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Preface

This book is about the “information-theoretic” approaches to rigorous 
 inference based on Kullback–Leibler information. My objective in writ-
ing this book is to provide an introduction to making rigorous statistical 
inferences from data and models about hypotheses in the life sciences. The 
goal of this primer is to explain the information-theoretic approaches with 
a focus on application. I stress science philosophy as much as statisti-
cal theory and I wade into some ideas from information theory because it 
is so interesting. The book is about hypothesizing science alternatives and 
 providing  quantitative evidence for these.

In 1973 Hirotugu Akaike made a world class discovery when he found 
a linkage between K–L information and statistical theory through the 
 maximized log-likelihood function. Statistical theory developed since the 
mid-1970s allows science hypotheses, represented by mathematical mod-
els, to be ranked from best to worst. In addition, the discrete probability 
of each hypothesis i, given the data, can be easily computed. These can be 
viewed as Bayesian posterior model probabilities and are quite important 
in making inferences about the science hypotheses of interest. The like-
lihood of each hypothesis, given the data, and evidence ratios between 
hypotheses i and j are also available, and easy to interpret. All of these 
new features are simple to compute and understand and go far beyond 
traditional methods. While many of the examples are biological, I hope 
students and scientists in other fields (e.g., social sciences, medicine, eco-
nomics, and many other disciplines) can learn from this primer. Several 
examples are  ecological as that has been my interest; however, the specific 
examples used are far less important than the science context and trying 
to understand new approaches; I could not include an example from all of 
the many  subdisciplines.



Tosio Kitagawa (1986) noted that the information-theoretic methods are

“… a challenge to conventional statistics as well as a proposal for a new 
approach to statistical analysis. The reader may find some aspects of 
the approach controversial insofar as they imply a criticism of con-
ventional mathematical statistics, such as the use of statistical tests, 
 individual sampling distribution theory, and statistical tables.”

I find that some people are still struggling with these new approaches 20 years 
later. Perhaps this reticence is healthy for science as new ideas must be care-
fully evaluated and scrutinized; however, we must not let “progress ride on a 
hearse” either.

I have tried to write this as a science textbook; in a sense it is a companion 
to the books I have written on this subject with Ken Burnham in 1998 and 
2002. Those books contain statistical theory, derivations, proofs, some com-
parisons with other approaches, and were written at a more advanced level. 
The present primer tries to be well above a “cookbook” but well below a 
highly technical treatment; this is a book largely for people new to these effec-
tive approaches to empirical science. The book provides a consistent strategy 
(the concepts of evidence and evolving hypothesis sets) for rapid learning and 
a way of thinking about science and discovery; a road map of sorts. I provide 
several examples and many insights on modeling; however, I must say clearly 
that this is not a primer on modeling.

In the first 4 chapters I cover some material to motivate thinking about plausi-
ble science hypotheses (the most important issue), data, information, K–L infor-
mation, and various measures of evidence and support for members of a set of 
science hypotheses and their corresponding models. Several examples continue 
through the chapters as new developments are introduced. At this point, the 

will have been laid out. But then, like many good novels – there is a twist. 
Instead of trying to identify the best science hypothesis (and its model) from the 
set of hypotheses, I refocus on making formal inference based on all the models 
– “multimodel inference.” In many cases it is desirable to make predictions 
from all the hypotheses in an a priori set – one facet of multimodel inference. 
These procedures allow model averaging and unconditional measures of preci-
sion. Those people thinking this jump will surely be difficult will be pleasantly 
surprised. The main approaches to multimodel inference under this approach 
can be understood in 1–2 h of lecture and discussion – they are relatively simple 
but effective. I hope readers will conceptualize their  empirical work in science 
as multimodel inference. This mental image will help focus on the importance 
of deriving a set of good, plausible science hypotheses (the hard thinking), gath-
ering quality data, and using modern methods to provide quantitative evidence 
for each of the  science hypotheses of interest.

I want to be quick to say that there are other valid approaches to making infer-
ences from empirical data and I make no effort to deny these. There are general 
theories related to cross validation, nonparametric statistics,  bootstrapping, and 
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basics of model based inference under the “information-theoretic” approach 



Bayesian approaches to mention only a few. In addition, there are a number 
of new theories for model selection for linear models; I have omitted refer-
ence to these special cases but admit that, with further development, they may 
someday have wider application. Of the four general theories I noted, only the 
Bayesian approaches have the breadth and depth of those based on information 
theory. All have their strengths and I encourage some understanding of these 
approaches. I will make passing reference to some of these alternatives. I am 
pro-Bayesian and am interested in areas of commonality between the infor-
mation-theoretic methods and Bayesian methods. Frequentists and Bayesians 
have waged a long and protracted philosophical war; I do not want to see the 
information-theoretic approaches join the conflict.

I consider the various null hypothesis testing approaches to be only of his-
torical interest at this stage (2007), except perhaps in the analysis of data 
from strict experiments where the design stipulates a single model (i.e., design 
based inference). In general I think scientists serious about their work must 
move beyond testing sterile null hypotheses to modern methods and the sub-
stantial advantages they provide. I offer several comparisons.

This primer is written to be useful for seniors in excellent undergraduate 
science programs at top universities. Perhaps more realistically, the book 
is aimed at graduate students, post-doctoral fellows, as well as established 
 scientists in academia, government agencies, and various science institutes. 
A basic statistical background is essential to easily understand the mate-
rial in this book: sampling theory, simple experimental designs, measures 
of  variability and covariability (e.g., sampling variances and covariances, 
standard errors, coefficients of variation, various approaches to confidence 
 intervals, and sampling correlations), “regression” (e.g., β

i
 as partial regres-

sion coefficients, R2, residual variance s 2, residual sum of squares RSS), and 
goodness-of-fit concepts.

Ideally, the reader would have had some introduction to Fisher’s likeli-
hood approaches (e.g., maximum likelihood estimates, profile likelihood 
intervals). It is hard to understand why there is so much emphasis on least 
squares approaches even in graduate courses for nonstatistics majors as this 
narrow approach comes at the expense of the much more general and useful 
likelihood methods. In addition, likelihood is foundational to the Bayesian 
approaches. Readers with the required background will find the quantitative 
issues easy; it is the deeper conceptual issues that will challenge nearly every-
one (e.g., model selection bias). This is the fun and rewarding part of science 
– thinking hard. Readers lacking exposure to null hypothesis testing will find 
the material here easier to understand than their counterparts. Still, readers 
should expect to have to reread some material and contemplate the examples 
given to chase a full understanding of the material.

