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Abstract

The role of Multiple Sequence Alignment in phylogenetic analysis is discussed in

the context of data and hypothesis. Alignments cannot be observed in nature, hence

are neither data nor “real” in the scientific sense. Observers gather sequence data

as strings of nucleotides and phylogenetic hypotheses (= topologies) are tested with

them on the basis of quantitative optimality criteria. This optimization problem, the

Tree-Alignment problem, is known to be NP-Hard, hence extremely unlikely to have

an exact solution in polynomial time. Multiple sequence alignment can play a role,

however, as a tool in identifying heuristic solutions to this problem. As such, it must

be evaluated against other such tools. Real data sets and recent simulations offer

tests of the performance of multiple sequence alignment as a heuristic approach to the

tree-alignment problem.
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1 Introduction

Multiple sequence alignment (MSA) is not a necessary, but is a potentially useful, tech-

nique in phylogenetic analysis. By this, we mean that we can construct and evaluate

phylogenetic hypotheses without MSA, but it may be productive in terms of time or

optimality, to do so. In order to evaluate this statement, we must first define phy-

logenetic hypothesis, define the problem, define the criteria we will use to assay the

relative merits of hypotheses, define what we mean by the utility of a technique, and

then finally compete alternate techniques.

In the following sections, each of these terms and operations are defined. The

final section will compete a “one-step” optimization heuristic (Direct Optimization;

Wheeler, 1996) embodied in POY4 (Varón et al., 2007) with the Multiple Sequence

Alignment + Search approach (“two-step” phylogenetics sensu Giribet, 2005) embod-

ied by CLUSTAL (Higgins and Sharp, 1988) using a large number of small data set

simulations run under a variety of conditions (Ogden and Rosenberg, 2007) and a few

larger (hundreds to over 1000 taxa) real data sets.

2 Phylogenetic Hypotheses

A phylogenetic hypothesis is a topology (T ), a tree linking terminal taxa (leaves or

OTUs) through internal vertices (or HTUs) without cycles. More formally, T = (V,E)

where V are the vertices both terminal leaves and internal, and E the edges or branches

that link V . Furthermore, there must be an assignment χ of observed data D to V , and

a cost function σ that specifies the transformation costs between sequence elements (for

this discussion A, C, G, T, and GAP or “-”). The phylogenetic hypothesis (H) then

can be expressed as H = (T, χD, σ). For simplicity, the discussion and examples here

(following Ogden and Rosenberg, 2007) will use the homogenous σ = 1. In addition,

χD will always be a function of D, hence we can rewrite as H = (T,D) or just T (D).
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This topology may represent historical relationships or be simple summaries of

hierarchical variation, but their form is the same. All hypotheses explain all potential

data, just not to the same extent. Hence, those hypotheses that explain the data “best”

are favored over others (summarized by Giribet and Wheeler, 2007).

Observations and Data

In order to test hypotheses, we require data. Data are the observations an investigator

makes in nature. DNA sequence data are gathered as contiguous strings of nucleotides

from individual taxa. These data are observed without reference to the sequences

of other creatures. Entire genomes can be sequenced without knowledge of any other

entity. Nucleotides are observed only in reference to those that are collinear in the same

taxon. MSAs are highly structured, inferential objects constructed by scientists either

automatically or manually. They do not exist in nature, they can not be observed,

they are not data.

3 The Tree-Alignment Problem

The problem of assigning vertex sequences such that the overall tree cost is minimized

when sequences may vary in length is known as the Tree-Alignment-Problem (TAP;

Sankoff, 1975; Sankoff et al., 1976). A phylogenetic search seeks to minimize the TAP

cost over the universe of possible trees. Such an approach embodies the notion of

“dynamic homology” (Wheeler, 2001) as opposed to “static homology” where prede-

termined correspondences and putative homologies are established prior to analysis

and applied uniformly throughout tree search.

Unfortunately, this problem is known to be NP-Hard (Wang and Jiang, 1994),

meaning that no polynomial time solution exists (unless P=NP). In other words, the

search for vertex median sequences is as hard as the phylogeny search problem over
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Figure 1: The tree alignment minimization assigns medians {S7 . . . S11} given observed leaf
sequences {S0 . . . S6} such that the overall tree cost summed over all edges E is minimized.
The root sequence can be any sequence between S11 and S6.

tree space for static homology characters. As with tree searches, other than explicit

or implicit exhaustive searches for trivial cases, we will always be limited to heuristic

solutions (see [Slowinski, 1998] for numbers of homology scenarios).

