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Chapter 11

Optimality
Criteria−Likelihood

The previous two chapters discussed methods to determine the cost of a tree
based on overall distance and the minimization of weighted transformations. We
discuss here the determination of tree cost using stochastic models of character
change optimizing the probability of the observed data on T given some set
of parameters. This probability is proportional to the likelihood function of
Section 6.1.7 and is referred to as the maximum likelihood (ML) criterion.

As with parsimony, ML methods assign median (ancestral) states (either in
an optimal or average context) such that the overall likelihood of the tree is
maximized. Unlike minimization-based parsimony, ML methods require explicit
models of character evolution (as opposed to edit cost regimes) and edge param-
eters (branch lengths; parsimony requires none) to determine tree optimality.

The presentation here will also divide characters into static and dynamic
types since they require different analytical techniques.

11.1 Motivation

One might explore alternate optimization criteria for their own sake. ML, how-
ever, was proposed in the context of purported problems with parsimony anal-
ysis. Although Camin and Sokal (1965) and Farris (1973a) had discussed ML
methods, Felsenstein (1973) was the first to identify concerns with parsimony
and advocate ML as a solution. Much of the discussion centering on the rela-
tive merits of parsimony and likelihood in systematics is based on the simple
scenario described by Felsenstein (1978).

Joseph Felsenstein

11.1.1 Felsenstein’s Example

Felsenstein posited a four-taxon example (Fig. 11.1) with a simple model of
change in binary characters to make his point. In this scenario, there are taxa

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
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Figure 11.1: Felsenstein (1978) scenario for the statistical inconsistency of par-
simony. Probability calculations begin at the root vertex.

A, B, C, and D related by a tree. A and B are on one side of a central split and
C and D the other. All characters are posited to have state 0 at the arbitrarily
labelled root position. The probabilities of change on each branch are either p
or q as labelled. The probabilities of character change are symmetrical so that
for all characters pr(0 → 1) = pr(1 → 0).

Felsenstein was concerned with the issue of statistical consistency; in this
context, consistency refers to the conditions under which characters would re-
cover the model tree (AB|CD) as opposed to the alternatives (AC|BD or
AD|BC). There are six character distributions relevant to this problem: two
for each of the three alternate splits (Eq. 11.1), where the number of each char-
acters supporting a split (nABCD) are:

AB|CD : n1100 + n0011 (11.1)

AC|BD : n1010 + n0101

AD|BC : n1001 + n0110

Each of these conditions has an associated probability (starting from the root)
based on p and q (Eq. 11.2):

pr1100 = pq
[

(1 − q)2(1 − p) + q2p
]

(11.2)

pr0011 = (1 − q)(1 − p) [q(1 − q)(1 − p) + (1 − q)pq]

pr1010 = p(1 − q)
[

q2(1 − p) + (1 − q)2p
]

pr0101 = (1 − p)q [q(1 − q)p + (1 − q)q(1 − p)]

pr1001 = p(1 − q) [q(1 − q)p + (1 − q)q(1 − p)]

pr0110 = (1 − p)q
[

q2(1 − p) + (1 − q)2p
]
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In order for the parsimonious result to return the model tree, the probability
of those characters supporting the tree must be greater than that for the two
alternatives (Eq. 11.3).

pr1100 + pr0011 ≥ pr1010 + pr0101, pr1001 + pr0110 (11.3)

If q ≤ 1
2 (which we assume), then pr1010 + pr0101 ≥ pr1001 + pr0110. Hence, the

condition we require is that pr1100 + pr0011 ≥ pr1010 + pr0101. This will be
achieved when the probability of two parallel changes in p exceeds that of a
single change in q (Eq. 11.4).

p2 ≤ q(1 − q) (11.4)

The key relationship is between p and q. As long as p grows with respect
to q, parsimony will be increasingly unlikely to return the model tree
(Fig. 11.2)1.

Criticisms and qualifications of this result are argued in discussions of the
relative merits of optimality criteria and are discussed in Chapter 13.
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Figure 11.2: The “Felsenstein Zone” (NC) of statistical inconsistency of parsi-
mony (Felsenstein, 1978).

1This effect is removed if p/q is constant and p and q become adequately small (Felsenstein,
1973) or the number of states increases sufficiently (Steel and Penny, 2000).
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11.2 Maximum Likelihood and Trees

From the discussion of Section 6.1.7, the likelihood of a hypothesis (in this case
a tree T) given data D, is proportional to the probability of the data given the
tree (and some model; Eq. 11.5, Edwards, 1972).

l(T |D) ∝ pr(D|T ) (11.5)

A systematic ML method selects T such that pr(D|T ) is maximized. This state-
ment includes the requirement of knowledge of a broad variety of quantities
needed to determine the likelihood. These include transformation models, edge
distribution (branch lengths), and other parameters bundled together under the
term “nuisance parameters.”

11.2.1 Nuisance Parameters

Nuisance parameters are all those aspects required to calculate pr(D|T ) other
than the data and tree topology. The three most important and commonly spec-
ified nuisance parameters are 1) transformation model (probabilities of change
between character states), 2) edge parameters (time and rate of change along
branches), and 3) distribution of rates of change among characters. These pa-
rameters can be denoted collectively by θ, and are estimated from observed
data (as with edge parameters), or chosen to maximize the likelihood of a tree
or trees. An important assumption for the analysis of character data is that
they are independent and identically distributed (i.i.d.). This allows the joint
likelihood of several characters to be calculated as the product of their indi-
vidual values. Certainly, for many character types, this is not reasonable (e.g.
stem and loop sequence characters in rRNA). However, distributional models
can account for this to a large extent (although dynamic character types would
be an exception).

If we have knowledge of the distribution of the nuisance parameters Φ(θ|T ),
we can integrate out θ (within parameter space Θ) to determine p(D|T )
(Eq. 11.6).

p(D|T ) =

∫

θ∈Θ

p(D|T, θ)dΦ(θ|T ) (11.6)

That T which maximizes p(D|T ) in this way is referred to as the maximum

integrated likelihood (MIL) (Steel and Penny, 2000). The MIL is also the MAP
Bayesian estimate (Chapter 12) if the distribution of tree priors is uniform (flat).