A Remarks section is found near the end of most chapters and some people 
will find these unordered comments interesting; however, I suggest this mate-
rial might best be saved for a second reading. This material includes historical 
comments, technical notes, and other tangential issues that I thought might 
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interest many readers. In a sense, the Remarks are a grouping of what would 
otherwise be “footnotes,” which I often find interesting, but sometimes dis-
tracting from the main points. Most chapters end with some nontraditional 
exercises. Comments on answers to some of the exercises can be found at 
www.springer.com/978-0-387-74073-7 Each chapter includes a photo and short 
biography of people who have made major contributions to this literature. 
I think it is important to recognize and learn from people who came before us 
and made substantial contributions to science.

This is not an introductory text as I assume a basic knowledge of statis-
tics, the ability to conceptualize science hypotheses (H

i
), represent these 

by mathematical models (g
i
), obtain estimates of model parameters (q), 

their sampling covariance matrix (Σ), goodness-of-fit tests, and residual 
analysis. Given this backdrop, new and deeper questions can be asked and 
answers quantified effectively and simply. I believe this material is fun 
and exciting if you are a scientist who is serious about advanced work on 
problems where there are substantial stochasticities and complexities. 
The material is very broad, but I say less about models for multivariate 
responses and random effects (as opposed to so-called fixed effects) models.

Many people in the life sciences leave graduate programs with little or no 
exposure to quantitative thinking and methods and this is an increasingly serious 
issue, limiting both their contributions to science and their career growth. Many 
PhD-level people lack any working knowledge of calculus, statistics, matrix 
algebra, computer programming, numerical methods, and modeling. Some peo-
ple think that is why they are in biology – “because then I don’t have to learn that 
quantitative stuff.” I can certainly understand the sentiment; however, there are 
ample reasons to reconsider, even later in life. Quantification becomes essential 
in real world problems as a science matures in a given discipline.

In a sense, undergraduate students are taught a small fraction of material 
that is already known in their field and associated disciplines. People need this 
background information. Graduate work is quite different (or should be), as 
students are taught effective philosophies and methods to help them learn how 
to understand things new to their field of science. First one wants to know the 
current “edge” of knowledge on some issue. Second, one wants to push that 
edge further as new things are learned from the science process. These are 
things that cannot be found in a book or on the Internet; the discovery of new 
things – this is what science is all about. Good undergraduate programs try to 
blur the line between these extremes and this is healthy for science. Graduate 
programs try to help students shift gears into considering methodologies and 
philosophies for rapid learning of new things; things that no one has discovered 
(yet). These are often the harder, more complex issues as our predecessors have 
solved the easier problems. The information-theoretic approaches represent an 
effective science strategy and allow one to shift into 6th or even 7th gear and 
that is what makes learning this material both important and fun.

I wanted to write a short book and try to make some main points that I think 
are important to people coming to these subjects for the first time. This is a 
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book about doing empirical science. I do not expect everyone to agree with 
every philosophical or analytical aspect. Few of the ideas are originally mine 
as I have taken from thoughts and results from many others as I try to synthe-
size the more fundamental issues for the reader. This synthesis comes from 
about 40 years of experience, studying the work of others and trying to form 
a coherent philosophy about an effective way to do empirical science. I hope 
people will take what they find useful and be willing to forge ahead in areas 
where they have found better approaches. I intend to remain interested in this 
broad subject and will always enjoy hearing comments from colleagues, many 
of whom I have not yet met.

I want to fully acknowledge my closest friend and colleague over the last 
34 years, Ken Burnham. I (reluctantly) wrote this text alone as I am trusting 
Ken to complete his book on experimental design. Ken has had an power-
ful influence on my thinking about science philosophy, statistics, information 

ways and I am proud to acknowledge Peter Caley and Jim Hone for their help 
with my use of their ferret data and Lianne Ball and Paul Doherty for their 
help with the Palm Springs ground squirrel example. I benefited greatly from 
extensive review comments offered by Peter Beerli, Barry Grand, Benedikt 
Schmidt, and Bill Thompson. I also want to thank Bill Gould, Paul Lukacs, 
Dave Otis, and Eric Stolen for their advice and encouragement. The photo of 
Thomas Chamberlin was provided by the Edgar Fahs Smith collection at the 
University of Pennsylvannia. John Kimmel at Springer was both patient and 
encouraging as he helped me through the writing and publishing process.

Fort Collins, CO David R. Anderson
June, 2007
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Glossary

Terms

Akaike weight The probability that model i is the actual (fitted) K–L 
best model in the set

Asymptotic A result or procedure where sample size goes to infin-
ity as a limit

Bias (Of an estimator) Bias = E( ) − q.
Deductive inference Reasoning from the general to the particular. Central in 

logic
Deviance A fundamental term in likelihood theory. In this book 

we can usually get by with deviance = −2 log L, that 
is, negative 2 times the value of the log-likelihood at its 
maximum point

Effect size A general term to reflect a measure of the magnitude of 
some parameter. In a simple experiment, the effect size 
is often the difference in treatment vs. control means, 
m

c
−m

t
. In regression and other models, the effect size 

is just the (regression) parameter, b
j
. In some survival 

studies, the effect size is defined as the ratio of treat-
ment and control survival probabilities, j

t
/j

c

Entropy A measure of disorder or randomness. A highly techni-
cal issue as there is more than one form. A short intro-
duction is given in the Remarks section in Chap. 3

Estimate The computed value of an estimator, given a particular 
set of sample data (e.g.,  = 9.8)

Estimator A function of the sample data that is used to estimate 
some parameter. A simple example is  = y / n for a 
binomial proportion. An estimator is a random variable 
and denoted by a “hat” (e.g.,  or ). Some estimators do 



not have a simple “closed form” and rely on numerical 
methods to compute their numerical value

Evidence ratio A ratio of the model probabilities for models i and j 
in the set, E

i,j
. Used as a quantitative measure of the 

strength of evidence for any two hypotheses i and j
Global model Usually the most highly dimensioned model in the set; 

used primarily for goodness of fit assessment. At least 
some models in the set are often nested within the glo-
bal model

iid Abbreviation for “independent and identically distrib-
uted”

Inductive inference Reasoning from a sample to the population from which 
the sample was drawn. Central to statistical inference 
and fundamental to empirical science

Likelihood A relative value useful in comparing entities. Not a 
probability as likelihoods do not sum or integrate to 
1. Likelihoods are 0 or positive. For example, one can 
compute the likelihood of various values of p, given 
the data (n and y) and the binomial model. A single 
likelihood value is not useful; at least one more value is 
needed as likelihood values are relative (comparative) 
to some reference value. Appendix A

Log-likelihood The natural logarithm of the likelihood function and 
fundamental in both statistical and information theory

Mean squared error A measure of performance or accuracy, often in 
 prediction, and defined as the sum of squared bias + 
variance

Model probability The discrete probability of model i being the actual 
best model in terms of K–L information

