sary. 
The first pass is identical to the initial pass of Farris optimization, visiting 

the interior nodes in a postorder traversal. After completing this pass we will 
have computed the Farris intervals Sk for each of the n - 2 interior nodes k. 
Then a second pass is performed as follows: 

1) Let S{ = ( xp }. Let k = 6. 
2) Let SLtkj = Shckj 0 SL and S&k) = Ssckj 0 SL. Note that SL, which will 

have been defined in either step 1 or a previous performance of step 2, is 
equivalent to the Farris interval that would be calculated for node f(k) if 
the tree had instead been rooted at k. 

3) Y;, is then obtained as 

~=(Sg(k)~S~~k))n(Sh(k)OSh~k))n(S,oS~). 
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4) If Sq has been computed for all interior nodes i, stop. Otherwise let k 

equal the next interior node in a preorder traversal of the tree and go to 2. 

The reader can easily verify that the above procedure is equivalent to 
successively rerooting the tree at each interior node k and defining yk 
according to Theorem 2. 

5. OBTAINING A RECONSTRUCTION 

Although definition of the MPR-sets is useful, these definitions do not 
lead immediately to a reconstruction unless all of the sets 9’;, are singleton. 
When ambiguity exists, we cannot freely assign a state xk E Y;, for each 
node k, as the state assignment made to one node usually places constraints 
on the states eligible for assignment to other nodes. That these constraints 
occur is clarified by the example of Fig. 2, where 9s = 9e = [O,l]. For any 
combination of states y, z E [O,l], there exists at least one MPR where 
x5 = y and at least one MPR in which xg = z. Yet in this example, xs must 
equal x6; for instance, we cannot simultaneously let x5 = 0 and x6 =l and 
still obtain an MPR (Fig. 2E). 

Although enumeration of all possible MPRs occasionally may be of 
interest, it generally will not be feasible, for if the MPR-set for even one 
interior node is nonsingleton, an infinite number of state assignments could 
be made. However, if we add the restriction that states assigned to the 
interior nodes must come from some predefined finite set (e.g., the character 
states actually observed in the data), we can enumerate all possibilities via a 
recursive algorithm that recalculates the set of permissible states for each 
interior node given the state already assigned to its ancestor. By following 
the implications of every possible assignment at each stage further from the 
root, we guarantee the discovery of all MPRs. 

AN EXAMPLE 

At this point an example will be useful to clarify the points made thus far 
and to introduce the final segment of the paper. Consider the tree shown in 
Fig. 4A, where the character states observed in OTUs 1 through 7 take 
values from the interval [0,6] as indicated. Suppose that we are interested 
only in determining 9’i,,, the set of states that may be assigned to HTU 10 in 
at least one MPR. First, we reroot the tree at HTU 10 and compute the 

Farris intervals SE, S,, and S,, as [2,4], [5,6], and [l,l], respectively, as 
shown in Fig. 4B. Using Theorem 2, we calculate the MPR-set for node 10 as 

%= KWW~121 Wv~,,>~~,l n[Cv~,,)~~,l 

= (1431 o[l,ll> n([I,21 o[5,61) n([l,5]+,4]) 

= [1,41 n[2,51 n[2,4] 

= [2,4]. 
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FIG. 4. A: Tree topology, node labelings (boldface), and character-state data (in 

parentheses) for examples discussed in text. B: Farris intervals after rerooting at HTU 10. 

Now suppose we are interested in defining the complete family {Y;, }s G k G 12. 
We can use the two-pass algorithm for this purpose. The first pass consists 
of defining the Farris intervals Sk for each interior node k (Fig. 5A). We 
then let S;, = [l,l] and begin the second pass, first considering node 12. 

Following step 2 of the algorithm, we let 

S’ g(l2) = &,12, o s;z 

s;, = Sll Q s;, 

= LO,31 o[Lll 

= [1,11 

and 

S&12, = Sg(12) o siz 

s;, = Sl, 0 s;* 

= [4,51 o[Lll 

= [1,4]. 

We can now compute YIz as 
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FIG. 5. A: Farris intervals resulting from the first pass of the two-pass algorithm. B: 
Sets of state (Y; ) that may be assigned to each interior node in at least one MPR. 

We now move to node 10, letting 

s,l = s; 0 s,, 

= [5,6] +,ll 
= [1,5] 

and 

s,l = s,l 0 s,, 

= [2,4] #,11 
= [1,2]. 

