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Defining Probability for Science.

Preface

For many years I have recommended the short reference on statistics [2] and similar introductory texts to my
students and researchers. Barlow’s book can be considered a fair reflection of the main stream view of the topic [14].
Yet despite this, I generally gave the caveat that I disagreed with some parts of the book and indeed the conventional
view. On a recent reading of the book I concluded that many of my objections were confined to chapter 7, and in
particular the discussion regarding definitions of probability. I therefore decided to write this document to provide
a record of how I would have presented these sections, for distribution within our group. The document explains a
physics based approach motivated by scientific considerations of uniqueness, falsifiability and quantitation. These
considerations are intended to eliminate aspects of ‘black magic’ or arbitrariness, a view which seems to me to be
important yet lacking from general texts. It summarises what I regard as the reasons I work as I do when designing
and testing algorithms and systems for computer vision and image processing.

Although this document is self contained, the interested reader might wish to look at the original version first, before
reading mine. You would then be in a good position to decide if you want to continue to take the conventional view
of the topic, or take the rather bold step of being more critical and forming some conclusions.

Introduction

The accepted method for all scientific data analysis is probability and statistics. Although all statistical techniques
are related to probability the very definition of this word is not generally comprehended. In my view, the resulting
lack of clarity on this issue leads to misunderstanding and inappropriate application of techniques. In subject areas
where the analysis of data is the dominant activity, real progress is hampered by a lack of concensus regarding
best scientific practice. This situation is not generally improved if we look in standard statistical reference texts
for more clarity. The dominant attitude to statistical methods being that we can largely pick various measures out
of thin air and worry about how they behave on data afterwards, rather than deriving techniques from principles
based upon the characteristics of the data. There is in my view an over-tolerance of contradictory opinions and
general failure to resolve fundamental issues.

To do better we must start with a solid understanding of probability. Even here the common perception that there
can be multiple (often contradictory) definitions does little to help general understanding. In the sections below I
will give a quick summary of the issues which a short investigation is likely to uncover, together with an attempt
to explode some of the more distracting arguments.

There are multiple definitions of probability in common use. It has been said that each has its strengths and
shortcomings. However, what I aim to show here is that the motivation for some of these seems to be based upon
flawed logic. Further, for purposes of quantitative analysis of data, only one approach has any real relevance and
would appear to support everything we need to be able to do. This is not just an academic exercise, as if the
conclusions of the analysis are accepted it has implications for large numbers of papers published every year in
many areas of research.

Mathematical Probability

For a set of mutually exclusive set of events E; we can define probabilities P(F;) such that;
e P(E;) >=0
e P(E; or Ej) = P(E;) + P(Ej)
* X P(E) =1

These are Kolmogorov axioms, which can be found in equivalent forms in many standard texts. It has been
observed that although you can use these axioms to derive several common results, for example;

P(E;) = 1 — P(Ey)

they are devoid of any real meaning. The definitions below do not contradict these axioms but aim to provide the
concept of probability with meaning.



The Limit of Frequency

Defining probability as a ratio of events is often referred to as the frequentist definition and is the one with which
scientists will be most familiar. For an example, if an experiment is performed N times and a certain outcome F;
occurs in M of these cases then as N — oo we can say M /N — P(FE;). The set of N experiments was called the
collective by Von Mises in his influential work.

As simple as this definition appears it embodies certain features which have led to confusion and criticism. In
the first place the defined probability is not just the product of a single experiment but a joint property of both
the derived data and the collective. We can illustrate this by a simple example, inspired by Von Mises original
exposition. We can observe the life spans of male members of a population (say German) and from this deduce the
probability of an individual dying between their 40th and 41st birthdays. However, if this individual was a taxi
driver we could equally have accumulated statistics and compute the probability over a collective of taxi drivers.
Clearly this would result in a different probability. The observation that there are multiple ways of defining the
probability of the same outcome poses a problem for scientific uses, and can be seen to be one of the motivations
behind alternative definitions of probability. However, appropriate use of frequentist probability requires some
care. We need to first consider if this is a valid motivation, or just a failure of understanding. I believe that it is
the latter, as will now be explained.

A change in the estimates of probabilities between two scenarios, such as the taxi driver/German should come as no
surprise to us. What this example illustrates is the difference that information can provide when interpreting data.
Ultimately if we knew everything possible about an individual, including having access to medical records, we could
get a very good idea of the prognosis for the individual. We need to have a rational way to make use of varying
sources of data in order to build predictive systems. It appears simply naive to believe that probabilities should
always be the same for the same outcome when we are attempting to make predictions based upon knowledge (see
J.G. comments). Thus, although the ‘probability’ appears to change as a function of the collective, the concept
would be of no value to us if it did not. We cannot therefore use this as a criticism of frequentist probability as it
appears to be a necessary characteristic. This also contradicts Jaynes’ lengthy (and highly influential) exposition
on probability which concludes with the criticism “probabilities change when we change our state of knowledge,
frequencies do not. ”. The frequencies change if the cohort has changed, to say otherwise suggests a pre-conception
of what the probability was regarding. The key here is to realise that the information we use must be consistent
with the collective defining our probability, but there is no need (at least at this point) to introduce a fundamental
break between frequencies and probabilities.

Scientific Considerations: Repeatability

According to Von Mises, the experiment must be repeatable, under identical conditions, with different possible
outcomes in order to observe an empirical probability. In situations where these restrictions are not met, such
as the phrase “It will probably rain tomorrow”, which embodies an event which can only occur once, Von Mises
was highly critical of the use of the word probability, regarding it as unscientific. Though it is right to consider
scientific validity, we can make observations here regarding the generality of this conclusion. As with the previous
example, I will make an equivalence between probability and prediction in order to demonstrate this.

Imagine that we construct a mathematical model of the weather, there is no reason why this cannot be done
according to our best scientific understanding. We could then run a series of predictions under the allowable
variations within the uncertainties of our knowledge, and so generate a cohort of “experiments”. We can then
define the probability of rain P(rain) in a manner fully consistent with Von Mises’ requirements which results in
the phrase “It will probably rain tomorrow”. This process is known in science as running a Monte-Carlo simulation.
If we know enough about analytic forms of various perturbations, and can manipulate the resulting mathematical
description, we may even be able to predict the results of the Monte-Carlo from analytic expressions. We would
call this a statistical theory.

Interestingly, this probability is now equivalent to the process of placing a bet on an outcome, which others
have repeatedly associated with the concept of subjective probability (see below). Yet, if we also have a good
model then we would expect to find that the probability predictions would prove to be quantitatively valid, ie: it
would be wrong in probable rain predictions 1 — P(rain) of the time. The idea (which has been called “honesty”
[6, 12]) is consistent with a frequentist approach. The only thing we must accept here is that our definition of
probability is driven by the uncertainties in our knowledge and embodies our predictive capabilities rather than
some more ethereal concept of the chances of seeing precipitation. The perceived problems with regard to the
restrictive requirements of probability therefore become an inability (once again) to conform to a preconception
of what we considered our probability to be regarding, rather than a genuine failing of the frequentist definition.