Negentropy The negative of entropy, also equal to K–L information
Nested models A model that is a special case of another model is said 

to be “nested.” A linear model E(Y) = b
0
 + b

1
(x) is 

nested within the quadratic model E(Y) = b
0
 + b

1
(x) + 

b
2
(x2)

Occam’s razor Taken from thirteenth-century English monk is the well 
worn idea of the importance of simplicity. The “razor” 
is the concept “shave away all that is unnecessary”

Parsimony Classically, this concept is a bias versus variance 
trade-off. It implies a balancing between the evils of 
over-fitting and under-fitting. This term should not 
mean just a “smaller” model as it is sometimes used. 
Instead, parsimony refers to some trade-off between 
too few and too many parameters, given a particular 
sample size. Closely related to Occam’s razor
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Precision A property of an estimator related to the amount of vari-
ation among estimates from repeated samples. Precision 
is measured by the sampling variance, standard error, 
coefficient of variation, and various types of confidence 
interval. Precision and information are closely related

Predictive mean Conceptually the expected value of the variance +
squared error squared bias. Practically, this can be estimated as 

E[(
i
) – E(Y

i
)]2, where 

i
 is the predicted value from 

the ith sample
Pretending variable Slang for the case where a model containing an 

 unrelated variable enters the model set with a ∆ value 
of about 2 and is judged as being a “good” model; how-
ever, the deviance was not changed. Thus the variable 
is “pretending” to be important by being in a “good” 
model, but since the fit was not improved, the variable 
must be recognized as unimportant. Further evidence 
of this can be gleaned from examination of the confi-
dence interval for the associated parameter estimate

Probability Many people consider probabilities to be only long-
term frequencies; others (e.g., Bayesians) have the 
expanded view that probabilities can convey a quanti-
fication of belief. In either case, they are nonnegative 
quantities and sum or integrate to 1 and range between 
0 and 1, inclusive

Symbols 

AIC Akaike’s Information Criterion, =−2log(L (q | x) ) + 2K 
or just −2log(L) + 2K in shorthand notation

AIC
min

 The estimate of expected K–L information for the best 
model in the set, given the data. For example, given 
the model set (g

1
, g

2
,…, g

R
) and the data x, if the infor-

mation criterion is minimized for model g
6
, then min 

= 6, signifying that AIC
6
 is the minimum over AIC

1
, 

AIC
2
,…, AIC

R
. The minimum AIC is a random vari-

able over samples. This notation, indicating the index 
number in {1, 2,…, R} that minimizes expected K–L 
information, also applies to AICc, QAICc, and TIC

AICc A second-order AIC, useful when sample size is small 
in relation to the number of model parameters to be 
 estimated (K). AICc = −2log(L(q | x) + 2K + 2(K(K+1) )/
(n−K−1)

b
j
 Standard notation for a (partial) regression coefficient 

(“slopes” relating to the jth predictor variable)
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BIC Bayesian Information Criterion (also termed SIC in 
some literature for Schwarz’s information criterion)

cov(
i
, 

j
) The sampling covariance of two estimators 

i
 and 

j
, 

respectively. This is a measure of codependence and 
reflects the fact that both estimates, i and j, come from 
the same data set and, therefore, might be related 
(dependent)

c A simple variance inflation factor used in quasi-
likelihood methods where there is overdispersion of 
count data (e.g., extrabinomial variation). c º 1 under 
independence

∆
i
 AIC differences, relative to the smallest AIC value in 

the model set. The best model has ∆
i
 º 0. Formally, 

∆
i
 = AIC

i
 − AIC

min
). These values are estimates of 

the expected K–L information (or distance) between 
the best (selected) model and the ith model. These 

e
i
 The ith residual in regression analysis, y

i
 − 

i

E( ) An operator meaning to take the statistical expectation 
of the estimator . Roughly an average of the parameter 
estimates taken over an infinite number of realizations 
from the stochastic process that generated the data for 
a fixed sample size (Appendix B)

E
i,j
 The evidence ratio; the relative likelihood of hypoth-

esis i vs. hypothesis j or, equivalently, model i versus 
model j. A formal measure of the strength of evidence 
of any two science hypotheses i and j in the candidate 
set

f(x) Used to denote hypothetical “truth” or “full reality,” 
the process that produces multivariate data, x. This 
conceptual or hypothetical “probability distribution” is 
considered to be infinite dimensional (i.e., an  infinite 
number of “entities,” not necessarily what we term 
“parameters”)

g
i
(x) Used to denote the model representing science hypoth-

eses i. These models are a function of the data (x), thus 
the notation g

i
(x). The set of R candidate models is 

 represented simply as g
1
, g

2
,…, g

R

GOF Goodness-of-fit test or statistic
H

i
 The ith science hypothesis

H
o
 The “null” hypothesis, the hypothesis tested in null 

hypothesis testing
H

a
 The “alternative” hypothesis associated with null 

hypothesis testing
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K The number of estimable parameters in an approxi-
mating model. Some parameters are confounded with 
another in some models and are then not “identifiable.” 
In such cases, the parameter count (K) should add 1 
parameter for the confounded pair (not 2)

K–L Kullback–Leibler information (or distance, discrep-
ancy, number)

LS Least squares method of estimation (“regression”)
L(q | x) Likelihood function of the model parameters, given the 

data x
L(q | x, g

i
) Extended notation to denote the fact that the likeli-

hood function always assumes the data and the specific 
model g

i
 are given

log(•) The natural logarithm (log
e
). All logarithms in this 

book are natural (Naperian) logarithms
log(L) Shorthand notation for the log-likelihood function
log(L(q | x, g

i
) ) Extended notation to denote the fact that the log-

likelihood function always assumes the data and the 
specific model are given

logit(θ) The logit transform: logit(q) = log(q/(1−q) ), where 
0 < q < 1

g
i
 Shorthand notation for the candidate models consid-

ered. See g
i
(x)

ML Maximum Likelihood method of estimation (Appen-
dix A)

MLE Maximum Likelihood Estimate (or estimator)
n Sample size. However, some problems do not have a 

simple sample size as the effective sample size varies 
by parameter

QAICc A version of AICc for overdispersed count data where 
quasi-likelihood adjustments are required, hence  is 
used

q Used to denote a generic parameter vector (such as a 
set of conditional survival probabilities, S

i
 or a set of 

regression coefficients, b
i
)

 An estimator of the generic parameter vector q. Usu-
ally these are MLEs. The “hat” denotes an estimate or 
estimator, rather than the parameter value

r
x,y

 The population correlation coefficient between vari-
ables x and y

R The number of candidate hypotheses or models in the 
set

RSS The residual sum of squares in least squares methods. 
Often referred to as the error sum of squares or sum of 
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squares due to error (SSE). The RSS is Σ(e
i
)2 for i = 1, 