4 Criteria to Evaluate Hypotheses

In order to compare hypotheses, there must be an explicit objective criterion. At its

most fundamental level, a distance function d is specified to determine the pairwise

cost of transforming each ancestor vertex into its descendent along an edge. This dis-

tance may be minimization-based (such as parsimony) or statistical in nature (such

as likelihood), the TAP itself is agnostic. The distance must, at minimum, accom-

modate substitutions, insertions, and deletions (although substitutions are not strictly

necessary, we will proceed as if they were).

Implementations of these criteria under dynamic homology have been proposed

for parsimony (Wheeler, 1996), likelihood (Steel and Hein, 2001; Wheeler, 2006), and
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posterior probability (Redelings and Suchard, 2005). Each of these criteria will allow

comparison of topological hypotheses (and there associated vertex sequence assign-

ments). The central idea is that there is such an explicit value that can be calculated

and compared. The remainder of the discussion here will use equally weighted par-

simony as the criterion of choice. Hence, results and conclusions are specific to this

flavor of this criterion.

5 Heuristic Techniques

In principle, we could solve the TAP by examining all possible vertex median sequences.

This has been proposed by Sankoff and Cedergren (1983) though n-dimensional align-

ment using T to determine cell costs. Another method using dynamic programming

over all possible sequences (Wheeler, 2003c) would yield the same result. Only trivial

data sets are amenable to such analysis.

Discussing heuristic solutions, Wheeler (2005) categorized these heuristic approaches

into two groups: those that attempt to estimate vertex median sequences directly and

those that examine candidate medians from a predefined set. Estimation methods

calculate medians based on the sequences of the vertices adjacent to them. Direct

Optimization (DO; Wheeler, 1996) uses the two descendent vertices for an (length n

sequences) O
(
n2

)
. Iterative Pass (Sankoff et al., 1976; Wheeler, 2003b) uses all three

connected vertices and revisits vertices for improved medians, but at a time complexity

of O
(
n3

)
. Search methods such as “lifted” alignments (Gusfield, 1997), Fixed-States

(Wheeler, 1999), and Search-Based (Wheeler, 2003c) employ predefined candidate se-

quence medians in increasing number (for m taxa, lifted uses m/2, fixed-states m, and

search-based > m). Time complexity of lifted alignments is linear with m sequences

and quadratic for both fixed-states and search-based (after an O
(
m2n2

)
edit cost ma-

trix setup). A polynomial time approximation (PTAS) exists for TAP (Wang and

Gusfield, 1997) but the time complexity is too great to be of any practical use.
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Multiple Sequence Alignment and The Tree Alignment

Problem

As mentioned above, the determination of the cost (for any d) of each individual

candidate tree is NP-Hard. This is then compounded by the complexity of the tree

search. The simultaneous optimization of both these problems can be extremely time

consuming. The motivation behind MSA is to separate these problems, performing

the homology step (MSA) only once. The determination of tree cost for these now

static characters is linear with the length of the aligned sequences and tree search

can proceed with alacrity. This is a reasonable heuristic procedure whose behavior

will depend on the appropriateness of using that single MSA for all tree evaluations.

Obviously, for trivial cases this will be as effective as more exhaustive approaches. The

method can be further refined by linking MSA more closely with the tree search by

generating new MSAs based on a TAP “Implied Alignment” (Wheeler, 2003a) and

iteratively alternating between static and dynamic searches until a local minimum is

found (“Static Approximation;” Wheeler, 2003a).

Each of these techniques can be evaluated on two bases, the quality of the solution

in terms of optimality value, and execution time. Here, we concern ourselves with the

optimality of the solution, although it is clear that a good solution (such as PTAS or

exact) may be “better” by optimality, but of little use due to their time complexity.

6 Evaluation of Heuristic Techniques

In order to examine the relative effectiveness of MSA, we will use equally weighted

parsimony as our optimality criterion. Equal weighting is not used because of some

innate superiority of this form of analysis (see Grant and Kluge, 2005; Giribet and

Wheeler, 2007 for some acrimony), but because it offers a clear and simple test (similar

reasoning motivated Ogden and Rosenberg, 2007). Other indices could be used, and
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other results found, hence our conclusions are restricted.