When discussing stochastic model-based systematic methods, it can be useful
to determine the probability that a given method, M, will return the “true”
tree given a tree T and set of model parameters θ, ρ(M,T, θ). If we have Φ(θ|T )
and a prior distribution of trees, p(T ), the nuisance parameters and tree can be
integrated out, identifying M with the highest expectation of success (Eq. 11.7).

ρ(M) =
∑

T

p(T )

∫

θ∈Θ

ρ(M,T, θ)dΦ(θ|T ) (11.7)
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Székely and Steel (1999) showed that ρ(M) is maximized for the method that
returns T with maximum p(T)pr(D|T ). This is the Bayesian maximum a poste-

riori or MAP tree. As mentioned above, this is identical to the MIL tree when
all prior probabilities of trees are equal. The use of non-uniform tree priors (such
as empirical or Yule) breaks this identity.

11.3 Types of Likelihood

As mentioned above, θ can have many complex components, and we are unlikely
to have much knowledge of their distribution. One approach to circumvent this
problem is to choose θ such that p(D|T, θ) is maximized. This is referred to as
maximum relative likelihood (MRL). In general, this is the methodology used in
empirical analyses. Problems may arise when p(D|T, θ) > p(D|T ′, θ′) for a low
probability θ (if we were to have Φ(θ|T )) while for a set of high probability
θ, p(D|T ′, θ′) > p(D|T, θ). Steel and Penny (2000) cite such an example in a
four-taxon case where parsimony outperforms MRL. MRL operates in absence
of p(T ) and Φ(θ|T ), allowing likelihood analysis of systematic data. There are,
however, further distinctions among MRL methods.

11.3.1 Flavors of Maximum Relative Likelihood

There are three variants in the manner in which non-leaf character states are
determined. The most usual method is to sum over all possible vertex state
assignments weighted by their probabilities. In the nomenclature of Barry and
Hartigan (1987), this is referred to as maximum average likelihood (MAL). An
alternative would be to assign specific vertex states (as well as other parame-
ters) such that the overall likelihood of the tree is maximized. Barry and Har-
tigan (1987) suggested this method, naming it most parsimonious likelihood

(MPL, sometimes referred to as ancestral maximum likelihood). This would ap-
pear to be convergent with parsimony, but the edge probabilities are the same
over all characters hence MPL will not (in general) choose the same tree as
parsimony.

John HartiganA third variant was proposed by Farris (1973a) and termed evolutionary

path likelihood (EPL). In this form, the entire sequence of intermediate char-
acter states between vertices are specified such that the overall tree likelihood
is maximized. Interestingly, the tree which maximizes this form of likelihood
is precisely the most parsimonious tree. This result holds for a broad and ro-
bust set of assumptions (there is no requirement of low or homogeneous rates of
character change for example). This would conflict with Felsenstein’s assertion
of ML methods being consistent and Farris’ result that MP is an ML method.
This seeming paradox is resolved when it is realized that the forms of likelihood
discussed by Farris and Felsenstein (and the separate analogous MP = ML re-
sults of Goldman, 1990 and Tuffley and Steel, 1997) differ (Fig. 11.3). For the
remainder of this discussion, when we talk of ML methods, we will be referring
to MAL.
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Maximum a posteriori Tree
(MAP)

unequal p(T) equal p(T) 

Maximum Integrated Likelihood
(MIL)

know φ(θ|T) optimize (θ|T)

Maximum Relative Likelihood
(MRL)

Maximum Likelihood
(ML)

Maximum Average Likelihood

(MAL)

Maximum Parsimonious Likelihood

(MPL)

Evolutionary Path Likelihood

(EPL)

average over
vertex states

select best
vertex states

select best
path of states

Figure 11.3: A classification of likelihood methods employed in systematics.

11.4 Static-Homology Characters

11.4.1 Models

Character Transformation

We can create a general model for a character of n states, with instantaneous
transition (rate) parameters between states i and j, Rij , and a vector of state
frequencies Π (Eq. 11.8; Yang, 1994a).

R =

⎡

⎢

⎢

⎢

⎢

⎣

R00 . . . R0n

· . . . ·
· . . . ·
· . . . ·

Rn0 . . . Rnn

⎤

⎥

⎥

⎥

⎥

⎦

Π =

⎡

⎢

⎢

⎢

⎢

⎣

π0

·
·
·

πn

⎤

⎥

⎥

⎥

⎥

⎦

(11.8)

In general, we require several symmetry conditions of R (Eq. 11.9).

∀i Rii = 0 (11.9)

∀i, j Rij = Rji
n∑

i=1

n∑

j=1

πi · πj · Rij = 1

The combination of these two matrices yields the Q, or rate matrix, of Tavaré
(1986) (Eq. 11.10).

Qij =

{

Ri,j · πj i �= j

−
∑n

m=1 Ri,m · πm i = j
(11.10)

The probability of change (P) between states i and j in time t can be calculated
from elementary linear algebra (Eq. 11.11; Sect. 6.2):

Pi,j (t) =
n∑

m=1

eλmt · Um,i · U
−1
j,m (11.11)
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with λm, the eigenvalues of Q, U the associated matrix of eigenvectors and U−1,
its inverse (Strang, 2006). The time-reversible constraint of the matrix allows
efficient computation of tree likelihoods.

This formulation is the most general (if symmetrical) description of a Markov
process for n character states. This model has, at most, n − 1 independent
frequency parameters (Π; one for each state, but the total must sum to 1) and
(

n
2

)

− 1 independent rate parameters (R) due to the constraints above (Eq. 11.9).

Special Cases

All character transformation models in use today, from the simple binary model
of Felsenstein (1973), through the four state homogeneous Jukes and Cantor
(1969) to General-Time-Reversible models for four (Lanave et al., 1984; Tavaré,
1986) and five states (McGuire et al., 2001; Wheeler, 2006), are simplifications
of the most general process through symmetry requirements (e.g. transversions
equal). All of the named models other than GTR (e.g. JC69) are special cases
where analytical solutions are known (as opposed to computationally determin-
ing eigenvalues and applying Eq. 11.11). The hierarchy of simplifications for four
states is illustrated in Swofford et al. (1996) (Fig. 11.4).