Then, 

sp,o=(~s~~~)n(~,~~~)n(~lo~~~o) 
= ([2,41~[1,51)n(~5,61~[1~21)~7(~4~51 o[Lll) 
= [2,4]n[2,5ln[1,41 
= t2,4l, 

in accord with our earlier result. We may now visit, in turn, nodes 8, 9, and 
11, computing A@*, $, and YII by analogous calculations. The resulting 
sets Yk are shown in Fig. 5B. 

Now we can use the recursive algorithm briefly outlined above to generate 
all possible MPRs (subject to the restriction that each state assigned to an 
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interior node must be observed in at least one OTU). Initially, we observe 
that any of the states 1, 2, or 3 may be assigned to node 12. We first let 
xi1 = 1 and then recalculate the states that may be assigned to nodes 10 and 
11, given this assignment. For example, we can temporarily reroot the tree at 
node k =ll and let u = 5, u = 6, w =12, and Si2 = (1). Substituting into 

(17), 

%411(X12 =l) =(~0,0]~[3,3])~[1,1]n([0,0]~[1,1])~[3,3] 

n([3,31 o[l,ll) o[O,O] 

= LO,31 o[l,l] n[0,1] 0[3,3] n[1,3] o[O,O] 

= [1,11~[1,3]~[0,1] 

= [l,l]. 

Thus, having made the decision to assign xi2 =l, we must also assign 
xi, = 1. Now we must consider the possibilities for node 10 given the 
assignment xi* = 1. Again we temporarily reroot the tree, this time at node 
k = 10, letting u = 8, u = 9, w = 12, and (as before) S,, = (1). Substituting 
into (17), 

3°K x12 =l) =([2~41~[5,61)~[1,1]n([2,4]~[1,1])~[5,6] 

n(W+[L1l)~[2~4l 

= [4,5] #,l] n[l,2] 0[5,6] n[l,5] +2,4] 

= [1,4] 0[2,5] 0[2,4] 

= [2,4]. 

In this case, no further restrictions were placed on the permissible states for 
node 10 given that xi* =l. Therefore we must consider, in turn, the 

implications of assigning states 2, 3, and 4 to node 10. We first let xi0 = 2. 
Letting k = 8, u = 1, u = 2, and w = 10, we employ calculations analogous to 
those above and determine that Ys](xiz = 1, xi0 = 2) = {2}. Since 9s is 
singleton, we have obtained one possible MPR, the one shown in Fig. 6A. 
Now we let xi0 = 3. Again by calculations analogous to those above, we find 
that YK](xii =l, xi0 = 3) = {3}, yielding the MPR of Fig. 6B. Similarly, 

%I(%2 = 1, xi0 = 4) = {4}, implying the MPR shown in Fig. 6C. 
Now we have exhausted the possible state assignments for node 10 given 

that xiz = 1. We continue the recursion by returning to node 12, letting 
xi2 = 2, and considering the implications of this assignment for nodes 10 and 
11. The reader may verify that Yii I( xi2 = 2) = { 2) and that Sq, I( xi2 = 2) = 
[2,4]. By assigning states 2, 3, and 4, in turn, to node 10, we find the 
additional reconstructions shown in Fig. 6D-F. If we then backtrack once 
again and let xi2 = 3, we ultimately obtain reconstructions 6G and 6H, 
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completing the search for all MPRs under the constraint that all character 
states assigned to interior nodes are observed in the input data matrix. 

6. DEALING WITH AMBIGUITY 

Although characters used in actual biological studies are seldom as 
homoplastic as the one in the example above, a potential dilemma is 
suggested nonetheless. The example considered a single character, but in real 
data sets, of course, there will be a number of characters, each of which may 
yield a nonunique set of optimal character-state assignments. How are we to 
choose from among the potentially vast array of suitable reconstructions? 
Several approaches to the resolution of the ambiguity created by the ex- 
istence of alternative MPRs are described below. The specific method chosen 
in practical applications will depend ultimately on the investigator’s willing- 
ness to make assumptions, the nature of the data, and the purpose of the 
study. 