There has been some discussion in the literature about “true” alignments and their

place in evaluating phylogenetic methods (Kjer et al., 2007; Ogden and Rosenberg,

2007), more specifically MSA and DO. These authors, and others, have set up the test

of these methods as the recovery of “true” alignment (known by simulation or other

inferred qualities). It is the position taken here that this is incorrect. Alignments

are not an attribute of nature. They cannot be observed, only created by automated

or manual means. Wether or not a method can create a MSA directly or as a tree

adjuvant that matches a notion based in simulation or imagination is irrelevant to its

quality as a solution to the TAP.

Ogden and Rosenberg (2007) performed an admirably thorough set of simulations

(15,400) on small set of taxa (16) for realistically sized sequences (2000 nucleotides)

under a variety of tree topology-types and evolutionary conditions/models. To summa-

rize, 100 replicate simulations were performed on seven tree topologies (balanced, pecti-

nate, and five “random” topologies) under ultrametric, clock-like, and non-clocklike

evolution, with two rates of change for 154 combinations. Ogden and Rosenberg then

stripped out evolved (= true) gaps and reanalyzed the sequences in two ways. The first

was the traditional “two-step” phylogenetics of alignment and subsequent analysis of

static data. This was accomplished with CLUSTAL (Higgins and Sharp, 1988) under

default conditions and PAUP* (Swofford, 2002). The second was “one-step” analy-

sis using POY3 (Wheeler et al., 2005). Ogden and Rosenberg compared the implied

alignments (Wheeler, 2003a) generated by POY and offered by CLUSTAL with the

simulated “true” alignments. The POY implied alignments were found to me more

dissimilar to the simulated alignments than were those of CLUSTAL.

Although the specifics of Ogden and Rosneberg’s use of POY could be a subject of

discussion, the objective here is not to take issue with the details of their analysis, but

their general approach. Although Ogden and Rosenberg did look at topologies in a

secondary comparison, the authors never examined the optimality effectiveness of their
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competing approaches. No tree costs were reported.

We reanalyzed all 15,400 simulations performed and generously provided us by

Ogden and Rosenberg. Three analyses were performed in each case yielding 46,200

runs. In the first, we used the CLUSTAL alignments of Ogden and Rosenberg, running

them as static non-additive characters (all transformations equal), in the second the

“true” alignments were used again as static non-additive characters, and in the third

the unaligned data were analyzed under equal transformation costs (indels=1) using

DO. All analyses were performed using POY4 beta 2398 (Varón et al., 2007) with 10

random addition sequences and TBR branch swapping on several Mac Intel machines.

POY4 replaced PAUP* in the static analyses for consistency of heuristic approach. For

such small data sets, large differences are unlikely to appear. Given the settings and

problem here, POY4 differs from POY3 mainly in the efficiency of implementation,

the core algorithms for DO are the same. The POY4 runs on unaligned data took

approximately 10-20x those of the pre-aligned data.

In every one of the 15,400 comparison cases (Table 1), POY4 yielded a lower cost

than CLUSTAL+POY4. The average tree cost differences for the 154 experimental

combinations (over the 100 replicate simulations) were as low as 2% and as high as 20%.

The higher rates of evolution (maximum distance = 2) had greater deficits compared to

POY4 than the lower. Interestingly, analysis of the simulated and CLUSTAL analyses

showed tree costs that were similar, with neither obviously producing lower cost trees.

As far as these simulations are concerned, the one-step heuristic approach of POY

is overwhelmingly superior to that of the two step alignment + tree search approach

advocated by Ogden and Rosenberg (2007).

Real Data and Heuristics

As a reality check, we performed the same pairs of analyses on four larger, real data sets

(Table 2) used in Wheeler (2007). These data sets were all ribosomal DNA and varied in
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Model Balanced Pectinate Random A Random B
C/P T/P T/C C/P T/P T/C C/P T/P T/C C/P T/P T/C

a 1.0299 1.0266 1.00 1.0726 1.0604 0.989 1.0433 1.0335 0.9906 1.0527 1.0423 0.9902
b 1.0993 1.1172 1.0164 1.1795 1.2068 1.02 1.1276 1.1267 0.9992 1.1327 1.1437 1.01