This observation is fundamentally important to those who try to build predictive (you might also say intelligent)
systems for a living, as we do not need to abandon a frequentist definition of probability when we are designing
them.

Mathematical Considerations: Convergence

Mathematicians have been reluctant to adopt the frequentist based definition of probability. They have shown
there are sequences of numbers, which otherwise conform to mathematical definitions of random variables, that
will not converge to the required probability fractions in the limit of large sequences. However, such theoretical
problems are at odds with the practical observation of “Poisson”, “Multi-Nominal” and “Binomial” distributions,
which can be found to converge exactly as expected in real world problems. You could therefore reasonably make it
a condition of the definition of frequentist probability that the associated random number sequence must conform
to a process of convergence. The convergence issue then becomes a problem for mathematicians to sort out between
themselves. Though this might seem a heavy handed dismissal of an important mathematical issue, it has prior
precedence in topics such as the use of Dirac delta and Heaviside step functions in physics. Here physicists used
these techniques while mathematicians continued to work out the formal basis.

The easiest way out of this is to say that the very concept of a mathematical sequence is inconsistent with the idea
of true randomness, and thereby probability. Genuinely random sampling systems will converge in accordance with
the formulae from conventional statistics, which can be derived without the need for an assumption of convergence
[11]. Of course, once we say that a random number is not describable by a mathematical sequence we severely
restrict the opportunities for the mathematical analysis of probability. However, avoiding this intellectual bear-trap
also allows us to go on to relate conventional definitions of probability to limiting cases of the accepted statistical
distributions. Class labels will have probabilities defined by the Binomial process and probability densities can
be considered as an extension of Poisson sampling. We can then eliminate many of the contradictory methods
used for the comparison of probability density distributions found in the area of statistical pattern recognition
[19]. Without this step, many of the choices for the selection of appropriate probability similarity functions remain
arbitrary. As a consequence there will also be many (potentially infinite) ways of defining a computational task.
A scientist might see such arbitrariness as enough reason to dismiss the convergence issue, and effectively this is
precisely what anyone using modern statistical theories of physics has already done.

Objective Propensity

The philosopher Karl Popper worried about the convergence of frequentist probability, but also had difficulty with
the concept of a collective. In particular he said that science could predict only probabilities and not certainties
and this would lead to problems. The often quoted example is quantum mechanics, where you could say that if the
computed probability were to change as a function of the collective, chosen by the experimenter, then the particles
they describe could have no real properties, behaviour or existence. Such observations led Popper to propose
an objective probability, or propensity, which exists in its own right (ie: it is unique) with the only observable
effect being to drive the observed frequency limit. Objective probability seems a very reasonable strategy when
considering simple unique cases, such as the throwing of a die. In such situations the introduction of a collective
in order to describe the system does seem to be excessive. Popper was clearly correct to consider this issue, and a
non-unique theory must be considered unscientific, but if his main concern was quantum mechanics, he need not
have worried. The possibility of one being able to redefine the collective is made impossible by the use of quantum
numbers and quantum states. These provide a complete description of the physical process and leave no room for
subjectivity regarding the collective. Indeed a theory which could make multiple predictions would already have
been considered unscientific by the physics community and rejected at an early stage, as would any other statistical
physics model such as statistical mechanics or quantum electro-dynamics. The requirement that physics theories
should make unique predictions has been well understood since Einstein used the principle of equivalence to develop
general relativity. This is a very powerful test of any theory, and demands that any theoretical predictions must
not change (it must be invariant) following arbitrary re-definitions by the scientist of experimental circumstances
(such as metric units, or the bending of space-time due to selection of co-ordinate frame). But then we could not
expect Popper to have known this, he was a philosopher and not a physicist.

If my reading of the arguments for objective probability is correct then propensity is nothing more than the
frequentist definition of probability, restricted to cases where there can only be one collective. As there appears to
be nothing at all wrong with the other cases, and on the contrary we need these other cases if we are to understand
how to construct predictive systems, this suggests that propensity has nothing to offer us.

What this episode in confusion does illustrate once again, is that when defining and computing probabilities we



must take care to declare everything, and not just brush implicit assumptions under the carpet. Otherwise we might
make the mistake of believing two expressions should be equivalent when they are not. If we accept that differences
in assumptions lead not just to differences in numerical values, but probabilities of different circumstances, then
there is no contradiction in the frequentist approach. As we will see, one way to keep track of these assumptions
is via the use of conditional probability.

Conditional Probability

We will now introduce the concept of conditional probability and explain how this can be used to eliminate
the ambiguities often arising during the design of algorithms. Also, we cannot discuss the concept of subjective
probability without first defining conditional probability.

The conditional probability P(E;|X) is the probability of getting event F; given that X is true. If we consider
the example above of the probability of mortality for a German male, what we see is that the notation is different
if we make the change from a German male X to a taxi driver Y, and in general we have P(E;|X) # P(E;|Y).
This notation prevents us from making the mistake of believing that these two quantities could ever have been the
same. The use of conditional probability therefore eliminates a large source of confusion when we are trying to
construct probability based systems.

Bayes theorem is generally attributed to Rev. Thomas Bayes (1763), though it was work unpublished in his lifetime
and published posthumously by his daughter?. It uses the construction:

P(alb)P(b) = P(ab) = P(ba) = P(bla)P(a)

to give
P(alb) = P(bla)P(a)/P(b)

We should appreciate that the derivation of Bayes theorem is entirely consistent with a frequentist definition of
probability and we do not need to rush into a subjective interpretation. It is simple enough to construct situations
in which Bayes Theorem can be shown to be quantitatively valid, for example the use of Bayes Theorem in pattern
classification [8]:
P(Cjldata) = P(data|C;)P(C;)/ Z P(datalC;)P(C;)
K3

where each C} is the potential generator of the observed data. Each term in this expression can be determined
from samples of data. As we shall now see however, not all uses of Bayes theorem have the same property.