In many studies, certain assumptions regarding the nature of character 
evolution may be reasonable. For example, the transformation 0 + 1 may 
seem less probable than the transformation 1 + 0 for a binary character in 
which 0 means “absence” and 1 means “presence” (i.e., losses are more 
probable than gains). Thus, for a character such as the one shown in Fig. 2, 
reconstruction 2C (requiring one 0 +l transformation) would be preferred 
over that of reconstruction 2D (two 0 + 1 transformations), despite their 
being “equally parsimonious” in requiring 2 units of change. Evolutionary 
changes such as those shown in Fig. 2C usually are called reversals, while 
Fig. 2D exemplifies parallelism. Of course, if the researcher is able to 
develop a specific model that assigns probabilities to the various events, a 
maximum likelihood method tailored specifically to these assumptions would 
provide a better framework for reconstructing ancestral character-state dis- 
tributions. For certain extreme cases, heuristic alternatives to full maximum 
likelihood estimation may provide satisfactory results. For example, if the 
probability of a gain-loss sequence is much greater than the probability of 
parallel gains, the “Do110 method” [lo], in which multiple gains are expressly 

prohibited, may be employed [4]. Similarly, if parallelisms are much more 
likely than reversals, the method of Camin and Sokal [3], which does not 
allow reversals, is appropriate. 

In most cases, however, alternatives to unrestricted parsimony are inap- 
propriate or simply not available. The requirement for a meaningful prob- 
ability model often excludes the use of maximum likelihood methods. 
Camin-Sokal and Do110 methods may be far too strict in their prohibitions 
of reversals and parallel gains, respectively. Nonetheless, it may be desirable 
to use the relative amounts of parallelism and convergence as an ancillary 
criterion in choosing among competing MPRs. A more complete presenta- 
tion of this point may be found in Swofford (in preparation). 
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For example, although one might be unwilling to assume that reversals 
are impossible, one might prefer a reversal-free hypothesis to a hypothesis 
that requires one or more reversals if the two hypotheses are “equally 
parsimonious.” By post-poning character changes as long as possible as we 
move from the root of the tree toward the tips, we will obtain a reconstruc- 
tion that maximizes the proportion of the total homoplasy accounted for by 
parallelism as opposed to reversal; the delayed transformation optimization 
(DELTRAN) procedure, described below, facilitates this approach. 

DELAYED TRANSFORMATION ALGORITHM 

1) Determine the sets 5$ for all interior nodes k using the two-pass 
algorithm described above. 

2) Initially, let k = 8. 
3) Let xk equal the state in Y;, that minimizes Ixk - x,(~,I. Note that 

x,( k ) will have been defined in a previous step. 
4) If a state xk has been assigned to each interior node k, stop. 

Otherwise, let k equal the next interior node in a preorder traversal of the 
tree and go to 3. 

That the DELTRAN algorithm yields an MPR follows by induction using 
the following proposition: If there exists an MPR with node u assigned x,, 
then there exists an MPR with v assigned x, and v’s descendant node, w, 
assigned the state in YW closest to x,. Suppose that node v is assigned a 
state x,, E q,. Consider two possible assignments to w: c,, the element in 
Sp,, closest to x,,, and d, E Yw - { c, }. The assignment d, could be more 
parsimonious than c, only if the reduction it allows in the length of T, is 
greater than the cost in additional length (Id, - cwD incurred by not select- 
ing x, = c,. However, if d, reduces L(R,) by more than (d, - c,J, then it 
would always be best to let x, = d, rather than c,,,, since the increased 
length between nodes v and w would be at most (d, - c,I, regardless of 
what v were assigned. Thus, c, could not be assigned to w in any MPR. But 
this contradicts c, E 9,. Thus the choice of d, over c, is not more 
parsimonious, and c, may be assigned to node w, given that x, has been 
assigned to node v. 

For the example data of Fig. 4A, the DELTRAN procedure first obtains 
the MPR-sets shown in Fig. 5B. Then the following state assignments are 
made in turn: xi2 = 1, xi0 = 2, x8 = 2, x9 = 5, xii = 1, yielding the recon- 
struction shown in Fig. 6A. The absence of reversals is apparent in that all 
character transformations are monotonic as we move from the root of the 
tree to any tip. All of the “extra” change or homoplasy comes in the form of 
parallelisms. 