2,…, n
s 2 The residual variance in “regression.” Here I will use 

the MLE of this quantity; s 2 = RSS / n and not the 
more usual “unbiased” LS estimator (i.e., RSS/(n−K)

se or se( ) Standard error and standard error of the estimator . 
Used as a measure of precision (or repeatability)

TIC Takeuchi information criterion
Tr The matrix trace operator; the sum of the diagonal ele-

ments of a square matrix
var( ) The sampling variance of the estimator . The square 

root of this quantity is the standard error. Both are 
measures of precision

w
i
 Akaike weights. Used with any of the information 

criteria that are estimates of Kullback–Leibler infor-
mation (e.g., AIC, AICc, QAICc, TIC). Estimates of 
the probability of model i being the K–L best model, 
given the data and the model set. These are analogous 
to Bayesian posterior model probabilities

W
+
(j) The sum of Akaike weights over all models that con-

tain the explanatory variable j
X or X matrix The data or matrix of data
∝ A symbol meaning “proportional to”
º A symbol meaning “defined as”
» A symbol meaning “approximately equal to”
| A symbol meaning that entities to the right are “given” 

or “conditional upon” or known, as in L (q | x)
<< A symbol meaning “much less than”

Definitions of other statistical terms are given by Everitt (1998).

xxiv  Glossary



1
Introduction: Science Hypotheses 
and Science Philosophy

Thomas C. Chamberlin (1843–1928) was trained as a geologist but had 
a keen interest in and impact on science philosophy. His 1890 paper in 
Science advocated the use of “multiple working hypotheses” and is central 
to the information-theoretic approaches. He was the director of the Walker 
Museum at the University of Chicago, president of the American Association 
for the Advancement of Science, and the founder and editor of the Journal of 
Geology. Chamberlin was the president of the University of Wisconsin at the 
time the paper was prepared. The paper was republished in Science in 1965 
and is still very worthwhile reading as much of science turned, unfortunately, 
to testing null hypotheses by the early part of the twentieth century.

1.1 Some Science Background

Science is about discovering new things, about better understanding processes 
and systems, and generally furthering our knowledge. Deep in science philos-
ophy is the notion of hypotheses and mathematical models to represent these 
hypotheses. It is partially the quantification of hypotheses that provides the 
illusive concept of rigor in science. Science is partially an adversarial  process; 
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hypotheses battle for primacy aided by observations, data, and models. 
Science is one of the few human endeavors that is truly progressive. Progress 
in science is defined as approaching an increased understanding of truth – 
 science evolves in a sense.

Philosophy of science is concerned with the justification of scientific prac-
tices. For instance, it may be obvious that an experimenter would want to 
avoid confounding; however, it may be far less obvious why randomization or 
parsimony is often so critical in empirical science. Establishing causation and 
making proper inductive inferences are the domains of a scientist. These are 
deep issues where science philosophy has played an important role. A good 
scientist should try to further understanding of philosophy during her or his 
lifetime of work.

The scientific method tries to formalize, and make efficient, the everyday 
process of “finding things out.” Good science is strategic. Science is funda-
mentally about understanding, not so much about decisions (however, there 
are many solid approaches to making “scientific decisions” but that is another 
subject). Aldo Leopold (1933:231) stated, “We are not trying to render a judg-
ment, rather to qualify our minds to comprehend the meaning of evidence.” 
We will see that evidence can be formally quantified – this is the science of 
the matter. However, in application, we then often want to qualify such evi-
dence to aid comprehension. Such qualifications are value judgments, are not 
unique, and can be contentious.

Science is not so much about what is known (although we do speak of the 
“body of scientific knowledge”), as it is the process of finding out about new 
things. Science makes progress by providing evidence that good hypotheses 
are poor so that they can be replaced by even better hypotheses. Science never 
stops; it is always looking for more.

Ideally, perhaps scientists should be disinterested and unbiased observers. 
I suspect that human nature prevents this ideal in most of us; instead, we 
should admit that we often have some “leaning” on many subjects. This leaning 
reflects, partially, our interest in the subject in the first place. This predisposi-
tion can be accounted for as hypotheses are evaluated objectively, relative to 
one another. For example, when deriving a small set of hypotheses to be eval-
uated with data and models, one investigator may have a favorite hypothesis, 
while a colleague may favor another. This can lead to a spirit of competition 
for ideas and new hypotheses that can be healthy in learning. This is where 
good data and a sound approach to evaluating the relative strength of evidence 
for the set of hypotheses become fundamentally important.

Evidence is defined by the American College Dictionary as “grounds for 
belief” and “something that makes evident.” Proof is evidence so complete 
and convincing as to put a conclusion beyond reasonable doubt. Strict proof 
may be rare in life sciences. Faith is belief without evidence.

Substantial elements of personal judgment enter in scientific research, 
especially in the choice of topics of study and in deeper issues of interpreta-
tion. To some extent, however, the goal of scientific methods is to minimize 
that personal element and subjectivity. Often, we will see that the science of a 



matter consists of various pieces of quantitative evidence: things like ranking 
of hypotheses derived a priori, the probability of hypothesis j, estimates of 
parameters, and a measure of their precision. Perhaps it is useful to think that 
science stops there. Then, value judgments can be offered to qualify the result 
and therefore aid in its interpretation. Such interpretations can be offered by 
anyone and these may be fairly similar across individuals or may vary quite 
substantially. The value judgments by the investigator might be of special 
interest; this is why a Ph.D. level of education becomes important in scientific 
studies. In the end, the qualification of the quantitative evidence (the science 
result) involves value judgment that may vary by individual. Goodman and 
Royall (1988:1573–1574) note:

…the use of evidential measures forces us to bring scientific judgment 
to data analysis, and shows us the difference between what the data are 
telling us and what we are telling ourselves.

1.2 Multiple Working Hypotheses

Thomas Chamberlin wrote several papers over a century ago calling for 
scientists to adopt what he called “multiple working hypotheses.” Francis 
Bacon advocated a similar science strategy 400 years earlier. Their proposal 
is a sterling blueprint for an effective science strategy but the approach has 
been underused during the past century.

Under Chamberlin’s strategy, one carefully derives several plausible 
science hypotheses (H

i
) that become the entire focus of the investigation:

{ },1 2 RH H H, , , .… ≥where R 2

These hypotheses are to be well thought out and derived prior to studying 
the specific data and ideally prior to data collection. In his time, I believe 
Chamberlin was thinking that R was in the 2–4 range (i.e., small). Forming 
a small set of plausible hypotheses is where science enters the issue and is 
the most important step. Research investigators need the ability to think 
hard about plausible explanations (hypotheses) for a system of interest. Our 
present science culture places too little emphasis on the derivation of multiple 
working hypotheses. Many scientific hypotheses seem shallow and uninter-
esting and most cases are a single science hypothesis to be contrasted with 
a “null” hypothesis. Such practice cannot be considered twenty-first century 
science.