11.4.2 Rate Variation

In addition to models of character transformation, there are also distributional
models of character change rates. These are most frequently used in the analysis
of molecular sequence data where aligned nucleotide characters are analyzed as

3 substitution types
(transversions, 2 transition classes)

3 substitution types
(transitions, 2 transversion
classes)

2 substitution types
(transitions vs. transversions)

2 substitution types
(transitions vs. transversions)

Single substitution type

Single substitution typeEqual base frequencies

Equal base frequencies

Equal base
frequencies

GTR

JC

TrN

HKY85
F84

F81

SYM

K3ST

K2P

Figure 11.4: Swofford et al. (1996) relationships among DNA substitution like-
lihood models from the least parameterized JC69 to the most, GTR.



220 Optimality Criteria−Likelihood

0
0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12

k = 1, θ = 2.0

k = 2, θ = 2.0

k = 3, θ = 2.0

k = 5, θ = 1.0

k = 9, θ = 0.5

14 16 18 20

Figure 11.5: The gamma distribution with shape parameter α = k, β = θ.

a block. Positions vary in their observed levels of variation (hence, evolutionary
rates), and this is accommodated by adding variation to the global rates of
change used to calculate tree likelihoods.

The two most common are the fraction of invariant sites (Hasegawa et al.,
1985) and discrete-gamma distribution (Yang, 1994a). The notion behind the use
of an invariant sites parameter (usually referred to by I) is that one frequently
observes many invariant positions with sequence data and accounting for this
class of positions with a global rate is undesirable. Hence, a parameter is added
to account for the fraction of sites available for substitution.

The gamma distribution (used in its computable discrete form), adds addi-
tional classes of positional rates based on a shape parameter α. The distribution
(Eq. 11.12, Fig. 11.5) has a mean of α/β and variance of α/β2, but we usually
set β = α for a mean of 1.

g(x;α, β) =
βαxα−1e−βx

Γ(α)
(11.12)

The user specifies a number of rate classes (often in concert with invariant sites)
and estimates α such that the tree likelihood is maximized. It is important to
note that all rate classes are applied to each position, as opposed to a single
class to a given position. For n taxa, m characters (e.g. aligned nucleotide sites),
s states, and r rate classes, the overall memory consumption will be O(nmsr).
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11.4.3 Calculating p(D|T, θ)

For a single character (x) on a tree, the likelihood of internal vertex i (Li)
with descendant vertices j and k would be the sum of the probability between
xi and each state in each descendant (given the edge parameter t; Fig. 11.6)
multiplied by its respective likelihood and summed over all states. The character
likelihoods are multiplied over the entire data set to determine the tree likelihood
(Eq. 11.13).

Li(x) =

states∑

i

⎡

⎣

⎛

⎝

∑

xj

pxi,xj
(tj)Lj(xj)

⎞

⎠ ×

(

∑

xk

pxi,xk
(tk)Lk(xk)

)

⎤

⎦ (11.13)

When edge weights are not known (as in nearly all real data situations), they
must be estimated. This can be done in several ways, but all rely on calculation
of the marginal likelihood (holding all other parameters constant) of a given
edge assuming a variety of weights (t parameter) and choosing the optimal value
(Fig. 11.7). Often Brent’s Method (Brent, 1973) or Newton–Raphson (Ypma,
1995) is used to estimate the edge parameters.

υ i

υ j υk

tk
t j

Figure 11.6: Labeled subtree for likelihood calculations.

p i

0

1.0

t i

0 1.0 10.0

branch length estimate

0.5

Figure 11.7: Estimate of edge weight parameter t by maximizing the probability
of transformation along the edge, pi.
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The determination of the MAL of a tree is a heuristic procedure due to the
large number of parameter estimations involved. As with parsimony optimiza-
tion (Chapter 10), the tree is traversed setting median states recursively. This
recursion is initialized with the likelihood of leaf states at 1 (no need to sum
to one for likelihood) and all other leaf states 0. The likelihood is calculated
via a post-order tree traversal from the tips to the root multiplied by the prior
probabilities of the states themselves (Eq. 11.14).

LT (x) =

states
∏

i=1

πi

∏

∀u,v∈E

Lu,v (11.14)

Given that these values can be quite small, it is often convenient to speak of
log or − log likelihood values2. The following example assumes that the edge
parameters are known. If this is not so (which is usually the case), such a
single post-order traversal will not be sufficient to determine the tree likelihood.
An iterative edge refinement procedure will be required to optimize the edge
parameters (Felsenstein, 1981).

An Example

Consider a single nucleotide character analyzed under the JC69 model (Fig. 11.9).
If we fix all the edge probabilities, µt = 0.1, we can calculate the likelihood of the
topology given the analytical probabilities in Equation 11.15.

Pij(t) =

⎧

⎨

⎩

1
4 + 3

4e−µt i = j

1
4 − 1

4e−µt i �= j

(11.15)

Hence, the edge probabilities are given in Equation 11.16.

Pij(t) =

⎧

⎨

⎩

0.929 i = j

0.0238 i �= j

(11.16)

A subtree example with leaf states (A and C) and edge parameters 0.1 is shown
in Figure 11.8.

The overall likelihood for the tree in Figure 11.9 is 1.76 × 10−6 or, in familiar
−log (base e) units, 13.25.

11.4.4 Links Between Likelihood and Parsimony

Typical likelihood analyses employ several homogeneity conditions. Usually the
same edge parameter is applied to all characters (although it may vary over

2The finite precision of computers can cause problems for likelihood calculations (floating
point error) due to the large number of operations required when evaluating trees. Alternate
implementations of the same algorithm may well generate likelihoods that differ non-trivially.
Extreme care must be taken to avoid this problem.
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CA

0.10.1

X

L(x = A)  =  [0.929 ⋅ 1.0] × [0.0238 ⋅ 1.0] = 0.0221

L(x = C)  =  [0.0238 ⋅ 1.0] × [0.929 ⋅ 1.0] = 0.0221

L(x = G)  =  [0.0238 ⋅ 1.0] × [0.0238 ⋅ 1.0] = 0.000566

L(x = T)  =  [0.0238 ⋅ 1.0] × [0.0238 ⋅ 1.0] = 0.000566

Total L(x)  =  0.0453

Figure 11.8: Labeled subtree with likelihood calculations.
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C ∞
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A ∞

C ∞
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T ∞

Figure 11.9: An example likelihood calculation under JC69 model with all edge
parameters set to 0.1.
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edges), and the same model as well. Under these conditions, MAL will frequently
lead to results at variance with parsimony. As mentioned earlier, Farris (1973a)
employed a simple model to show that parsimony and EPL would choose the
same optimal tree. Such connections are not limited to this scenario.