In other cases, one might prefer reversals over parallelisms in choosing 
between alternative MPRs. If so, the original optimization method of Farris 
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[7], as described above, may be applied. With this algorithm, the state 
assigned to any particular node k is contained in the Farris interval S, , and 
the length required by the subtree rooted at k, L(R,), takes its minimum 
possible value. Since L( Rk) + Ixk - xrck,l must be minimized in any MPR, if 

-V&) = L*(q), then IG - x,(~)I takes its maximum possible value [given 
the state already assigned to node f(k)]. Thus, as we move from the root 
toward the tips in the final pass, the Farris method always assigns the 
maximum possible amount of change to each branch, given the state 
assignments made thus far. When homoplasy is present, it is more likely to 
be reflected in reversals of earlier changes in the same lineage than in 
parallel changes in different lineages. The name accelerated transformation 

optimization (ACCTRAN) makes the operating characteristics of Farris’s [7] 
method more explicit; hence we prefer it. To apply the ACCTRAN al- 
gorithm to the example data of Fig. 4A, we first calculate the Farris intervals 
shown in Fig. 5A. Then we assign xl2 = 3, xl0 = 4, xs = 4, x9 = 5, and 
x1, = 3, in that order. The resulting reconstruction is shown in Fig. 6H. Note 
that a considerable amount of reversal is implied by this reconstruction, as 
exhibited by the 1 -) 3 + 4 + 2 and 1 + 3 4 0 transformation sequences. 

Maximization of parallelism (DELTRAN) and reversal (ACCTRAN) in 
the choice of optimal MPRs is appropriate only when the OTU designated p 
(the ancestor of the entire tree) exhibits the putative ancestral condition for 
each character; the evolutionary interpretation of these algorithms is lost 
when p is selected arbitrarily. The Wagner method is often applied in cases 
where the ancestral conditions (polarities) are unknown; the result is simply 
an undirected tree (which may or may not be converted subsequently into a 
rooted tree by incorporating additional information). 

In these situations, the DELTRAN and ACCTRAN algorithms would 
have the undesirable property of being dependent on the arbitrary selection 
of p. An optimality criterion that is invariant to the selection of p is the 
f-value of Farris [8], a measure of the goodness-of-fit of the matrix P of 
path-length distances implied by a reconstruction to the original distance 
matrix D. Specifically, let P,~ represent the sum of the lengths of all 
branches in the path between terminal nodes i and j, and let djj be the 
Manhattan distance between i and j as defined by (1). Then 

f= C (Pi,-di,). 
i > j 

(18) 

(Note that dij can never exceed P,~.) The f-value represents the sum of the 
elements of the upper (or lower) triangle of the homoplasy matrix H, where 
h,, = pij - d,,, and therefore sometimes is referred to as the total (pairwise) 
homoplasy. Other measures, such as the F-value of Prager and Wilson [26] 
and the “deviation ratio” (DR) used in Fan-is’s Wagner 78 program are 
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FIG. 7. An example in which the reconstruction that minimizes f is not an MPR. A: 
The only MPR for OTU states indicated in parentheses (L = 2, f= 4). B: A less 
parsimonious reconstruction with a lower f (L = 3, f = 3). 

simple functions of f with U,, used as a normalizing factor. Although the 
f-value and related measures are used more frequently for trees constructed 
from distance matrices, some authors (e.g., Donoghue [5]) have reported only 
total pairwise homoplasy (deviation ratio) statistics for trees constructed 
from character-state data, with no mention of total tree length. Jensen (in 
[23]) has even suggested the use of f as a possible criterion in choosing 
among tree topologies. However, it makes little sense to compare f-values for 
different trees unless this criterion has been minimized for each topology [ll, 
281. A serious difficulty with the use of f as the sole optimality criterion is 
that it often can be fully optimized only at the expense of parsimony-the 
reconstruction that minimizes f is not necessarily an MPR. The example in 
Fig. 7 illustrates this point. The reconstruction of Fig. 7A is the only MPR 
for the data, requiring a length of two steps, whereas the less parsimonious 
reconstruction of Fig. 7B requires three. However, there are only three 
nonzero elements in each triangle of the homoplasy matrix resulting from 
the latter reconstruction, so that f = h,, + h,, + h,, = 3. In contrast, each 
triangle of the homoplasy matrix resulting from the reconstruction of Fig. 
7A contains four nonzero elements, with f = h,, + h,, + h,, + h,, = 4. 
This property of the f-value effectively disqualifies it as a criterion for 
selecting tree topologies unless we are villing to abandon the parsimony 
criterion. 