The Restrictions of Conditional Notation

There is a fundamental assumption pertaining to the characteristics of real systems which is easily overlooked.
Once both a and b are known to be true Bayes Theorem makes no distinction regarding the order in which they
occurred. In many real world situations events don’t happen simultaneously but in a specific time order. If there
is a causal relationship between a and b, such that a can only occur if b has already happened, then P(a|b) has
an obvious physical interpretation which follows the implied order of conditional notation (the probability that a
will occur as a consequence of b) but P(bla) does not (the probability b was the cause of a). Otherwise identical
notation therefore gives two different physical interpretations. Conditional notation describes correlations, not
causal (physical) processes. This renders a strict physical interpretation impossible if we do not know the causal
interpretation a-priori. Worse, for systems of mixed causality (a causes b and b causes a) any resulting expressions
are physically meaningless. In fact, and as a consequence, conventional conditional notation can only ever be able
to describe non-ordered sets of events 2, and is therefore poorly placed to construct models of causal systems. If
we decide to use the order of the terms in expressions to encode causal processes we will observe immediately that
in general P(ab) # P(ba), this has consequences for our derivation of Bayes theorem. In comparison, the various
methods of Markov modelling deal with this issue directly by adopting a state to state transition process such as
used in statistical physics, which may explicity allow bi-directional causality with different rates and also specifies
the cause. Such a process may be fundamentally important if we are ever to construct intelligent systems [17].

With some work, the above observation can be used to explain Jaynes’ conclusion regarding frequentist probability.
His arguments attack the inability of standard frequentist models with regard to their inability to embody prior

2The statistician Fisher seemed to believe that the work was left unpublished by her father for a reason [7].
3 A limitation understood by Kolmogorov, but not appreciated by Popper [11], who attempted to define probabilities for sequential
statements.



knowledge in the prediction of sequences of numbers. These examples are valid but if you look at his arguments
carefully* these observations can be interpreted, not as a flaw in the definition of frequentist probability, but as
the inappropriate treatment of ordered sequences as non-ordered sets. Mathematicians have introduced a principle
which is intended to avoid such misuse of conditional notation which is referred to as the “precluded gambling
system”. This simply states that correct use of probabilities should prevent the specification of an alternative
calcualtion which is capable of beating the computed odds in practical use. Moreover, such problems can be
overcome by specifying any conditional probability relating to sequences so that it includes the temporal context
along with associated knowledge of the data generation process , as for example in the use of an “embedding”
(where a sufficiently long sequence of values from a deterministic sequence is used to predict data from a kinematic
model). This results in a more specific cohort which is again consistent with a non-ordered set. What we see is
that appropriate use of conditional notation is essential if we are to avoid such problems.

While we are on this point, we need to dicuss the case where we have no conditional, ie: the prior probabilities.
According to Popper (se P.B. comment 1) the only ways to define a prior independent of a collective would appear
to be to either base it on no information at all i.e. use the equally likely definition, in which case expressions
derived from Bayes Theorem revert to manipulations of likelihoods, or to base it on all possible information that
has, or could ever, be obtained. In this case, the prior can only take the values 0 (the theory is wrong) or 1
(the theory is correct). This conclusion is valid regardless of which definition of probability you choose. Any
concept of actually measuring a prior, either subjectively or objectively based on previous data, results in a prior
which is itself a conditional on the collective used to define it. We must therefore consider the consequences of
generalising this concept, either to include uniformtive (fixed value) scaling priors, or informative (varying over
the parameter itself). From a frequentist point of view, an uniformative prior (a number) such as those used in
pattern classification, can be used in a way which is consistent with measured data. We will discuss the problems
associated with prior distributions below.

Subjective Probability

Subjective probability has been advocated as a way of solving three problems;

e providing a meaning for phrases such as “It will probably rain tomorrow”.
e as a method to incorporate prior knowledge into our analysis.

e a way of describing the how humans think.

The fact that we can already resolve the first with frequentist probability has already been discussed above. The
second and third motivations will be covered in the discussion.

The subjective interpretation of probability (sometimes also called Bayesian Statistics) makes no claim other than
we can no-longer expect our probabilities to be quantitatively related to data. It reduces probability to a non-
quantitative ranking process. Note that in order for the idea to have merit, it should not be considered as a simple
linear rescaling of frequentist probability. This is a common step found in many frequentist analyses, including
Likelihood.

The idea of subjective probability is exemplified by the interpretation of evidence in an experiment, such that new
evidence P(dataltheory) is used to update our degree of belief P(theory) (making it stronger or weaker), according
to °:

P(data|theory)

P(theory|data) = P(data)

P(theory)

The above formula looks at first sight to be analogous to the previous Bayesian formula for pattern classification,
which is frequentist. Whaever our definition of probability, the term P(data) must be a constant for a fixed data
sample. If we were to attempt to interpret this as a frequentist process we must take P(theory|data) to be the
probability of the theory being the generator of the observed data in comparison to the other theories in the set
implied by our prior knowledge P(theory). As we know that in reality, there is only one correct theory, we can
reasonably say that this process is non-physical. This is an act of imagination similar to a Monte-Carlo simulation
of the weather, except as our initial degrees of belief (P(theory)) do not correspond to anything we can objectively

4Specifically his discussion of the uninformed robot which forms the centrepiece of chapter 9. This is just one aspect of Jaynes’
work, and it is not my intention to attempt to write an entire book which analyses the validity or otherwise of every point. Instead I
will later prove his central conclusion to be false.

5Why P(data|theory) should be defined according to a frequentist process but P(theory) is allowed to become a “degree of belief”
has always been beyond my comprehension.



define, they are arbitrary. Adoption of a subjective definition for probability deprives us of the ability to test the
validity of any expression empirically, so that we must expect to have to rely entirely on mathematical consistency.
This is not as simple as it sounds.

The Logic of Subjectivity

There appear to be several limitations associated with combining subjectivity and conditional notation. Signifi-
cantly, the notation of conditional probability makes no provision to record the prior probability which was used
in the construction of a particular degree of belief. If we need at any point to equate two expressions of the form
P(bla) = P(bla), or to take differences between differing hypotheses P(bla) — P(c|a) [22] then any resulting
algebraic expression is meaningless unless we can be sure we used equivalent prior assumptions in all previous
steps. We have re-introduced the problem of multiple possible values for the resulting probability (which we had
only just eliminated by introducing conditional notation). Advocates of the physiological motivation for “degrees
of belief” should pay particular attention to the latter limitation, as it implies that there are situations in which
we cannot assess the “degrees of belief” for alternative possible actions in order to achieve an outcome.

There is another related issue which deserves mentioning and also has implications for Jaynes’ earlier conclusion.
The idea of using an equivalent prior is closely related to the notion of consistency in logic. As our ideas of
probability must be considered as an extension of logic, any result from the theory of logic must also apply to
probability. In the area of predicate logic there is a well known result which states that you can prove any assertion
(including contradictory ones) if your data base of facts is not consistent [9] (ie: contradictory). That is, logical
consistency of the system is a property both of the mathematical statements and the knowledge database. If we
are free to define prior probabilities arbitrarily there will be some mathematically consistent statements which are
not logically consistent. Thus we can not rely solely on mathematical rigour to ensure that expressions we write
are meaningful. Under the frequentist definition of probability this situation can be avoided by demanding that
our probabilities are descriptive of the real world, which must be consistent 6. We should never accept that it is
safe to break this link between probability and observation. Neither can you expect that the formal notation of
mathematics will tell you there is a problem if you do.