Nicholas Goldman

Goldman (1990) discussed a number of scenarios involving likelihood, parsi-
mony, and compatibility. Goldman showed that when edge weights are constant
over the tree, likelihood and parsimony will converge. More recently, Tuffley

Chistopher Tuffley

and Steel (1997) discussed the No-Common-Mechanism (NCM) model, where
each character has a potentially unique rate that may vary among edges as well
(hence the name). The rate for each character on each edge is optimized (either
zero, or infinite) to maximize the likelihood. Under a Neyman (1971) type model
with r states, the overall likelihood of the tree can be determined as a function
of the number and distribution of parsimony changes on the tree (Eq. 11.17),
with ri, the number of states exhibited by character i, χi, the parsimonious
vertex states assignments for character i, and −l(χi, T), the parsimony length
of assignment χ for character i on tree T.

LT (X) =

kcharacters
∏

i=1

r
−l(χi,T )−1
i (11.17)

For the tree and leaf states of Figure 11.9, the likelihood would be 3−(2+1) =
0.037. It is often said that this model leads to equivalent results between parsi-
mony and likelihood, but this will only occur when the number of states of each
character (ri) is a constant over the data set. In this way, NCM can be viewed
as a likelihood-based character weighting scheme in parsimony analyses.

11.4.5 A Note on Missing Data

Missing data are not, in principle, a problem for likelihood analyses. Leaf state
vectors can be set to 1.0 for each of the observed (in the case of polymorphism)
or implied (all states = 1.0) states in the case of entirely missing observations.
Implementations, however, may differ in the treatment of these unknown ob-
servations. Currently, implementations treat missing data in this manner. Ob-
viously, this can have an effect on analyses. This issue can become all the more
pernicious when coupled with the practice of treating indels or “gap” charac-
ters as missing values (as opposed to a 5th state). Though clearly suboptimal
(and unnecessary, as shown later), such a treatment of indels is common and
problematic.

11.5 Dynamic-Homology Characters

As with parsimony, maximum likelihood can be applied to the analysis of
dynamic-homology characters. With sequence (nucleotide and amino-acid) and
higher order characters (e.g. gene rearrangement), two general approaches have
been taken in the construction of stochastic models. The first uses a simple
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extension of 4-state nucleotide or 20-state amino-acid models to include “gaps”
as a 5th or 21st state (Wheeler, 2006). These models treat indels as atomic
events, emphasize simplicity and make little attempt to model reality per se.
The second approach makes an explicit attempt to model the process of se-
quence change including indel events (Thorne et al., 1991, 1992), resulting in
more complex scenarios.

In general, models describing the process of gene rearrangement are not
attempts to describe the mechanisms of genomic change as much as descriptive
statements of the frequency and patterns of change (e.g. Larget et al., 2004).

11.5.1 Sequence Characters

In order to perform a dynamic homology analysis (Tree Alignment Problem;
Chapter 10) of multiple leaf sequences related by a tree, several components are
required. First, a model must be specified allowing both element substitution
and insertion–deletion (indel). Second, a procedure needs to be identified to
calculate the likelihood “distance” between any pair of sequences. And third,
a method of creating sequence medians (vertex or HTU sequences) must be
described.

Models

n + 1 State Models—A simple expansion of sequence substitution models to
include an extra state for “gaps” representing indels (such as the r-state model
of Neyman, 1971) has been used by McGuire et al. (2001) in their Bayesian
analysis of pre-aligned sequences and the ML Direct Optimization (ML–DO) of
Wheeler (2006).

In the symmetrical (rij = rji, R of Tavaré, 1986) general 5-state case there
are five state frequencies to be specified (A, C, G, T, -), although they must
sum to 1, and 10 transition rates among the states (Fig. 11.10). As with the
GTR model of sequence substitution above, there are a broad variety of special
case models that can be constructed by enforcing various additional symmetry
conditions (such as JC69+Gaps, Eq. 11.18; Wheeler, 2006).

Pij(t) =

⎧

⎨

⎩

1
5 + 4

5e−µt i = j

1
5 − 1

5e−µt i �= j
(11.18)

Considering the example alignment of 11.19 under the model in Equation 11.18
with an edge weight (branch length) of 0.1 (μt), p(I, II) = (0.01903)3(0.9239)2 =
5.882 × 10−6.

Sequence I AC-GT (11.19)

Sequence II AGC-T
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A

A −(πCα+πGβ+πTγ+π−δ) π−δ

−(πAα+πGε+πTζ+π−η)

−(πAβ+πCε+πTθ+π−κ)

−(πAγ+πCζ+πGθ+π−ν)

−(πAδ+πCη+πGκ+πTν)πTνπGκπCηπAδ

π−νπGθπCζπAγ

π−κπTθπCεπAβ

π−ηπTζπGεπAα

πTγπGβπCα

C

G

T

-

C G T -

Figure 11.10: A general, symmetrical, 5-state model (states A, C, G, T, ‘-’).

These models have the virtue of simplicity and ease of calculation, hence
can be applied to real data sets with multiple loci and empirically interesting
(>100) numbers of taxa (Whiting et al., 2006).

Birth–Death Model—The Thorne et al. (1991) and Thorne et al. (1992)
models (TKF91 and TKF92), treat the insertion–deletion process in an alter-
nate fashion. There are two components to the calculation of the probability of
transforming one sequence into another: the probability of an alignment (α as
in 11.19) given a set of insertions, deletions, and matches and model [p(α|α′, θ)];
and the probability of a specific pattern of indels and matches given a model
[p(α′|θ)]. The method couples a birth–death process (parameters λ—insertion
or birth rate; µ—deletion or death rate) with standard four-nucleotide substi-
tution models.