Once the a priori set of hypotheses has been carefully defined, then one can 
begin to ask about their relative empirical support. Royall (1997) asks: Given 
the data,

…how do we quantify the strength of evidence for one explanation over 
the alternatives?

1.2 Multiple Working Hypotheses  3
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Edwards (1972) states:

Our problem is to assess the relative merits of rival hypotheses in the 
light of observational or experimental data that bear upon them.

Chamberlin (1890:758) posed the question,

…what is the measure of probability on the one side or the other…?

Stated another way,

What is the empirical evidence for hypothesis j relative to the others in 
the set?

These are different ways to ask the fundamental methodological question in 
empirical science. Until fairly recently, science had no general methodological 
approach to providing answers to these questions. Certainly, null hypothesis 
testing is quite distant from these serious questions. Hypotheses not in the set 
remain out of consideration (but more on this later). Finally, one must always 
consider the possibility that none of the hypotheses have any substantial merit. 
In such cases, more experience and thinking are required.

Chamberlin said little about models and associated quantification (mod-
eling was the subject of contributions in the twentieth century) and he said 
even less about how the various working hypotheses might be evaluated (what 
we now often term “strength of evidence”). Given his education in geology, 
it is possible he was thinking of questions where the answer was effectively 
deterministic and where there was little uncertainty concerning the evidence. 
Effective ways are needed to provide relative evidence for members in this set 
of science hypotheses. Such ways are the focus of this text.

Chamberlin believed that the derivation of a “family of hypotheses” had 
special merit and by its very nature promoted thoroughness. He felt the value 
of working hypotheses was in its suggestiveness of lines of inquiry that might 
otherwise have been overlooked. This approach leads to certain “habits of 
mind” – special ways of thinking carefully about new problems (“think-
ing outside the box”). Collaboration with peers can often lead to interesting 
insights concerning alternatives.

1.3 Bovine TB Transmission in Ferrets

Caley and Hone (2002) present a nice example of hypothesis generation con-
cerning the force of infection of bovine tuberculosis (Mycobacterium bovis) 
in feral ferrets (Mustela furo) in New Zealand. Caley (personal communica-
tion) provided a synthesis as to how they approached the science issue. Their 
analysis is quite comprehensive; I will only highlight some simple aspects to 
illustrate their approach to deriving multiple working hypotheses (I encour-
age readers to study their paper for deeper issues). Caley and Hone (2002) 



derived 12 alternative hypotheses concerning disease transmission; this took 
place over several months and they made a major effort to get an exhaustive 
set of hypotheses. Caley was closest to the issue and his beliefs were centered 
around a hypothesis of a dietary infection hazard (H

4
 below). Hone was less 

close to the polarized political debate and the authors viewed this as a benefit 
as he facilitated a more open perspective to developing plausible alternatives.

They examined the ecological and epidemiological literature as an aid in the 
derivation of alternative hypotheses, but this examination was not restricted 
to either ferrets or bovine tuberculosis. They had both science colleagues as 
well as natural resource managers to debate the merits of various alternative 
hypotheses. Over time, the tentative hypothesis set narrowed and expanded 
as a result of a deliberate attempt to “think hard.” The first five hypotheses 
(given below) became somewhat “obvious” and the seven remaining hypoth-
eses arose from recognizing that the first five were not mutually exclusive. 
They eventually described about 20 hypotheses using logical combinations 
of these five. The framework for these hypotheses and the analysis to follow 
includes gender and site as factors in each case.

The most difficult issues involved decisions about the more complex 
hypotheses and the potential lack of uniqueness of some combinations of the 
five base hypotheses. Eventually, they decided on 12 hypotheses. To keep 
this example manageable, it will suffice to focus attention on their five base 
hypotheses below:

H
1
 Transmission occurs from mother to offspring during suckling until the 

age of weaning, which occurs at 1.5–2.0 months of age
H

2
 Transmission occurs during mating and fighting activities associated 

with it, from the age of 10 months when the breeding season starts
H

3
 Transmission occurs during routine social activities from the age of 

independence, estimated to be about 2–3 months, such as sharing dens 
simultaneously

H
4
 Transmission occurs during scavenging/killing tuberculosis carrion/prey 

from the age of weaning (1.5–2.0 months of age)
H

5
 Transmission occurs from birth because of environmental contami-

nation

Note that each hypothesis asks about How and When; these are often better 
science questions than merely What, as this tends to be merely descriptive. 
The question is not “is there an effect” rather there is interest in the size of the 
effect and this is measured by estimates of model parameters.

If these five hypotheses could be ranked (simple ranking is a form of evi-
dence), based on the data, many people would realize how much more relevant 
this would be compared to an array of classic P-values. I am unsure what the 
null hypothesis might be: transmission is random, but that seems unlikely.

Most of us have difficulty with complex issues and some forms of quanti-
fication. Chamberlin warned that it was easier and seemingly more pleasing 
to think in terms of simple interpretations than to recognize and evaluate the 

1.3 Bovine TB Transmission in Ferrets  5
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multiple factors that may often be operating. He provided an example where 
he felt people like to be told that the Great Lakes basins in the United States 
were scooped out by glaciers, than to be taught that three or more factors 
working successively or simultaneously were responsible and to then try to 
partition the relative importance of these factors. This is an important insight, 
while realizing that effective theory often requires some idealization and 
simplification.

Scientists should think long and hard about the a priori hypotheses to 
include in the set for study and evaluation. This critical step can often take 
months of thinking and rethinking the issues (a la Caley and Hone). Oliver 
(1991) said it well,

When you come across some observation that does not fit the standard 
explanation, let your mind wonder to see whether some radically dif-
ferent interpretation might do a better job. Perhaps you will think of 
something that will fit both the new data and the old data and thereby 
supplant the standard explanation. Toy with different perspectives. Look 
for the unusual. Try consciously to innovate. Train yourself to imagine 
new schemes and innovative ways to fit the pieces together. Seek the joy 
of discovery. Always test your new thoughts against the facts, of course, 
in rigorous, cold-blooded, unemotional scientific manner. But play the 
great game of the visionary and the innovator as well.

Ken Burnham (personal communication) advises,

Ideally, one should have a firm justification for including certain hypoth-
eses in the set and, conversely, have an equally firm justification for 
excluding other hypotheses from the set.

The definition of the hypotheses in the set is perhaps the most important part 
of the investigation. This set defines the science at the moment. Statistical sci-
ence is most successful when full attention is given to problem formulation 
and hypothesizing creative, plausible alternatives. This is often the case where 
“two heads are better than one” and where there is a competition for ideas and 
alternatives. Ball et al. (2005) provide a nice example where 15 hypotheses 
were developed a priori concerning predictions about vegetation and sub-
strate affinities for Palm Springs ground squirrel (Spermophilus tereticaudus 
chlorus).