The situation gets worse for strong Bayesians. The same reasoning also implies that if we are using degrees of
belief we cannot write P(a|b)P(b) = P(bla)P(a), in order to derive Bayes Theorem. As the priors on either
side of this expression can not be guaranteed to be consistent we can not expect the statement to have general
validity. Popper had a much shorter argument which is applicable here, it simply states that once you have taken
the subjective definition of probability no further algebraic manipulation is possible, as there is no meaningful
expression to manipulate © (see comment 1 by P.B.). All treatments of Bayes Theorem I have seen sidestep the
problem by deriving the result for frequentist systems and switching to a subjective definition after (as in this
document). If you want to be a strong Bayesian you must assert Bayes theorem by fiat, thereby destroying any
argument of intrinsic validity (see the discussion regarding the inevitable use of subjective priors)®.

Discussion

We have already seen enough to suspect the validity and general utility of subjective probability. By replacing a well
constructed physical (frequentist) model with an intuitive (subjective) process you could argue that we can broaden
the scope of our theory and therefore its utility. However, unlike Popper’s fears regarding quantum mechanics, this
really is an arbitrary process which correctly deserves Von Mises’ earlier criticism of being un-scientific. We also
arrive at the same conclusion from arguments of logical consistency.

Motivation for the use of subjective probability based upon difficulties with understanding the sentence “It will
probably rain tomorrow” and convergence problem seem to have no foundation. As these are due to a poor
understanding of what the probability is describing, then in general there is no problem to solve. We must now
consider other popular justifications to see if we must modify our opinion.

SFor example; P(abc) = P(ablc)P(c) = P(ac|b)P(b) = P(bcla)P(a), requires a consistency constraint between P(a),P(b) and
P(c).

"I know, it is difficult to accept that entire communities of mathematicians, engineers and scientists could have overlooked this
criticism for so long. Perhaps Popper’s statement was just too subtle.

8Could this be the reason why Bayes didn’t get around to publishing the idea before he died?



It Seems to Work

The subjective definition is often put forward as the only way to make use of prior knowledge. The first objection
many will have to any criticism of the use of subjective probability for the combination of evidence is that “It
seems to work”. This is the same level of justification which was made for “fuzzy logic” in its heyday. Eventually,
people began to realise that all successes of this approach could be attributed to its approximation to probability®.

Be aware, we do not need to believe that it is necessary to adopt a subjective definition of probability in order
to combine data. Alternatively, notice that if our prior knowledge was in the form of a previous measurement
P(previous|theory) we could have performed an equivalent (but unique) combination process such as:

P(result, previous|theory) = P(result|theory)P(previous|theory)

This has analogous structure to Bayes Theorem (you get an updated result by multiplication with a term derived
from ‘prior’ knowledge), but is the conventional basis for the combination of measurements. We don’t need much
imagination to figure out what will happen if otherwise arbitrary Bayesian priors are selected in order to optimise
a quantitative (therefore frequentist) performance measure. Bayesian estimation becomes a mis-understood re-
invention of Likelihood. Persisting in the Bayesian interpretation may help get the ideas published but just prevents
us from developing a valid understanding of the reason for the apparent success. After all, what is wrong with simply
saying that our prior knowledge should be interpreted as the Likelihood term from a previous measurement? We
can generally perform tasks such as data fusion using several different frequentist approaches, including covariance
combination [10], hypothesis combination [4] and probabilistic mapping [18]. Understanding how to interpret
this approach in the context of a scientific experiment requires knowledge of confidence intervals.

When considering the problem of defining prior probabilities, attempts to obtain them from sample data looks
more like a frequentist approach but cannot be expected to solve this problem. Firstly, we have the difficulty of
getting a non-arbitrary data sample. Believing this is even possible often amounts to wishful thinking. Also, for
continuous parameters (which is where people generally want to apply this approach), there is a problem which
is related to our earlier observation regarding invariance of theories. This is that we can always apply arbitrary
non-linear transformations to our parameter definitions (without changing the theory), which will change any
sample distribution we measure. Barlow comments that when applying Bayesian methods, the differences you
get when changing for example between mass m and m? are inevitable, and need to be remembered. In fact a
sample distribution is strictly a probability density in the chosen measurement domain. It only becomes a useful
probability when we can uniquely define the interval over which to integrate this density!?. Given an interval the
transformation of parameters has no effect on the computed probabilities,

Plxy <x <w3) = P(f(x1) < f(x) < fz2))

as the interval itself transforms to preserve the result. P(theory|result) can never be considered a physical theory
unless we insist that P(theory) is constructed using an appropriate interval.

I have yet to meet a strong Bayesian who can explain to me whether the subjective definition of probability does
not necessarily imply that densities and probabilities are interchangeable. The conventional approach found in
many papers does not contain a distinction. This is perhaps one of the observations which prompts some eminent
researchers to say that the use of probability theory inevitably results in some degree of arbitrariness. However,
this is simply not true (ask any physicist), it is the unquestioned use of probability densities as probabilities which
causes arbitrariness. This is why our own group always uses a notation which expresses probabilities with upper
case P and densities in lower case p for derivations.

Inherrent Subjectivity

Many people have made the argument that frequentist approaches to the analysis of data hides subjective decisions
which Bayesian approaches make explicit. This argument is exemplified by the comment that Likelihood, for
example, is simply Bayes theorem with the arbitrary choice of a uniform prior. The firm belief that this is the best
description of Likelihood continues and dominates in many research areas. These arguments are based upon the
subjective interpretation of Bayes theorem, which justifies the existence of a subjective distribution over possible
theories as an inevitable necessity for the calculation of P(theory|data). This interpretation is preferred by many
even though these probabilities are not testable within the framework of the scientific method. However, If Bayes

9This is not a random choice of topic for comparison. I do not believe that it would be too inaccurate to describe conventional use
of subjective probability as fuzzy logic with conditional notation.

10For an explanation of how this problem is avoided in Likelihood construction by maintaining a formal link between probability
and probability density see [19].



theorem cannot be derived for subjective probability, then a subjective P(theory|data) is meaningless and there is
no grounds for demanding the existence of a meaningful subjective prior.