Despite the above caveats, it might nonetheless be desirable to optimize f 
under the constraint that we hold the length of the reconstruction to its 
minimum possible value. That is, from the set of all MPRs, we will choose 
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the one(s) with the smallest f. We can rewrite (18) as 

f= c P,,- cd., 

i>j 
i,j 'J' 

Since Cd,, is constant for a particular data set, minimizing Cpij is equiv- 
alent to minimizing f. Furthermore, ZpiJ is simply a weighted function of 
the branch lengths, where the weights are given by the number of times each 
branch length is included in the calculation of Cpjj over all distinct pairs of 
terminal nodes (i, j). Since a branch length is included in the calculation of 
p,, if and only if it lies on the path between i and j, we can define the 
weighting function w : E --) WI + as 

w(ek) = nk(n - nk), 

where e, = (k,f(k)), nk is the total number of OTUs included in k’s 
subtree ( =l if k is terminal) and n is the total number of OTUs. We will 
abbreviate w(ek) to wk. An algorithm for finding all MPRs that minimize f 
(subject to the restriction that states assigned to interior nodes must have 
been observed in at least one OTU) follows: 

MINIMUM F-VALUE (MINF) ALGORITHM 

1) Compute 9” for each interior node k using the two-pass algorithm 

described above. 
2) Locate an interior node, denoted u, such that the sum of the weights 

of its three incident branches, wsc”, + whcu, + w,, is maximal. This node 
corresponds to a centroid of the tree. (Basic results in graph theory obtain 
that a tree has at least one and at most two centroids, and that two centroids 
must be adjacent.) Reroot the tree at u and define new ancestor and 
descendant functions f’, g’, and h’ in accord with this redirection. 

3) ForeachstatezEYun{xill<i<n}: 
a. Let x, = z. Complete a reconstruction for each of the three descen- 

dant subtrees according to steps 3-4 of the delayed transformation 
algorithm, where k = u initially. 

b. Compute the weighted sum of branch lengths: 

L= c wklxk-x,~(k)I~ 
k+p 

4) Any reconstruction obtained in step 3 that minimizes L, over all 
reconstructions evaluated is optimal. 

The MINF algorithm shares with DELTRAN the property of choosing 
xk so as to minimize the length of the branch (k, f( k)), given the state 
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already assigned to f(k). Since the weights of the branches are nonincreas- 
ing as we move from node u toward the tips, it is clear that any performance 
of step 3 minimizes L,, given the state assigned to u, and that if we try all 
permissible choices of u we will obtain the globally optimal reconstruction(s). 
To apply the MINF algorithm to the example of Fig. 4A, we first calculate 
the branch weights 

i 

6 for i =1,2,3,4,5,6,12 
w,= 10 fori=8,9,11 

12 for i=lO 

and then observe that letting k =lO maximizes wgck, + whck, + wk. The state 
assigned to node 10 must be chosen from [2,4]n{0,1,2,3,4,5,6} = {2,3,4}. 

If we let xi0 = 2, then we also assign state 2 to nodes 8,11, and 12, obtaining 
the reconstruction shown in Fig. 6D (xg must always equal 5). For this 
reconstruction, L, =1015-2(+6(14-21+ )6-51+ (o-2)+ (3-2)+ 12-11) = 
72. Choosing xi0 = 3 yields the reconstruction of Fig. 6G, with L, = 68. 

Finally, the reconstruction of Fig. 6H is obtained when we let xi0 = 4, with a 
corresponding L, of 70. Consequently, the reconstruction in which xi,, = 3 
is optimal. Since Cd,, = 56, the f-values for the three reconstructions are 16, 
12, and 14, respectively. 

ARBITRARY RESOLUTIONS 

While the use of path-length fit as an optimality criterion may seem 
somewhat ad hoc, the MINF algorithm has an alternative justification. 
A partition { Vi, V, } of the set of OTUs V, is said to be supported by 
a reconstruction if there exists an interior node k such that (i) either 
Vi or V, equals the set {ul E VOlvi < k} and (ii) xk + xfck). When 
min(card( Vi), card( V,)) > 2 and the direction of the tree is not arbitrary, the 
transformation xrck, -+ xk represents a synupomorphy [19] of the OTUs 
descendant from k, and the partition comprises a resolution of the terminal 
taxa (OTUS).~ When more than one MPR exists, some of these may support 
a particular resolution whereas others do not; in such cases the resolution is 
said to be arbitrary. For example, compare the two reconstructions in Fig. 8. 
Reconstruction 8A assigns a change to the branch leading to the common 
ancestor of OTUs A and B; this change supports an { {A,B}, {C,D,E}} 

*We should clarify our notion of support. A character supports a resolution if there is 

an unambiguous change along the branch leading to the common ancestor of a group of 

taxa. For instance, in some situations if the character subsequently reverses in one taxon 

within the group, it would be inappropriate to claim that the character supports the group’s 

monophyly except in the context of other characters that place the reversing taxon within 

the group. 
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0 0 1 1 0 0 1 1 
A B c D A B C D 