RBL-1a 1.0525 1.0372 0.9855 1.0749 1.0562 0.9826 1.0522 1.0526 1.0004 1.0548 1.0416 0.988
RBL-1b 1.1680 1.1690 1.0009 1.188 1.2068 1.0161 1.12 1.1513 1.0268 1.1643 1.1680 1.0032
RBL-2a 1.0502 1.034 0.9843 1.0763 1.0592 0.9843 1.0565 1.0386 0.9830 1.0600 1.0430 0.9840
RBL-2b 1.1811 1.1664 0.9876 1.1728 1.1961 1.0198 1.21 1.1884 0.9821 1.1700 1.1713 1.0011
RBL-3a 1.0447 1.0330 0.99 1.0765 1.0634 0.9879 1.0440 1.0340 0.9904 1.0612 1.052 0.9918
RBL-3b 1.1453 1.1420 0.9971 1.1836 1.2143 1.0260 1.1271 1.1260 0.9990 1.1449 1.1652 1.0178
RBL-4a 1.0476 1.0356 0.9886 1.0732 1.0578 0.9858 1.0696 1.0507 0.9825 1.0654 1.0476 0.9833
RBL-4b 1.1464 1.1435 0.9975 1.1664 1.1877 1.0183 1.2042 1.2162 1.0100 1.2017 1.2013 0.9997
RBL-5a 1.0423 1.0303 0.9885 1.0892 1.0645 0.9774 1.0511 1.0441 0.9934 1.0602 1.0432 0.9839
RBL-5b 1.1356 1.1391 1.0031 1.2104 1.239 1.0238 1.1296 1.148 1.0160 1.1990 1.1888 0.9916

RBLNoC-1a 1.0368 1.0186 0.9825 1.0517 1.0480 0.9966 1.0351 1.0262 0.9915 1.0745 1.0536 0.9808
RBLNoC-1b 1.0827 1.0716 0.9898 1.0942 1.1116 1.0159 1.0984 1.0898 0.9922 1.1155 1.1467 1.0279
RBLNoC-2a 1.0340 1.0188 0.9853 1.0563 1.0366 0.9814 1.0470 1.0325 0.9862 1.0616 1.0450 0.9845
RBLNoC-2b 1.0815 1.0676 0.9872 1.1406 1.1310 0.9916 1.1090 1.1110 1.0018 1.1074 1.1315 1.0217
RBLNoC-3a 1.0436 1.0209 0.978 1.0805 1.0530 0.9747 1.0396 1.0285 0.9893 1.0480 1.034 0.9868
RBLNoC-3b 1.0934 1.0807 0.9884 1.1468 1.1771 1.0265 1.1013 1.1013 1.0001 1.1066 1.1065 0.9999
RBLNoC-4a 1.0390 1.0195 0.9812 1.056 1.0449 0.9898 1.038 1.0274 0.9898 1.0513 1.0405 0.9898
RBLNoC-4b 1.0860 1.0757 0.991 1.1274 1.1349 1.0066 1.0860 1.0801 0.9946 1.0987 1.1105 1.0107
RBLNoC-5a 1.0389 1.0236 0.9854 1.0656 1.0518 0.9871 1.0345 1.0260 0.9918 1.0353 1.0190 0.9843
RBLNoC-5b 1.0967 1.093 0.9966 1.1258 1.1520 1.0232 1.0897 1.0872 0.998 1.095 1.0741 0.9805

Model Random C Random D Random E
C/P T/P T/C C/P T/P T/C C/P T/P T/C

a 1.0621 1.054 0.9924 1.048 1.0351 0.9880 1.0478 1.038 0.9904
b 1.1440 1.1736 1.0259 1.1397 1.1412 1.0014 1.1296 1.1344 1.004

RBL-1a 1.057 1.0494 0.9929 1.0613 1.0445 0.9842 1.0479 1.0358 0.9885
RBL-1b 1.1478 1.165 1.015 1.1934 1.1939 1.0004 1.140 1.1327 0.9939
RBL-2a 1.0630 1.0576 0.9949 1.0618 1.0573 0.9958 1.0485 1.0430 0.99
RBL-2b 1.1624 1.1870 1.0212 1.1540 1.1860 1.0278 1.1193 1.133 1.0123
RBL-3a 1.06 1.0439 0.9872 1.0507 1.0378 0.9877 1.0638 1.0471 0.9843
RBL-3b 1.1729 1.1710 0.9984 1.1451 1.1497 1.0040 1.2059 1.2019 0.9967
RBL-4a 1.0621 1.0474 0.9861 1.0594 1.0425 0.9841 1.0585 1.0418 0.9843
RBL-4b 1.1716 1.1837 1.0104 1.1909 1.1876 0.9973 1.1936 1.1848 0.9926
RBL-5a 1.0574 1.0503 0.9933 1.0476 1.0373 0.9902 1.0622 1.0558 0.9940
RBL-5b 1.1442 1.1596 1.0135 1.1442 1.1444 1.0002 1.168 1.1958 1.0242