We must not forget the frequentist interpretation of Bayes theorem, and this can be invoked to account for
meaningful (non-subjective) priors (see P.B. comment 1). This is logically consistent with the use of conditional
notation, provided that all priors are uninformative. The valid transformation of probabilities also ensures they are
uninformative in all descriptions of the system, even in the absence of a defined interval. Such a process is necessary
if we are to accommodate quantitative forms of prior knowledge which fall directly from the theory, like the number
of parameters and their ranges for example. Under this interpretation, the uninformative prior allows us to compute
P(theory|data) from the Likelihood P(data|theory). However, for the reasons given above, one can not and should
not argue from this clear frequentist case to the more general validity of arbitrary (informative) priors. Unlike the
Bayesian approach, the frequentist case for the use of the Likelihood term is unambiguous, it simply contains the
evidence provided by the data towards the theories under consideration. This fits well with the application of the
scientific method via the use of confidence intervals. Additional prior knowledge on parameters in a model can also
be obtained from previous data in the form of additional likelihood terms. This interpretation is consistent with
the arguments regarding misinterpretation above. It has all of the properties that the advocates of subjectivity
want so that they can get on with designing algorithms, with none of the penalty regarding scientific interpretation.
It does however, require that these terms are derived in ways which are consistent with the use of quantitative
probability and this generally requires some degree of training. This counts against widespread understanding
of the techniques in comparison to the subjective approach, which can have no associated methodology beyond
the mastery of conditional notation. If we use our inability to understand frequentist probability as an excuse to
abandon it we are loosing our most powerful experimental tool, the ability to test.

Unfortunately, as I mentioned in the introduction, the true situation regarding subjectivity is not particularly
helped by the available texts. In [13] we find the following;:

In the end, even a strict frequentist position involves subjective analysis... The reference class problem illustrates
the intrusion of subjectivity. Suppose that a frequentist doctor wants to know the chances that a patient has a
particular disease. The doctor wants to consider other patients who are similar in important ways - age, symptoms,
perhaps sex - and see what proportion of them had the disease. But if the doctor considered everything that is known
about the patient - weight to the nearest gram, hair colour, mother’s maiden name, etc. - the result would be that
there are no other patients who are exactly the same and thus no reference class from which to collect experimental
data. This has been a vering problem in the philosophy of science.

This argument, and ones like it, are quite common in reference texts. It implies two different definitions for the word
subjective, and in any case we cannot justify subjective probability just because we think frequentist probability
is flawed. We should identify any meaningful criticisms and show how an alternative approach answers them.

However, we can see from this example that there is no criticism to answer. Each conditional definition can be
legitimately treated as its own quantitative assessment of probability. Then, as the passage states, the set of factors
we should take into account are those which will be most important (informative). We need only to progress a
little further with the analysis to realise that identification of the best predicting system is objective, not subjective
[21]!L. The reference class problem is entirely due to our preconception of what probabilities should do for us, not
the definition of probability itself. In the case above we are encouraged to assume that the only probability possible
should automatically solve our diagnosis task optimally. Whereas in fact, as we have seen, different quantities of
data will (indeed must) allow us to form more or less informative decisions. As for the curse of the dimensionality
in pattern recognition, any solution (here the choice of conditional statements) must factor in the resulting sample
size so that, for example, we will never choose the empty reference set.

The Way We Think?

The strongest proponents of the use of degrees of belief often make the claim that this is the way that people think.
As people do not perform reasoning tasks well this at least sidesteps the observation that subjective probability is
unscientific. If this claim were true then Al researchers would ignore this approach at their peril. However, I believe
that the interpretation of brain function in terms of degrees of belief as an explanation for subjectivity might be
rather over simplistic. As well as assessing evidence, decision processes must take into account something referred
to as “Bayes Risk”. This is the amount of importance that we want to attribute to particular categories of outcome
such as effort, pain, cost, resource, and time taken. As these outcomes are non-commensurate, any decision which
aims to trade off such quantities must be in some respect subjective. Not understanding how a decision is made is
different to saying that the decision process involved is not attempting to be quantitative. Apparently completely

HFor this specific example we can say that the most informative sample will be the one which identifies most clearly the diagnostic
choice by minimising the risk associated with a decision.



subjective decisions, e.g.: should I eat an apple or orange?, can be interpreted as attempting to maximise quantities
of specific neuro-transmitters. Often, our idea of subjective belief takes on a quantitative (therefore frequentist)
consequence which would be precluded from a strict Bayesian interpretation of brain function. For example,
someone might have a subjective idea of which horse is likely to win todays race, but the decision to place a bet
requires that this is related to quantitative betting odds.

The above arguments are intended to show that any claim for the role or subjectivity cannot be made until we
understand the computational processes involved, but this is not the main objection to using a subjective argument
to describe brain function. As we have seen above, we can have no reason to believe that the comparison of different
degrees of belief as a process of decision making is at all meaningful. We also need to consider how a Bayesian
system dealing in degrees of belief could ever get constructed. There are only two possible ways that the parameters
in a brain can be established, via long term evolution or through shorter term learning 2.

e Evolution requires that we make decisions which maximise our chances of survival, this task is frequentist by
definition. Shouldn’t evolution have forced a frequentist solution?

o We believe that learning in intelligent systems proceeds by modification of data stored in memory, subject
to observation of data. If the terms in our theory are degrees of belief and cannot be related to samples of
data what is left as the theoretical basis for learning?

If human thought processes were entirely based upon subjective probability then the thought process must arrive
at decisions which do not maximise the proportion of times we achieve our required outcome, as this is a frequentist
definition. However, this does not need to remain a philosophical argument, the claim of subjective decision making
processes is testable. Ashby and Perrin performed recognition experiments using line based shapes [1] and were
able to show that in this simple case at least the categorisation process was consistent with a frequentist definition.
It is also entirely possible to build frequentist models of brain function which are based directly upon the measured
behaviour of neurons [15], and these models can be extended to provide learning systems based upon a frequentist
interpretation of Bayes Theorem [16], for classification and predictive tasks. For more complicated tasks, it’s
not enough simply to invoke a definition of subjective probability to cover up problems with non-commensurate
objectives and the fact that we are guessing at what would otherwise be frequentist terms. Indeed, this approach is
the one adopted by imaging scientists as the only (and pragmatic) way they can see to justify the use of ‘Bayesian’
methods [3] in practical applications, though they also say that this approach is likely to be unpopular with either
the Bayesians or the Frequentists.

The subjective interpretation of brain function may work as an analogy, but simply cannot be considered a scientific
theory.

Use of Probability in Science

A basic consideration of the scientific method tells us that probability needs to be quantitative (see P.B. comment
2). A subjective definition of probability should never be allowed to find its way into any'® physical theory. It
therefore undoes most, if not all, that frequentist probability did to make Kolmogorov’s axioms useful.