Both TKF91 and TKF92 model the indel process in the same way, trans-
forming one sequence into another (the model is symmetrical). There are three
sorts of events. The first is an insertion (not leading) in the first sequence to
yield the second (p). The second transformation type is a deletion (p′), and
the third, a leading insertion, takes place before the left-most residue (p′′). The
probabilities of these structural events are as in Equation 11.20, with λ birth
rate (insertion), µ death rate (deletion), n > 0 indel size, and time t.

pn(t) = e−µt [1 − λβ(t)] [λβ(t)]
n−1

(11.20)

p′n(t) =
[

1 − e−µt − µβ(t)
]

[1 − λβ(t)] [λβ(t)]
n−1

p′′n(t) = [1 − λβ(t)] [λβ(t)]
n−1

with

β(t) =
1 − e(λ−µ)t

µ − λe(λ−µ)t

The substitution process follows standard models with state frequencies deter-
mining the probability of inserting a specific sequence.
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11.5.2 Calculating ML Pairwise Alignment

Both the above models can be optimized for two sequences by versions of the
familiar dynamic programming procedure used for pairwise sequence alignment
(Sect. 8.4). Here, we discuss the algorithm for the n + 1 state model. The recur-
sions are more complex for TKF92, but they follow the same basic outline (see
Thorne et al., 1992 for specifics).

Dynamic Programming

In order to calculate the probability of transforming one sequence into an-
other (or a pairwise alignment; as with parsimony the cost is identical for two
sequences), three elements are required: the sequences, the transformational
model, and a time parameter to mark the differentiation between the sequences
[p(I, II|θ, τ)]. Dynamic programming will optimize the likelihood for a given t,
but as with edge weight/branch length optimization, the procedure must be
repeated, varying or estimating t until the likelihood is optimized (Eq. 11.21).

p(I, II|θ) = max
t

p(I, II|θ) (11.21)

Since t is chosen to maximize the pairwise probability, the method will yield
an MRL.

It is often convenient to work with the negative logarithm of likelihood and
probability values as opposed to their absolute values and, in this case, it allows
an elegantmodification of theNeedleman andWunsch (1970) algorithm (Alg. 8.1).
Based on model and time, the conditional probability of an indel or element match
can be calculated a priori. In the scenario above (JC69+Gaps with t = 0.1), the
probability of an indel is 1

5 − 1
5e−0.1 = 0.01903, an element mismatch (substitu-

tion) is the same 1
5 − 1

5e−0.1 = 0.01903, while an element match 1
5 + 4

5e−0.1 =
0.9239. Using the logarithms of these values, the multiplicative probabilities of a
scenario can be optimized as additive sums [log(p(xi) · p(xj)) → log p(xi) +
log p(xj)] by treating them as match, mismatch, and indel costs.

Although the log transform probabilities can be used as edit costs (i.e.
cost[i][j] = log p(Ii, IIj |θ, t)), the core recursion requires a modification. The
probability of inter-transforming (or aligning) two sequences is the sum of the
probabilities of all potential transformation (or alignment) scenarios between the
two. As we know (Eq. 8.6; Slowinski, 1998), there are a large number of these
to calculate. The Needleman–Wunsch algorithm can accomplish this when the
central alignment recursion is changed to a sum as opposed to the minimum
of three paths. This sum is taken among the probabilities (not log probabili-
ties) of the three options (element insertion, deletion, and match) at each cell
(Eq. 11.22) (cost[i][j] is the − log transformed likelihood).

cost[i][j] = log(e−(cost[i−1][j−1]+σi,j) (11.22)

+ e−(cost[i−1][j]+σindel)

+ e−(cost[i][j−1]+σindel))
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For sequences of lengths n and m, p(I, II|θ, t) = e−cost[n][m]. The traceback di-
agonal marks the maximum likelihood path as before. The complete matrix
(in loge units) is shown in Figure 11.11 resulting in a p(I, II|θ = JC69+Gaps,
t = 0.1) = 0.0007849. If one were to calculate the probability directly from the
four aligned positions the value would be 0.019032 · 0.85352 = 0.0002638, con-
siderably lower than that yielded by the algorithm. This is because the specific
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Figure 11.11: Likelihood alignment of two sequences (ACGT and AGCT) under
the JC69+Gaps (5-state Neyman) model with a time parameter (µt) of 0.1 (loge

units).
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alignment produced is only one of many alignment scenarios that contribute
to the total probability of transformation between the sequences. This partic-
ular alignment has the highest probability of all possible alignments, hence is
termed the dominant likelihood alignment (in the terminology of Thorne et al.,
1991). We can search directly for this by choosing the maximum probability
choice (insertion, deletion, or element match) in Eq. 11.22 as opposed to the
sum (Fig. 11.12). The probability produced in this way jibes precisely with that
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Figure 11.12: Dominant likelihood alignment of two sequences (ACGT and
AGCT) under the JC69+Gaps (5-state Neyman) model with a time param-
eter (μt) of 0.1 (loge units).
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expected (e−8.082 = 0.0003091). In this case, both procedures yielded the same
alignment, but this need not be the case in general.

The distinction between dominant and total likelihood is an important one.
A single alignment may be “best” in a likelihood context, but may contain a
very small fraction of the total likelihood (in this case 33%). In the context of
likelihood forms discussed above, the dominant likelihood is akin to an MPL
object, and the total likelihood score MAL. When sequence change is analyzed
on a tree, these distinctions have downstream ramifications in the identification
of ML trees, and character change maps on those trees.

11.5.3 ML Multiple Alignment

As with parsimony, there are relatively direct extensions of pairwise alignment
to multiple sequence alignment (MSA). The approach of Wheeler (2006) was
to create an implied alignment (Wheeler, 2003a) using the maximum likelihood
form of Direct Optimization (Wheeler, 1996). In this ML–TAP approach, me-
dians (and tree topologies) are chosen to optimize likelihood under a variety
of models from a 5-state Neyman scenario to an enhanced GTR+Gaps model.
The relative performance of parsimony and ML implied alignments was tested
by Whiting et al. (2006), showing (comfortingly) that ML MSA were superior
for ML (by 10% log likelihood units) while those based on parsimony were supe-
rior for parsimony analysis (by 30%; manual alignments were distant finishers;
Table 11.1).