1.4 Approaches to Scientific Investigations

Much of both science and statistics is about inductive inferences. This is 
a formal process whereby a conclusion about a sample is extrapolated to 
the population from which the sample was drawn. The data come from the 
 sample only; the remaining members of the population are not observed. 



Inductive inference can also be thought of as a conclusion from the past about 
the future as in forecasting or prediction. Inference is an act or a process.

For such inferences to be valid, in principle, assumptions must be met; e.g., 
some type of probabilistic sampling of the well-defined population. Furthermore, 
there are results from logic stating that there is always uncertainty in  making 
inductive inferences. This uncertainty leads to the need to carefully quantify 
the uncertainty of such inferences (e.g., variances, covariances, standard errors, 
various types of confidence intervals) and worry about  possible biases.

Inference in many of the life sciences is challenging because of the inherent 
variation in living systems. In addition, there are often multiple causal factors 
and, thus, the need for replication, controls, and worry about confounding.

1.4.1 Experimental Studies

Experiments are the Holy Grail of science because they allow inferences 
about causation. In science, the word experiment implies treatment vs. con-
trol groups, where experimental units are randomly assigned to these groups, 
and there is deliberate replication. Anything less than these three conditions 
should not properly be called an experiment. In cases where random assign-
ment has not been done (but treatment and control groups are defined and 
replication is in place), they are often called “quasiexperiments” and there 
is a large literature on this important case. Studies without a control group 
are likely to yield disappointing results as the effect size cannot be estimated 
(there are exceptions), while studies without replication yield results that are 
usually tenuous at best.

The main purpose of an experiment is to estimate the size of the effect 
on a response variable of interest caused by the treatment. This is prima-
rily an  estimation problem: One wants to have an estimate of the effect size 
and its standard error (or some other appropriate measure of precision). The 
experimenter wants to know something about the effect of the treatment on 
some response variable: Is the effect trivial, small, medium, large, or extra 
large? This has little to do with testing the null hypothesis that the treatment 
had exactly zero effect. In these cases, I find relatively little use for exten-
sive tables of sums of squares, mean squares, F statistics, various degrees of 
 freedom, and the ever-present P-values, followed by a decision to “reject” or 
“fail to reject” the null hypothesis.

Even in strict experiments, the null is almost never particularly plausible; 
it is the size of the effect caused by the treatment that is of scientific inter-
est. For example, “I fed bison calves in the treatment group a special dietary 
 supplement and, at that dose level, it caused them to gain an average of six 
pounds per week over that of the calves in the control group fed the same 
volume or weight.” This science finding might be followed by an evaluation 
of costs of the supplement and other factors thought to be relevant. If ordered 
treatments are part of the experimental design, then the “effect size” becomes 
the nature of the (causal) functional response.

1.4 Approaches to Scientific Investigations  7
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A great deal of excellent information exists concerning the design and 
 conduct of experiments and the analysis of experimental data. It is often useful 

(single) model and the causal inference stems from the experimental design. 
For example, a randomized complete block design implies (only) a two-way 
ANOVA model and subsequent analysis. This is an area of statistical science 
that is quite mature – hundreds of books extol its virtues; it is usually well 
taught, and a huge variety of computer software exists for this. If the scientific 
situation allows, experiments are highly regarded and recommended – they 
represent a philosophical “gold standard” of scientific endeavor because they 
address causation, not merely association or correlation.

There are close links between experimental design and sampling design 
(see Snedecor and Cochran 1989). While the objectives clearly differ, the esti-
mators can be viewed within a common statistical framework.

1.4.2 Descriptive Studies

The harsh reality, in many cases, is that a strict experiment simply cannot be 
done. A quick survey of journals such as Ecology, Journal of Animal Ecology, 
or Journal of Conservation Biology will reveal many papers that are not about 
experimental results. In some cases, an experiment could have been done but 
the investigators did not realize this and then the results are nearly always 
compromised. In most cases, however, there are a host of valid reasons why a 
strict experiment is not feasible. Ethical concerns often prevent strict experi-
mentation in human medical research. In many cases, investigators turn to 
descriptive work. Descriptive work certainly has its place in science but such 
inferences are (or should be thought of as) more shallow and tentative.

Related to what I call descriptive studies is the notion of “exploratory data 
analysis” and much has been written about this approach. I believe too much 
emphasis has been placed on descriptive work. I also believe that some types 
of exploratory data analysis are a relatively poor way to make rapid progress 
in the empirical sciences. It is too easy to mistakenly think that results from 
post hoc analyses (data dredging) will lead to interesting new hypotheses, 
when often such results have high probabilities of being, in fact, spurious. The 
best ways to obtain interesting alternative hypotheses is to think, read, study, 
attend scientific meetings, and communicate with both colleagues and rivals.

1.4.3 Confirmatory Studies

Another alternative, confirmatory investigation, lies in between strict experi-
ments that may provide evidence of causation and the descriptive studies that 
often provide only “what?” Confirmatory investigations begin by hypothesiz-
ing alternatives prior to data analysis and, ideally, even before data collec-
tion. When data are analyzed and “results” appear, these are confirming prior 
hypotheses. This is a level above descriptive studies where findings come 

to think of experiments as “design based inference” as the design stipulates a 



almost by surprise in many cases. The investigator thinks, “Wow, who would 
have thought that nest success of species X was related to estimated cloud 
cover on the day and time an observer found the nest.” On the contrary, under 
a confirmatory format, the investigator notes something like, “Oh, we have 
thought for some time that nest success is influenced by concealment at the 
time of nest initiation, now we have some (confirmatory) evidence of this.” 
Better still, “now we ask some hypothetical questions about why and when 
concealment is important.”

Clearly, there is a close link between the confirmatory approach and Cham-
berlin’s ideas of multiple working hypotheses. Platt’s (1964) well-known paper 
on “strong inference” is closely related and addresses the issue of strategy in 
science. One still lacks a notion of strict causation but the strength of evidence 
is nearly always above that for descriptive studies. The only price to be paid 
to achieve a confirmatory result is a priori thinking. We must ask why more 
confirmatory research is not being done. A little hard thinking before data col-
lection and analysis provides a much stronger inference. This approach sets 
up a basis for formal evidence. Putting in place the a priori hypotheses is just 
good science procedure and it yields a superior result. Of course, some post 
hoc analysis can be done, and I promote this, but these inferences must be 
treated with appropriate caution. The reader should be informed which results 
were from the confirmatory process and which came from post hoc analyses 

inference and the primary focus of this text.
Fundamental differences between strict experiments and other types of 

studies can be further understood in terms of residual variation (e.g., the Œ
i
 in 

regression). In experimental data, the residuals are the component of variation 
that is considered to be random, where the model is defined by the experimen-
tal design, and, in this sense, is “known.” In contrast, nonexperimental (obser-
vational) data must also (i.e., in addition to) treat the residuals as containing 
the effect of as yet unknown confounding variables on the estimated response 
variable, (somehow) given the model. Here, the model is not known and must 
be estimated using some model selection procedure. Strict experimentation is 
quite distinct from other approaches to science questions.