For any practical use, the frequentist definition of probability is the one that matters as, in contrast to the
subjective approach, it can be applied to circumstances of varying information in a quantitative (and therefore
testable) manner. Objective probability appears to be encompassed by this concept. Popper’s work [11] was
highly influential in its day, and probably remains the most thorough discussion of the topic. However, his
analysis concentrated on the logical superiority of falsification over induction as a process and did not appreciate
the potential ambiguity of mathematical notation with respect to causality. Since 1950 you will get a better
understanding of the use of probability in science from a physics degree. A frequentist interpretation of Bayes
Theorem, though possible in some cases (such as mixture modelling based upon Expectation Maximisation [20]),
should be quantitatively testable. Researchers need to be vigilant regarding the application of Bayes Theorem to
causal systems [4]. Theories must therefore conform to our ideas of physicality in order to be considered valid.
The main advantage of this approach is that anyone can do useful research, even those new to algorithmic design,
it just requires the effort to test ideas using appropriate Monte-Carlo experiments [5]. Any remaining confusion
is eliminated by confirming the predictive capabilites of any theory with data. This has to be the ultimate test of
the value of any work and dispels any residual problems we might have with semantics.

12Notice I exclude the possibility of arbitrary selection by an external agent such as a researcher.
131 take this to include quantitative analysis of data.
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Conclusions

I hope this summary of the concept of probability has left the reader with at least some comprehension of the level of
confusion which has been allowed to continue with regard to a workable definition. The reader should now be aware
that Kolmogorov’s axioms alone are of no immediate practical value, and the way that the frequentist definition
of probability relates to the objective and subjective definitions. What we have seen is that it is particularly
important to be specific regarding the definition of any probability and the assumptions on which it depends. This
can be monitored to some extent by the use of conditional probabilities and the associated notation.

In order to understand the problems associated with subjective probability, we do not need to look at large volumes
of publications in this area and start looking for mathematical flaws, as our observations regarding logical consis-
tency tell us we would not expect to find any. By adopting a subjective definition of probability, mathematicians
have developed a system which cannot be challenged by data or notions of algebraic consistency. Equally, and for
exactly the same reasons, it is also of no practical value'*. Some readers may have already noticed that this is just
a new perspective on an idea which dates back to Galileo. We cannot build meaningful theories of the real world
without experimental data. If we could we would still be trying to predict planetary orbits using the geometry of
perfect solids.

Upon reading this document you might conclude that I am a frequentist rather than a Bayesian. However, as
my demand for a quantitative theory is driven by scientific requirements, rather than the mathematical choice
of a specific set of axioms, I prefer to call myself a scientist. This is why I have given this document the title
“Defining Probability for Science” '°. The definition which is appropriate for this task is the frequentist one. The
subjective definition fails on not one but three counts; invariance, quantitation and logical consistency. The take
home message is that you only have to understand and agree with one of these arguments to see that this is a
problem. The simplest way to identify these circumstances is to consider the effects of the arbitrary decisions made
during the construction of any theory. If simple changes in these decisions (such as co-ordinates) change the final
output of the system then the approach has no validity. Any systematic methodology for the use of probability
must be free from such issues, wherever it is applied.

Applying probability in a quantitative manner is difficult for most people. The many motivations for a subjective
definition (such as the reference class problem) seem to arise when we are unable to see how to get the frequentist
definition to work. It is then more convenient to assume that the problem is with the definition of probability rather
than our own comprehension. In the research areas of computer vision, image processing and pattern recognition,
people throw arbitrary prior probabilities into systems to solve quantitative (frequentist) analysis tasks using a
Bayesian (subjective) justification, without appreciating the logical contradiction. In other areas too we see the
same process at work, Jeffreys used the argument for subjective priors in order to justify the extra terms needed
to regain a unique (scientific) interpretation during the quantitative analysis of data using Likelihood (note the
contradiction) 16 [19]. Others have included prior terms in order to solve the problem of model selection, though
the subjective justification is again contradicted by the testing used to quantify generalisation [?]arrett. Others
use priors to bias the results of calculations so that they will be closer to those expected (eg: MAP), not realising
that in the regions of the model where the process has noticeable effect an honest estimate of the measurement
error is so large as to make any fitted value quantitatively useless. We can remove the instabilities of the system
in this way, but we do not increase the amount of useful information when it matters. In summary, “priors” are
being used to legitimate any additional terms which people want to put into their algorithms to fix the observable
consequences of poor methodology.

If we could get people to understand that the concept of “degree of belief” is unscientific the approach above would
not be so freely accepted. We might then be able to convince researchers in areas such as computer vision that
it is necessary to justify where prior information comes from and to quantitatively confirm the approach using
measured distributions. As this raises our level of critical thinking we might expect that in many cases this would
identify flaws. I believe this would force us to have to redesign many published systems within a more justifiable
(scientific) framework, which could ultimately lead to a theory of human perception. On the other hand, allowing
this situation to continue due to an unwillingness to arrive at conclusions might have the research community going
around in circles for another 50 years.

Here is a bullet point summary of some of the main issues to help provide focus;

14You have probably already spotted the obvious counter argument to this, academic publications can be counted as practical value
under the RAE. Indeed such publications will contain material of academic interest, but this isn’t what I mean by practical.

I51f there is a forced choice to be made here I would suggest that it is between scientist and mathematician, as I would hope only
the latter might consider subjective probability to have merit.

16Bayes Theorem is not too specific regarding where the prior terms should come from. The one thing you can say is that the
P(theory) in P(theory|data) o P(data|theory)P(theory) should not be a function of the data.
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e Frequentist probability can achieve far more than those who support subjective probability would want to
admit. It has solutions for predictive statements and the use of prior knowledge.

e Making explicit all of the assumptions used in the calculation of probability, via the use of conditional notation
is needed in order to avoid semantic problems.

e Bayes Theorem is derived for frequentist probability, it can and should be used in the same way, with
quantitative testing of resulting theories.

e Bayes Theorem cannot be derived for subjective probability, and therefore can not be used to invoke the
inevitable presence of arbitrary priors in the analysis of data.

e Subjective probability is unscientific, as it precludes objective testing it cannot be considered as a valid part
of any theory.

e The use of arbitrary priors over continuous parameters in the construction of algorithms has no validity and
any quantitative examples of utility must be viewed as a corruption of Likelihood.

e Conditional notation is insufficient to prevent the problems introduced into mathematical expressions by the
use of subjective probability.

e Mathematical consistency is not a sufficient condition to ensure that subjective probability is logically con-
sistent.

e Subjective definitions of probability are neither needed nor useful in explaining the subjective nature of brain
function.

If Bayes Theorem with subjective priors is even to be considered valid, it must be derivable from the axioms and
the subjective definition of probability, and thus without reference to frequency. Cursory consideration shows this
to be impossible. In addition, the limitations of conditional notation associated with causal data are impossible to
identify during general use of the theorem once the link to samples of data has been broken. You can not confirm
the theoretical validity of an approach by observing that “It seems to work.” when there are already theoretical
arguments which undermine it.