RBLNoC-1a 1.0600 1.0396 0.9808 1.0449 1.0280 0.9839 1.0466 1.0326 0.9867
RBLNoC-1b 1.1330 1.1425 1.0084 1.1103 1.1108 1.0005 1.1028 1.105 1.0022
RBLNoC-2a 1.0500 1.0403 0.991 1.0430 1.0307 0.9883 1.0457 1.0301 0.99
RBLNoC-2b 1.1097 1.1131 1.003 1.097 1.0981 1.0008 1.1164 1.112 0.9958
RBLNoC-3a 1.0519 1.0411 0.9897 1.0358 1.0243 0.9889 1.0351 1.023 0.9882
RBLNoC-3b 1.1256 1.1300 1.0039 1.097 1.0783 0.9826 1.0966 1.0872 0.9915
RBLNoC-4a 1.0682 1.0545 0.9872 1.0420 1.0246 0.9834 1.0323 1.0196 0.9876
RBLNoC-4b 1.1197 1.1490 1.0262 1.1120 1.0830 0.9740 1.0937 1.074 0.9819
RBLNoC-5a 1.0615 1.0484 0.9877 1.0431 1.0237 0.9814 1.0369 1.0265 0.9900
RBLNoC-5b 1.1248 1.1413 1.0147 1.1050 1.0909 0.9873 1.1005 1.0943 0.9946

Table 1: Tree cost comparisons of simulated data of Ogden and Rosenberg (2007). The model
column specifies the evolutionary model and rate of the simulation, Balanced, Pectinate, and
Random A-E the tree topologies. C/P denoted the average (over 100) trials of the cost ratio
of the CLUSTAL+ Search trees and POY trees, T/P the average ratios of “true” alignment
to POY costs, and T/C the ratios of “true” alignment to CLUSTAL+Search trees.
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sized from 62 taxa to 1040. They were analyzed with CLUSTAL under the same default

conditions as Ogden and Rosenberg (2007) (gap opening=15, extension=6.66, delay

divergent=30% transition weight=0.50, DNA weight matrix=IUB) and performed the

same 10 replicates + TBR for aligned and unaligned data. In each of these four, cases

the single-step POY4 tree costs were from 6% to 17% lower.

7 Conclusions

Given that alignments are not “real” in a any natural sense, their role can only be

as a heuristic tool in the solution of phylogenetic problems. The core hypothesis of

phylogenetic analysis is that topology which optimizes some measure of merit. The

simulations of Ogden and Rosenberg (2007) and the analyses presented here clearly

show that for this type of analysis, MSA is an inferior heuristic as far as generating

low cost solutions to the TAP. MSA may be a useful tool in accelerating searches

(such as in Static-Approximation) heuristics, but on its own it falls short. In fact, the

only case where MSA could be self-consistent would be if a complete set of optimal

implied alignments (there are likely many for any given tree) were to be generated for

the optimal set of trees (again there may be many). In this case, static (=two-step)

analysis of this complete set would return the same set of optimal source trees. Only

then would there be a solid relationship between optimal alignments and optimal trees.

Given that both of these sets of objects are unlikely to be found and recognized for

Data Set Taxa POY CLUSTAL+POY Cost Ratio
Mantid 18S 62 956 1052 1.1004
Metazoa 18S 208 26697 30983 1.1605
Archaea SSU 585 37003 39193 1.0592

Mitochondrial SSU 1040 77753 90685 1.1663

Table 2: One and two step analyses of four larger real data sets. All transformations were
set to unity (indels=1). The mantid data are from Svenson and Whiting (2004) the other
data collected in Wheeler (2007).
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any non-trivial data set, this situation exists only in theory.

Multiple sequence alignments are neither real, nor particularly useful. So what

keeps them around other than tradition, inertia, and luddism?
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