MSA methods based on the TKY92 model (Thorne et al., 1992), such as
Fleissner et al. (2005) and Redelings and Suchard (2005), make use of Bayesian
Hidden Markov Models and are discussed briefly above and in Chapter 12 in
more detail.

11.5.4 Maximum Likelihood Tree Alignment Problem

Although it is as yet unstudied, given the NP–hard nature of the parsimony
version of the TAP, the ML variant is likely to be extremely challenging if
not NP–hard itself. As with parsimony heuristics to the TAP, we can generate
several heuristic ML–TAP procedures. Unfortunately, almost nothing is known
about the quality of these solutions (boundedness).

ClustalX Manual DO–MP DO–ML
Mixed Model Likelihood 61,489.630 55,329.945 51,611.928 50,496.073
Single Model Likelihood 61,548.268 55,858.397 51,554.225 51,014.655
Parsimony Tree Length 15,154 20,341 11,483 11,702

Table 11.1: Performance of ClustalX (Higgins and Sharp, 1988), Manual, DO–
MP, and DO–ML multiple sequence alignment (Whiting et al., 2006). DO im-
plied alignment runs were created using Wheeler et al. (2005) and ML scores
by Huelsenbeck and Ronquist (2003).
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Medians and Edges

As with parsimony heuristics to the TAP, the identification of median sequences
is crucial to the quality of the solution. ML–TAP has the added factor of edge or
branch time. As mentioned above for the two sequence case, the probability of
the alignment is dependent on the time parameter that is identified numerically
through repeated (or estimated) likelihood optimizations.

Sections 10.9.2, 10.9.3, and 10.9.4 identified sequence medians in ways that
are directly applicable to ML. The algorithm for determining sequence medi-
ans using Direct Optimization (Alg. 10.7; DO, Wheeler, 1996) can be applied
largely without modification. Two issues merit attention. The first is the use
of dominant or total likelihood for tree likelihood values and medians. Total
likelihood will reflect more of the probability of alternate medians, but un-
less these medians are of optimal (in this case highest probability) cost, they
will not be reflected in the median sequences. Dominant likelihood calculations
maintain a more consistent approach in that the tree likelihoods are directly
traceable to these specific sequences. When the total likelihood is used, this
connection can be lost (Wheeler, 2006). The second issue centers around the
median determination and time parameter. The time parameter interacts with
the median identification process, not only to determine the probability of an
ancestor–descendant transformation, but the ancestral sequences (= medians)
themselves. When edge times are estimated to optimize likelihood scores, the
medians themselves are likely to change, creating additional time complexity
in the process. This is especially prominent when using iterative improvement
methods (Sankoff and Cedergren, 1983; Wheeler, 2003b, 2006). With iterative
improvement, there are three edges incident on a vertex which require simulta-
neous optimization in addition to the 3-dimensional median calculation.

Lifted, Fixed-States, and Search-Based (Sect. 10.9.3) procedures deal with
a fixed pool of medians, hence that component of time complexity is reduced.
Edge iteration is still an issue in two ways. First, the pairwise probability of
transformation between states is time dependent. This can be either held con-
stant over all state pairs, or be optimized (in a fashion akin to Tuffley and
Steel, 1997) uniquely for each sequence pair. Secondly, edge times can be ap-
plied while a tree is optimized (using a single time) or using optimized times
from the pairwise sequence comparisons.

The issue of dominant and total likelihood also enters in this class of heuris-
tics through the summing (as in average likelihood) over all potential sequence
medians, or the identification of the most likely medians (MPL) and determining
tree likelihood on that basis.

Wheeler (2006) discussed the above ML–TAP heuristics in the context of a
5-state model, although they could be applied to other models. Fleissner et al.
(2005) developed a heuristic ML–TAP procedure specifically for the TKF92
model. In their approach, simulated annealing (Sect. 14.7) is used in two ways al-
ternately. The first is to optimize the analytical parameters (substitution model
parameters, indel birth and death values, fragment length), and the second to
optimize the alignment patterns of indels (h, α′ of Thorne et al., 1991) and tree
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topology. The method initializes with a Neighbor-Joining (Saitou and Nei, 1987)
tree and performs NNI (Sect. 14.3.2) to break out of local topological minima.
The parameter and topology/indel pattern optimizations proceed alternately
until improvements are no longer found. Due to the complexity of the TKF92
model and the simulated annealing approach, the method does not scale well
and can only be used on a handful (<20) of sequences of moderate (< 500bp)
length.

11.5.5 Genomic Rearrangement

As with all stochastic procedures, the root of likelihood-based reconstruction
of genomic rearrangement data is the model. Currently, models are descriptive,
that is, distributions of gene rearrangements are chosen and fit to empirical
patterns, not based on any first principles analysis of the biological mechanism
of inversion or transposition (an exception exists in the Birth–Death model of
gene family evolution of Zhang and Gu, 2004).

p(k,λ) =
λke−λ

k!
(11.23)

The basic descriptive model was set out by Nadeau and Taylor (1984), grounded
in the empirical observation of the distribution of chromosomal rearrangements
between humans and mice (Fig. 11.13). They posited a Poisson distribution
(Eq. 11.23) of rearrangement events (k) on the genome and along a tree edge
at average rate λ. This was expanded by Wang and Warnow (2001, 2005)
to create corrected distances for use in distance-based phylogenetic analysis
(Chapter 9).
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Figure 11.13: Mouse—Human rearrangements as illustrated by Nadeau and
Taylor (1984).



11.5 Dynamic-Homology Characters 233

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

4000

(b)

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

(c)

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

(d)

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

(e)

0 200 400 600 800 1000 1200 1400 1600 1800
0

200

400

600

800

1000

1200

1400

1600

1800

Figure 11.14: Genomic rearrangement locus dot-plot scenarios of Dalevi and
Eriksen (2008): (a) = “Whirl,” (b) = “X-model,” (c) = “Fat X-model,” (d) =
“Zipper,” and (e) = “Cloud.” See Plate 11.14 for the color Figure.

Empirical Models

Dalevi and Eriksen (2008) presented a series of corrected distance estimates for
five rearrangement scenarios named according to patterns on pairwise dot-plots
(Fig. 11.14).