It is also worth making some general comments regarding the attitude to these sort of issues found in different
disciplines;

e Scientists largely ignore the mathematical problem of convergence, because not to do so would halt modern
science in its tracks.

e Mathematicians largely ignore the scientific requirements of probability, as they find the possibility of greater
freedom interesting.

e Engineers often switch between definitions of probability without knowing it, and are largely unaware that
subjective probability can only ever be employed to describe (rather than scientifically develop) the conse-
quently arbitrary choices and structures of resulting algorithms.

Under the scientific method you cannot logically prove a theory using data but only refute it, and a broken theory
needs no testing. One might expect to apply the same logic to the problem of convergence for the frequentist case,
but to me this isn’t a broken theory so much as a semantic muddle.

Although you can never logically prove a theory, you can statistically corroborate a theory, and quantitative
frequentist theories have been shown to match real world data in physics experiments to high degrees of precision,
this is a level of testing which far outstrips “It seems to work”. The key question which remains is; are there any
practical circumstances in which we can apply a subjective definition of probability and a frequentist definition
would not be more appropriate and useful?

Finally, I have not fully discussed here the problems of defining probabilities over continuous variables, rather than
discrete states. This issue is covered at length in other documents on these web pages in the context of frequentist
interpretations of Likelihood, Entropy and Bayes Theorem [19].
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A Personal Note to the Reader

I would like to say that there is some freedom for advocates of Bayesian statistics to yet show the ideas have merit,
but in all honesty I can’t. The practical testing of algorithms which many offer up as evidence for the value of
subjective probability is a quantitative and therefore frequentist task. This amounts to changing the definition of
probability in mid-stream. Using a strict Bayesian interpretation to include subjective prior knowledge is imme-
diately at odds with the process of quantitative estimation. The continued enthusiasm for subjective techniques is
not unsurprising when we consider the fact that many people are still quite satisfied with Kolmogorov’s axioms
as a definition of probability. In my opinion, the large number of publications in the literature which apply these
techniques should not be seen as contradiction of this conclusion. Instead they can be regarded as the consequence
of accepting an inability to test without question, as it generates what can be recognised as an academic’s ‘gold
mine’, or a licence to print.

You should therefore be warned that a frequentist approach not only suggests how analysis of data should be done,
but also restricts the methods which would otherwise appear to be available. If your main criteria at this stage in
your career is publishing a lot of papers, taking my view of the subject is likely to slow you down. If you have
understood this document, you need to decide; do you want only to publish as much as possible, or to restrict
yourself to what you can be sure are scientific problems? I arrived at my own conclusions on this long ago, and
believe that scientists won’t even accept that there is a choice. Engineers might take the view that they are prepared
to adopt a method simply because “It seems to work.”. They should then be aware that anything they publish could
ultimately be weakened when (as for fuzzy logic) they cannot honestly claim a valid theoretical argument for why
they should have taken the approach. This gets us to the last respectable alternative, show how the reasoning in this
document is flawed so that you can ignore its conclusions. In this case please drop me an email explaining where
I went wrong.
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Comments from Jamie Gilmour

Is there really an issue about German taxi drivers or rain tomorrow? To me, it becomes clearer if one reframes the
question. E.g. What is the probability that it rained in Knoxville yesterday.

Clearly, “the” answer is 1 or 0.

Of my knowledge, I am uncertain unless I look it up. I think it is meaningful for me to say that the probability is
about 80%. Of course, what I mean is that yesterday was a summer day in Knoxville and in my experience it rains
at least once in about 8 out of 10 summer days. This can be made more scientific, of course, but the principle is
the same.

Statements about the probability of one-off events are answered in the form “given what I know about the circum-
stances, I'd expect conditions like these to result in events of the specified sort about x % of the time”

Did a specified German born in 1960 die between the ages of 40 and 417 I don’t know, but given knowledge of the
German population I’d assign the idea low probability.

Given that he’s also a taxi driver, I'd revise my estimate.
Given that he’s buried in Cologne, I'd revise it upward somewhat.
And so on.

The notion that probability is a property only of the event and not of the event plus what we know about such
circumstances seems nonsensical to me.

I agree, I think the section on frequentist probability now reflects these views. (Neil)

Comments from Paul Bromiley
Point 1:

Bayes theorem can be derived from frequentist arguments, and this may appear to provide it with some theoretical
legitimacy. The numerator takes the form

p(data|theory)p(theory)

However, taking the next step to introduce subjective probability introduces two errors. First, the above expression
results from a perfectly valid manipulation of the notation as long as we adhere strictly to that notation. In
particular, the prior term in the above expression is the probability of the theory, conditional on nothing i.e.
independent of any collective. The only ways to define a prior independent of a collective would appear to be
to either base it on no information at all (as stated by Popper) i.e. use the equally likely definition, in which
case expressions derived from Bayes Theorem revert to manipulations of likelihoods, or to base it on all possible
information that has, or could ever, be obtained. In this case, the prior can only take the values 0 (the theory is
wrong) or 1 (the theory is correct). This conclusion is valid regardless of which definition of probability you choose.
Any concept of actually measuring a prior, either subjectively or objectively based on previous data, results in a
prior which is itself a conditional on the collective used to define it. Therefore, we obtain the expression:

p(data|theory)p(theory|previousdata) = p(dataltheory)p(previousdataltheory) x 1

which is, of course, simply the use of likelihood to combine several sets of experimental data.

I have already mentioned in the text that the use of subjective priors cannot be encompassed by conditional notation.
Your argument goes much further, it shows that strict adherence to the notation of conditional probability results in
the frequentist interpretation of Bayes Theorem, and Likelihood as the appropriate way to compute P(data|theory).
I have included my own version of this argument in the document.(Neil)

Second, for a theory of probability to be considered valid in a mathematical sense, it must be derivable from Von
Mises’” axioms and the definition of probability we wish to adopt. Many of the familiar proofs (Poisson, Binomial
and Gaussian distributions, Central Limit Theorem etc.) incorporate the use of the number of events. This is valid
if we define probability in the frequentist sense i.e. as the limiting frequency in a number of events. However, we
cannot switch definitions half-way through the derivation of our theory of probability i.e. we cannot start from the
frequentist definition, obtain Bayes Theorem, and then switch to a subjective probability definition for the prior
term. If Bayes Theorem with subjective priors is to be considered valid, it must be derivable from the axioms and
the subjective definition of probability, and thus without reference to frequency i.e. all steps must be N-free (make
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no reference to the total number of events). Cursory consideration shows this to be impossible. In fact, as stated
by Popper, once the subjective definition has been adopted we can make no progress beyond the original axioms,
as there is by definition no objective definition that we can manipulate.