FIG. 8. A: An MPR in which a character change occurs along the branch leading to 

the (A.B)-subtree. B: Another MPR for the same data (see text). 

partition and the apparent synapomorphy might be taken as support for the 
phylogenetic hypothesis that A and B share a more recent common ancestor 
than does either with the remainder of the OTUs. However, the equally 
parsimonious reconstruction of Fig. 8B assigns no change to the branch 
leading to the ancestor of A and B, indicating that support for the full 
resolution shown in Fig. 8A is ambiguous, at best. If unambiguous support 
for an { {A,B}, {C,D,E}} partition exists, it will have to come from some 
other character. The MINF algorithm, in transferring length onto terminal 
branches wherever possible, minimizes the total amount of support available 
for resolutions that may in fact be arbitrary. In this example, the MINF 
algorithm, in choosing reconstruction 8B, adopts a more “conservative” 
interpretation, preferring lack of resolution when this is equally parsimoni- 
ous [12].3 

Choosing the reconstruction that minimizes f does not guarantee the 
absence of arbitrary resolutions, however, as length transferred from the 
center of the tree may result in an arbitrary resolution further toward 
the tips, as illustrated in Fig. 9. The MINF reconstruction (Fig. 9B) avoids 
an arbitrary resolution defining the group {1,2,3} but does support a {4,5} 
group. However, the latter resolution is arbitrary (cf. Fig. 9C). The only way 
to be certain that a particular resolution is not arbitrary is to obtain the 
minimum possible length of each interior branch. If this length exceeds zero, 

3Farris (see [12, p. 4251) apparently independently developed a similar method; since 

his algorithm is unpublished, we do not know if it is identical to the MINF procedure we 

describe. 
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FIG. 9. A: Tree topology, node labels (boldface), and character-state data (in 

parentheses) for example discussed in text. B: An MPR that both minimizes f and permits 

an arbitrary resolution (/ = 4). C: An alternative MPR in which the (4,5} group is not 

supported ( f = 6). 

then at least some change will be assigned to that branch regardless of which 
MPR is chosen. The minimum possible length that any branch (k, f( k)) can 
take in an MPR is equal to d(SP,, qCk)) (see proof of the DELTRAN 
algorithm). That is, if the intersection of Y;, and qCk) is nonempty, we 
may assign any state in the intersection to both nodes, with a branch length 
of zero, and if Y;, and Y;Ck) are disjoint, we can assign to each node the 
state closest to the other node’s MPR-set. For the example in Fig. 9, 
9, = {l}, YIo = (0) and Sq, = [O,l], so that the minimum lengths of both 
the (9,ll) and (10,ll) branches are zero. 
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The amount of potential support for a given resolution is also of interest. 
Whenever Yk # 5$( k ), at least one reconstruction will support the resolution, 
as we can assign to at least one node a state from the symmetric difference 
of the two MPR-sets. To determine the maximum support available for the 
resolution, we can calculate the maximum possible length of the branch 
(k,f( k)) in an MPR by rerooting the tree at a point p between k and 
f(k) = u and calculating the Farris intervals for k and u after the redirec- 
tion. From Theorem 1, L*( T,) = L*( Tk) + L*( T,) + d( Sk, S,). It follows 
that d( Sk, S,,) is the maximum possible value of Ixk - xpl + Ix, - xpl = 

1% - x,(~)(, the length of the (k, f(k)) branch. An easy way to compute 
maximum lengths for all branches of the tree is to note that the sets Sk and 
S, are equivalent to Sk and S; as defined in the computational algorithm 
for obtaining all of the MPR-sets. The maximum possible length of each 

branch (k, f( k)) is simply d( S, , SL). 

7. COMPUTER PROGRAMS 

All of the algorithms described above (with the exception of exhaustive 
enumeration of all possible MPRs) are contained in the PAUP (Phylogenetic 
Analysis Using Parsimony) program, available from the first author. The 
program MacClade, available from the second author, contains the main 
algorithm finding Y for all nodes and allows the user to set the state at 
selected nodes and thus to examine any MPR. Both PAUP and MacClade 
contain a number of other phylogenetic algorithms and capabilities. 

The authors express their thanks to Joseph Felsenstein, David Maddison, 

and David Penny for helpful discussions and to Ian Henderson and an anony- 
mow reviewer for extremely useful comments on the manuscript. Travel support 

for WPM was provided by Harvard University. 
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