(a) “Whirl”—caused by an overrepresentation of uniformly distributed rever-
sals across the genomes.
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(b) “X-model”—due to a preponderance of reversals symmetrically distributed
around the origins and terminations of replication.

(c) “Fat X-model”—explained by symmetrically distributed reversals with en-
hanced variation in their position with respect to the origins and termi-
nations of replication.

(d) “Zipper”—thought to result from a large amount of short reversals (up to
5% of the genome) distributed uniformly over the genome.

(e) “Cloud”—as rearrangements accrue, the gene order becomes randomized
loosing the previous patterns into a “cloud.”

In general, these descriptions of rearrangement patterns are not used to
reconstruct trees directly, but to estimate overall dissimilarity for distance anal-
ysis.

11.5.6 Phylogenetic Networks

As with parsimony (Sect. 10.14), horizontal gene transfer and hybridization can
be explained by networks and in an analogous fashion (Strimmer and Moulton,
2000). Jin et al. (2006) proposed no biological model of horizontal gene transfer
or hybridization, but two methods to calculate the likelihood of the network. In
the same way that the parsimony score of a network is calculated by summing
the minimum tree costs consistent with the network (Eq. 10.9) for each block of
characters, likelihoods can be multiplied over the best likelihood tree for each
character block. A second option would be to sum the likelihoods of all tree
scenarios consistent with the network (Fig. 11.15; Eq. 11.24).

N = (V,E) (11.24)

Lall
N (S|N, θ) =

∑

T∈N

(p(T) · L(S|T, θ))

Lbest
N (S|N, θ) = max

T∈N
(p(T) · L(S|T, θ))

It is unclear which, if either, procedure is appropriate. The first method assumes
all blocks are independent. This may or may not be reasonable given that the
recognition of blocks is dependent on their relative positions and behavior. The
second model has the advantage of including alternate scenarios, weighted by
their likelihoods, but allows for multiple histories for all blocks.

11.6 Hypothesis Testing

11.6.1 Likelihood Ratios

Often, it is desirable to know whether a difference between two likelihood val-
ues is “significant.” As odd as such a concept may seem within the rationale of
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Figure 11.15: Phylogenetic tree (above) and network (below).

likelihood, given a few simple assumptions, such statements can be made (DeG-
root and Schervish, 2006). The basic idea is that if the likelihood functions are
well-behaved, twice the difference in the log of the ML value is distributed as χ2

(Eq. 11.25). When the hypotheses to be compared are simple estimates of pa-
rameters (such as a branch length or comparison of two trees), this distribution
will have one degree of freedom.

2∆lT,T ′ = 2 log(lT /lT ′) = 2(log lT − log lT ′) (11.25)

Likelihood ratio tests are used to determine whether edge weights (time parame-
ter) are greater than 0 and should be collapsed, or whether one of two competing
and nearly optimal hypotheses is superior. The confidence value is (given the
single degree of freedom) 1.9207 log likelihood units, or a likelihood ratio of
6.826. If two tree likelihoods are differ by at least this value, their difference is
statistically significant (Felsenstein, 2004).

Branch Collapsing

The likelihood ratio can also be used to test if an edge probability (ML branch
length) is significantly greater than zero. The likelihood of a tree with an edge
constrained to have µt = 0 can be determined and compared to the likelihood
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of the tree optimized for the time parameter of that edge. As above (Eq. 11.25),
the likelihood ratio can be tested via χ-squared with a single degree of freedom.

11.6.2 Parameters and Fit

As with all statistical fitting operations, increasing the number of parameters
will increase the fit and decrease the error. In general, if the addition of a param-
eter results in a large increase in fit (here likelihood), we accept that parameter.
The problem comes as more and more parameters are added and the increases in
quality of solution (in terms of error) are less dramatic, leading to overparame-
terization and loss of predictivity (Fig. 11.16). An analysis of molecular sequence
data using the JC69 model is based on zero parameters (everything is equal and
nothing specified)3. The same data modeled using GTR would no doubt yield a
better likelihood score using its eight parameters (five rate and three frequency).
This might be further improved with invariant sites and discrete-gamma rate
parameters. When should this stop? How can overparameterization be avoided?

There are two commonly used statistics to decide this. The first is the ratio of
the likelihoods of solutions with different parameterization—the likelihood ratio
test above. In the case of testing models, Equation 11.25 is distributed as χ2

p′−p

where p and p′ are the number of parameters in the models to be compared.
Large sequence data sets nearly invariably choose the most complex models

(GTR+I+Γ)4 under this criterion, motivating the use of the alternate Akaike
Information Criterion (AIC; Akaike, 1974). In the AIC, the test statistic is
calculated as −2 log lT + 2p where p is the number of parameters used in the
likelihood calculation for a tree T, lT . An extra parameter is favored if it improves
the likelihood by one log unit.

A third criterion, Bayesian Information Criterion (BIC), penalizes extra pa-
rameters more harshly with a term that depends on the data size n (Schwaz,
1978).

Figure 11.16: Data with various polynomial curves fitted to them.

3Even for JC69 there are other parameters in an analysis—one for each edge of the tree
for example—but this is constant among models analyzing the same data set, hence plays no
role in the marginal complexity of one model over another.

4The use of invariant sites simultaneously with Γ classes is problematic, since the param-
eters are not independent.
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TN93+I+Γ 5441.4600 78 11045.5888 0.5221 0.52210.0000