I find that many investigators have a fear during data analysis that they 
will miss an effect that is real and perhaps important. They worry that the 
data are wanting to tell something, but that they will miss this finding by “not 
looking hard enough.” This is a valid fear and it may be common, in complex 
settings, that some second-order effects are missed, even though they might 
be in the data. Perhaps an interaction is missed or a nonlinearity is left unno-
ticed. Investigators try to minimize missing effects by examining “all possible 
models” or using some multivariate software – there are huge inferential risks 
associated with these seemingly logical approaches.

The associated risk is finding a spurious effect. That is, the analysis picks 
up some effect that is particular to the data set that is not part of the process 
of interest. In a sense, noise is being detected and modeled as if it were part 

1.4 Approaches to Scientific Investigations  9
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of the process. One has no way to know, based on a given data set of limited 
size and scope, if a particular effect is spurious or real. This is the risk that 
people tend to forget and misunderstand. They want to be sure they “did not 
miss anything” and while doing so they, instead, find results that are spurious. 
Many things can be done to lessen this nasty issue, but too many investiga-
tors continue to forge ahead, unaware of the risks involved. Spurious results 
arise with high probability when one has little subject matter theory, measured 
many variables (e.g., more than the sample size in extreme cases), had small 
sample size (e.g., 20 or 50), and many models (hundreds, thousands, or even 
millions of models). It takes some experience and maturity to really begin to 
understand these issues. Model selection theory can help pinpoint these prob-
lems but by then it may be too late to salvage the study.

1.5 Science Hypothesis Set Evolves

Expanding on the ideas of Chamberlin and Platt, we want the set of hypoth-
eses to evolve over time. That is, a team of researchers might start with a set 
of five hypotheses and find, after a careful empirical evaluation, that two of 
these were implausible to the point they could be dropped from further con-
sideration. Thus, the set is reduced to only three hypotheses that survived the 
evaluation. These three might then be further refined and elaborated upon and 
perhaps one new hypothesis introduced. Hence, a set of four hypotheses are 
now available for evaluation with new data. If the data set is fairly small, one 
must be careful not to discard more complex hypotheses, particularly if a much 
superior data set is expected for the next evaluation. Science can progress very 
rapidly as the evolving set of hypotheses are constantly challenged with new 
data (information) and careful evaluation.

The hypothesis set is made to evolve over months, years, and decades; the 
goal is to keep careful focus on the hypotheses that remain plausible and in 
the set. It is these hypotheses where improved understanding is sought. The 
strategy is to constantly make this set move along as knowledge is broadened 
and further understanding is gained. A priori reasoning and hard thinking are 
both critical and difficult. Scientists should not fail to acknowledge that there 
may be more than one process that would yield a particular outcome (Platt 
1964; Pigliucci 2002a). A real focus needs to be placed on the addition of very 
new and different hypotheses as the next set is defined. Ideally, the model set 
would be built to consider those outcomes using experiments or observational 
studies to separate the alternative hypotheses.

The hypothesis set might ideally evolve as national or international teams 
vie for understanding and knowledge. Peer pressure and national pride might 
help drive progress on some interesting problems by showing that one or more 
hypotheses are implausible, relative to the others in the set. By then other 
teams are already formulating new hypotheses, perhaps suggested by the prior 



results. Pressure to evolve the set might be within a laboratory, university, or 
an agency, where fast learning is important. Of course, one’s own personal 
scientific progress can be based on the notion of wanting the set to evolve so 
that rapid understanding may be achieved.

One must not be too eager to rule a particular hypothesis “implausible”; 
if there are seemingly valid reasons to retain it, then its retention may be 
appropriate. The decision to retain it must be based on the quantita-
tive evidence and ways to obtain such evidence are given in the following 
chapters. Sometimes a complex hypothesis is rejected largely because the 
data set is small and there is little information in the data. In this case, the 
hypothesis should probably be retained if the next data set is thought to be larger 
and more informative.

1.6 Null Hypothesis Testing

Soon after Chamberlin’s science strategy was published in 1890 and widely 
accepted, investigators found it easy to derive a single science hypothesis (H

a
) 

and then contrast it with a “null” hypothesis (H
0
),

Null hypothesis vs. Science hypothesis .0 aH H

This approach was prompted by emerging developments for  randomization 
and strict experiments in statistics in the early 1900s. “Student,” Fisher, 
 Neyman, Pearson, Wald, and many other pioneers in statistical theory devel-
oped methods for “testing” null hypotheses and this became the dominant 
analysis paradigm for perhaps seven to nine decades. The approach advocated 
by Fisher differed substantially from that of Neyman and Pearson and this 
led to a heated and protracted debate. Now, these approaches are combined in 
a fashion that would have greatly displeased the combatants involved. Such 
testing has come under increasingly harsh criticism since at least 1938, par-
ticularly when used for the analysis of data from observational studies. It now 
seems clear that this standard “testing” approach is of limited value as new 
approaches have several important advantages. Still, I find statistics depart-
ments around the world teaching primarily null hypothesis testing methods 
developed in the early 1900s. Worse yet perhaps is the continued focus on 
the myriad approaches to multiple comparison tests. This focus on relatively 
poor methods seems increasingly senseless and few people seem to have any 
idea why good statistics departments cannot do better in teaching current 
theory and application (e.g., likelihood, information-theoretic, and objective 
 Bayesian approaches).

It is important to realize that null hypothesis testing was not what 
Chamberlin wanted or advocated. We so often conclude, essentially, “We 
rejected the null hypothesis that was uninteresting or implausible in the 
first place, P < 0.05.” Chamberlin wanted an array of plausible hypotheses 

1.6 Null Hypothesis Testing  11
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derived and subjected to careful evaluation. We often fail to fault the trivial 
null hypotheses so often published in scientific journals. In most cases, the null 
hypothesis is hardly plausible and this makes the study vacuous from the outset. 
Chamberlin noted, “The vitality of the study quickly disappears when the object 
sought is a mere collection of dead, unmeaning facts.” For example,

H
0
: the population size of species X is the same in urban and rural areas,

H
0
: species diversity does not change through geologic time,

H
0
: the population correlation between variables X and Y is exactly 0, and

H
0
: bears do not go in the woods.