Thanks for that Paul; This accords with my observation that there is no subjective derivation of Bayes Theorem,
and that subjective probabilities cannot be related. I have put part of this comment into the conclusions. (Neil)

Point 2:

The conventional, although somewhat idealistic, view of progress in science is that it takes the form of an iteration
of theory and experimental test. Failures in current theories are exposed through inabilities to explain experimental
data, leading to the derivation of more advanced theories. The process must be based on logic and guided by general
principles that have survived extensive experimental testing, such as conservation of energy, in order to avoid a
random walk around theory space. The new generation of theory is then tested in turn and either corroborated or
refuted. Theories must therefore be testable i.e. take the form of hypotheses rather than assertions. Any departure
from this model will, in general, reduce the rate of progress or even reverse it.

The use of subjective probability fails to fit within the above model, on two counts. Most importantly, the use of
arbitrary priors over parameters of theories, which are then optimised to fit the model to the data, reduces our
ability to identify failures in the fit of experimental data to models, and thus interrupts the iterative process. The
failures in the theory are accommodated by the priors, but we have no objective method with which to analyse
these priors as they are, by definition, considered to be subjective. Furthermore, the ability to corroborate or refute
a theory relies on our ability to calculate the probability that the data agrees with the theory, and then compare
it to another probability, common choices being 95%, 99% or five-nines in more rigorous experimental disciplines.
The definitions of these limits are frequentist, since they refer to the probability that the match between data and
model could have resulted from random noise. We therefore have no right to compare subjective probabilities to
these limits or any others, since that would be to change the definition of probability within an expression, and we
therefore cannot use subjective probability to corroborate or refute a theory.

A clear and simple argument which goes to the core of the issue. Those seeking to use something other than a
frequentist definition of probability must also develop a new approach to science if they wish to use it. It implies,
for example, that any theory of brain function based upon subjective probability cannot be a scientific theory. (Neil)

Point 3:

The scenario in which prior probabilities are genuinely arbitrary, for example equally likely, could be called “strong”
subjectivism. However, an alternative definition in which priors are estimated using frequentist methods, albeit
from an arbitrary collective, could also be suggested. I will refer to this as “weak” subjectivism. Such an approach
might appear to be more satisfactory as it accords more closely with the frequentist derivation of Bayes Theorem.
However, weak subjectivity also has significant failings.

As you have said, we can not take a quantitative (frequentist) interpretation when we are considering distributions
over continuous variables. Such methods are popular in medical data analysis and they can appear to improve the
performance of an algorithm. However, this is done at the expense of generalisation capability. Any estimate of
the parameters will not be consistent with the underlying generator of the data, it will be biased. Performance
evaluation applied to algorithms will also tend to underestimate errors, thereby giving a misleading indication
of apparent performance. As we have taken some random error and turned it into a systematic error. This is
deeply unsatisfactory from the point of view of scientific logic, as performance evaluation should always be aimed
at proving that an algorithm does not work, instead of proving that it does, in order to avoid accepting invalid
algorithms as valid.

Taking our priors from sample distributions over discrete events is also problematic. Consider a simple example,
weighting a Bayesian categorisation according to the demographic of a population. If we can only observe the
population and have no independent reason to believe that its statistical characteristics should remain fixed, then
we can not know that any probabilities we compute are correct. This is the problem of non-stationarity. In
addition, if we attempt to solve this problems by tracking the time variation of the priors, then as you have said,
the results are not directly comparable, as they are in effect using different definitions of probability.

However contrary this might appear to common logic, I think it is particularly important that we appreciate how
the use of sample data to define prior distributions is not automatically consistent with the quantitative use of
probability. (Neil)
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Comments from Bill Crum

1. Tm not sure I agree with the argument about P(theory) being non-physical as for real experiments there is
only one correct theory. For instance if I have a set of n brains and laboriously measure grey and white matter
tissue distributions through some manual means then I can fit a Gaussian model to GM (say) for each case which
in generally will have parameters 6; for the the i’th brain. These parameters will form a distribution across the
set of n brains. Then if want to use this information as a prior for the segmentation of GM in the (n+1)th brain,
don’t T then have a (frequentist) prior which gives me P(theory). Maybe this is the point - that I have to define
my prior in such a frequentist way for it to be valid?

For any one of the brains you are analysing there is only one correct value for 6;. You can choose to look at a
distribution across different brains if you wish but why do you believe that this distribution tells you anything about
a specific case? As Paul says in his comments, using a sample to define a prior produces not a pure prior but
P(theory|cohort). This is generally going to be arbitrary (unscientific) unless you stick with Poppers restrictions
on the use of conditional notation.(Neil)

2. I don’t understand the point about ”applying arbitrary non-linear transformations to our parameter definitions
without changing the theory which will change any sample distribution we measure”. Can you elaborate or point
me to something which explains this statement a bit more?

The choice of how to define our measurements of the world, or the parameters we put in a theory (the domains)
are never unique. Suppose for example we choose to model the size of a circle as a radius (r), another scientist
might say that he thinks you should use area (a = 7r?). For the specific case of prior distributions over parameters
(which is the section you refer to), if we sample our distributions and compute the prior value directly from the
estimated probability density (rather than integrating over an interval), this value will change if we apply a non-
linear transformation, like r — a. Just because these choices are not immediately obvious in specific applications
(such as brain modelling and your 6;), doesn’t mean they are not there. Such a prior changes at the whim of the
researcher and therefore this gives us a second reason why the methodology can not be said to have any intrinsic
validity. A scientifically valid methodology would give the same result regardless of these choices. (Neil)

3. The issue about maximising probability densities as opposed to integrating over intervals is interesting. I
wondered if people ”get away” with it in practice because if you represent your data as a histogram then a single
bin of width 1 is the smallest interval you can define. Then if you integrate the discrete density over a single bin
you get back numerically the probability density. Do I need another coffee or is this an example of where discrete
versus continuous representations can trip you up?

Yes, this is a situation where the discrete case would not be ambiguous. Why should an interval of 1 be considered
appropriate, and how would we know even if it was? People aren’t really getting away with it if that means they
are unaware of the issue and only use an appropriate domain by accident. (Neil)

4. Actually this report has made me want to go back and read some of your other memos for clarification. Is
there a more concrete standard example from the ”contradictory methods used for the comparison of probability
density distribution found in the area of statistical pattern recognition” which could be invoked in several places
in the text to show where ”"standard” approaches get it wrong.

I am reluctant to make this document any longer than it already is by including examples. However, memo
2004-005 already describes alternative probability similarity measures (Kullback Liebler Divergence (KL), Matusita
Measure... etc.). In the conventional presentation none of these have associated domains of applicability, ie: you
are free to choose whichever you like as the basis for an algorithm. This situation is tolerated due to the vagueness
surrounding probability. (Neil)
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