Model l K AICc w Cum(w)∆ AICc

TIM+I+Γ 5441.3765 79 11047.5965 0.1913 0.71342.0077
HKY85+I+Γ 5443.6729 77 11047.8422 0.1692 0.88262.2534
K81uf+I+Γ 5443.5566 78 11049.7821 0.0641 0.94684.1934
GTR+I+Γ 5440.9150 81 11051.0301 0.0344 0.98115.4413
TVM+I+Γ 5442.7393 80 11052.4991 0.0165 0.99766.9103
TN93+Γ 5448.6792 77 11057.8549 0.0011 0.998812.2661
HKY85+Γ 5450.5068 76 11059.3402 0.0005 0.999313.7514
TIM+Γ 5448.6577 78 11059.9843 0.0004 0.999714.3955
K81uf+Γ 5450.4883 77 11061.4730 0.0002 0.999915.8843
GTR+Γ 5448.0298 80 11063.0802 0.0001 1.000017.4914
TVM+Γ 5449.6685 79 11064.1804 0.0000 1.000018.5917
TN93+I 5470.7568 77 11102.0102 0.0000 1.000056.4214
TIM+I 5470.7417 78 11104.1522 0.0000 1.000058.5635
GTR+I 5470.3452 80 11107.7110 0.0000 1.000062.1223
HKY85+I 5476.8496 76 11112.0257 0.0000 1.000066.4370
K81uf+I 5476.8208 77 11114.1381 0.0000 1.000068.5493
TVM+I 5476.1650 79 11117.1736 0.0000 1.000071.5849
F81+I+Γ 5769.1118 76 11696.5501 0.0000 1.0000650.9614
F81+Γ 5782.0566 75 11720.2721 0.0000 1.0000674.6834
F81+I 5807.4927 75 11771.1442 0.0000 1.0000725.5554
GTR 5805.0576 79 11774.9588 0.0000 1.0000729.3700
TVM 5808.4727 78 11779.6141 0.0000 1.0000734.0254
TIM 5810.4102 77 11781.3168 0.0000 1.0000735.7280
TN93 5813.4780 76 11785.2825 0.0000 1.0000739.6938
K81uf 5813.5190 76 11785.3646 0.0000 1.0000739.7758
HKY85 5816.5894 75 11789.3375 0.0000 1.0000743.7488
SYM+I+Γ 5861.0859 78 11884.8407 0.0000 1.0000839.2520
TVMef+I+Γ 5867.6128 77 11895.7221 0.0000 1.0000850.1333
SYM+Γ 5876.7803 77 11914.0570 0.0000 1.0000868.4683
TVMef+Γ 5884.4272 76 11927.1810 0.0000 1.0000881.5922
TIMef+I+Γ 5885.0684 76 11928.4632 0.0000 1.0000882.8745
K81+I+Γ 5893.7642 75 11943.6872 0.0000 1.0000898.0984
TN93ef+I+Γ 5897.7529 75 11951.6647 0.0000 1.0000906.0759
TIMef+Γ 5899.2588 75 11954.6764 0.0000 1.0000909.0877
K80+I+Γ 5906.2329 74 11966.4593 0.0000 1.0000920.8706
K81+Γ 5908.7876 74 11971.5687 0.0000 1.0000925.9800
TN93ef+Γ 5911.5659 74 11977.1254 0.0000 1.0000931.5366
SYM+Γ 5908.7021 77 11977.9008 0.0000 1.0000932.3120
TVMef+I 5917.6128 76 11993.5521 0.0000 1.0000947.9633
K80+Γ 5920.9038 73 11993.6382 0.0000 1.0000948.0494
TIMef+I 5928.9629 75 12014.0846 0.0000 1.0000968.4959
K81+I 5938.0137 74 12030.0209 0.0000 1.0000984.4321
TN93ef+I 5940.7383 74 12035.4701 0.0000 1.0000989.8813
K80+I 5949.5186 73 12050.8677 0.0000 1.00001005.2789
F81 6088.2227 74 12330.4388 0.0000 1.00001284.8501

JC69+I+Γ 6101.2656 73 12354.3618 0.0000 1.00001308.7730
JC69+Γ 6114.8408 72 12379.3515 0.0000 1.00001333.7628

JC69+I 6142.1719 72 12434.0137 0.0000 1.00001388.4249
SYM 6170.8916 76 12500.1097 0.0000 1.00001454.5209

TVMef 6190.3394 75 12536.8375 0.0000 1.00001491.2488
TIMef 6194.5806 74 12543.1547 0.0000 1.00001497.5659
TN93ef 6210.6353 73 12573.1011 0.0000 1.00001527.5123

K81 6214.1152 73 12580.0610 0.0000 1.00001534.4723
K80 6230.2100 72 12610.0898 0.0000 1.00001564.5011
JC69 6411.5161 71 12970.5438 0.0000 1.00001924.9551

Figure 11.17: Model test (Posada and Buckley, 2004) based on mitochondrial
data of Sota and Vogler (2001). l is the log likelihood, K the number of param-
eters, AICl the Akaike Information Criterion, DeltaAICl the difference in AICl

with the next “best,” w the Akaike weights, and Cum(w) the cumulative Akaike
weights.
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BIC = −2 log lT + p log n (11.26)

These tests are implemented in Posada and Crandall (1998) and well summa-
rized in Posada and Buckley (2004). An example of a test of a broad variety of
models in an empirical context is given by Posada and Buckley (2004) in their
reanalysis of Sota and Vogler (2001) (Fig. 11.17).

11.7 Exercises

1. What is the probability of transformation between the aligned sequences
ACGT and AGCT under the JC69 model with time parameters μt =
{0.1, 0.2, 0.5, 1.0}?

2. What is the probability of transformation between the aligned sequences
ACGT
AGCT , ACG−T

A−GCT , and A−CGT
AGC−T under a 5-state Neyman model with time

parameters μt = {0.1, 0.2, 0.5, 1.0}?

3. What were the maximum likelihood estimators of the time parameter in
the previous two exercises? If the four given time parameter values were
the only ones possible, what would the integrated likelihoods be? What
fraction of the integrated likelihoods were the maximum values?

4. Using a Neyman model for binary characters, what would the likelihoods
be for the two cladograms in Fig. 11.18 where all time parameters (μt)
were 0.1? 0.2?

5. Under the No-Common-Mechanism model, what are the likelihoods for
the cladograms in exercise 4?

6. Two systematists argue the question “ML using No-Common-Mechanism
and parsimony will yield the same tree for this data set,” one taking the
affirmative and one the negative, who is correct? Why?

1 0 1 0

0

1 1 0 0

0

Figure 11.18: Example cladograms.
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7. Using a Neyman model for sequence characters, and sequences ACGT and
AGCT with time parameter μt = 0.2, determine the maximum likelihood
alignment of the two sequences. What are the values of the “total” and
“dominant” likelihoods? What fraction of the total likelihood is the dom-
inant? Give an example of a non-dominant likelihood alignment (and its
likelihood) included in the total likelihood calculation.
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