Surely, these null hypotheses are false on simple a priori grounds – data col-
lection and analysis are hardly needed in cases such as these. A hundred 
thousand such null hypothesis tests have appeared in the journal Ecology 
in the recent past (over a 20-year period, Anderson et al. 2000). C. R. Rao 
(2004), the famous Indian statistician, recently said it well, “… in current 
practice of testing a null hypothesis, we are asking the wrong question and 
getting a confusing answer.”

We must encourage and reward hard thinking. There must be a premium 
placed on thinking, innovation, synthesis, and creativity; the computer will be 
the last to know! We need to ask more about how, when, and why, which are 
more interesting and potentially important, instead of such a focus on what, 
which is often only descriptive.

1.7 Evidence and Inferences

Scientific evidence lies in a triangular plane surrounded by philosophy, sta-
tistics, and subject matter science. Statistical inference is the foundation of 
modern scientific thinking. Many people are unaware of the extent that fun-
damental scientific thought processes have been influenced by philosophers. 
This may be especially true in life sciences.

Evidence is something less than proof! Evidence provides a foundation 
leading to understanding and this ideally leads to useful theory. Theory is a 
body of knowledge and understanding that has stood the test of considerable 
time and effort to disprove it. A theory makes predictions and has been found 
to be generally useful. Theory might eventually be accepted as a law.

Chamberlin (1890) asked, “What is the measure of probability on one side 
or the other.” Methodology to allow such probabilities took nearly 100 years 
to develop! The field of statistics became sidetracked and much of the twen-
tieth century was occupied with “testing” null hypotheses and resulting 
P-values that were often used as if they represented a strength of evidence. 
I believe that P-values reject or fail to reject dichotomies, and the often trivial 
null hypotheses that they represent are being replaced with formal methods 
to quantify and allow comprehension of the evidence for members of a set of 
alternative science hypotheses.



Examination of the differing probabilities shows a stark difference in mean-
ing. A traditional null hypothesis test is based on a summarization of the data 
into an appropriate test statistic T. The associated P-value is the probability of 
T being as large or larger, given the null hypothesis is true. The P-value is a 
so-called “tail probability” and has been criticized as assigning probability to 
data not collected. Shortening the definition slightly, the P-value is

Prob(observeddata or more extreme | null hypothesis).

Conditioning on the null hypothesis might seem odd as it is uncommon to 
believe in the null. If most null hypotheses seem implausible on a priori 
grounds, why condition on such a notion? I think one should condition on 
the data – that is why data are collected. Data serve as the arbitrator, the 
jury, the judge; conditioning on the null hypothesis is not intuitive. The 
relevant probabilities deal directly with the individual science hypotheses, 
given the data,

Prob( | data),H j for j R= …1 2, , , .

1.8 Hardening of Portland Cement

I will use a well-known problem involving cement hardening as an 
 example. This is a relatively simple problem that can be made to illustrate 
several important issues and I will use it in several chapters to follow. 
Woods et al. (1932:635–649) published the results of a small study of the 
hardening of Portland cement; Daniel and Wood (1971) and Burnham and 
Anderson (2002) provide further details on these data for the interested 
reader. Interest was in the calories of heat evolved per gram of cement 
after 180 days; this relates to hardening and was their response variable, 
denoted here as y. The objective of the study was twofold: (1) identify the 
important variables related to the response variable and (2) use these to 
predict the response variable. Four predictor (or explanatory) variables 
were of interest:

x
1
 = % calcium aluminate (3CaO . Al

2
O

3
)

x
2
 = % tricalcium silicate (3CaO . SiO

2
)

x
3
 = % tetracalcium alumino ferrite (4CaO . Al

2
O

3
 . Fe

2
O

3
)

x
4
 = % dicalcium silicate (2CaO . SiO

2
)

In arriving at a set of plausible hypotheses, several lines of reasoning could 
be followed. The first observation might be that cement is a mixture of ingre-
dients, thus hypotheses involving only a single variable might be deemed 
implausible. A more shrewd observation might be that x

2
 and x

4
 have very 

similar chemical make up,
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x
x

2 2

4

tricalciumsilicate (3CaO SiO
dicalciumsilicate (2CaO S

⋅
⋅

),
iiO2 ).

Also, the chemical composition of variables x
1
 and x

3
 also seem somewhat 

similar,

x
x

1 2 3

3

calciumaluminate (3CaO Al O
tetracalciumaluminoferrit

⋅ ),
ee (4CaO Al O Fe O2 3⋅ ⋅2 3 ).

This line of thinking might avoid hypotheses involving the pair of variables 
x

2
 and x

4
 and the pair x

1
 and x

3
 as they are so similar. We can further 

check these issues when we have data available (i.e., look at the sampling 
 correlations between these pairs of variables). The investigator might consider 
the  importance of an interaction such as x

1*x
2
 and add these as hypotheses. 

A skeptic (scientists should be skeptics) might ponder the notion that none 
of the four predictor variables had any merit; if this seems plausible, then it 
should be included in the hypothesis set. This would be the intercept only 
model (a null model of sorts) with two parameters: the mean b

0
 and the resid-

ual variance s2. Here this seems unlikely if we assume people in the 1930s 
had some basic notion of what they were doing in regard to cement making. 
Still, if this is deemed plausible, it should go in the set; if not, then it should be 
excluded. We will leave it just for this example (ordinarily I would deem this 
implausible in this case and omit it). In summary, we might have the following 
five hypotheses in the set (defined a priori; i.e., before data analysis):

H
1
 No variables

H
2
 x

1
 and x

2
H

3
 x

1
 and x

2
 and x

1*x
2

H
4
 x

3
 and x

4
H

5
 x

3
 and x

4
 and x

3*x
4

Data and simple models of these hypotheses will be given in Chap. 2.

1.9 What Does Science Try to Provide?

There are several common goals in scientific inquiry. Science is very broad 
and actually defies a simple but adequate definition. Science is a process lead-
ing to discovery, understanding, and solutions of well-defined questions about 
effects; some strategies are better than others. Some parts of science might be 
classified as:

● Evaluating the strength of evidence for alternative science hypotheses, a la 
Chamberlin

● Prediction of an outcome, given data, a model, estimates of model para-
meters, and specific values of the predictor variables



● Determination of model structure (e.g., concave or convex in a simple 
setting)

● Selection of “important” variables from a larger set (variable selection in 
regression or discriminate function analysis)

● Pattern recognition or smoothing (parsimony)

these matters in the material to follow.
There are some distinctions between science and technology that are 

sometimes worth noting. Estimates of effect size or predictions might often 
be best classed as technology. Science might best be thought of as discovery 
in an exciting sense; for example, providing a strength of evidence for funda-
mental alternatives. Classification of science vs. technology is rarely distinct 
and there are wide areas of overlap; still the distinction is often useful to keep 
in mind.

1.10 Remarks

Developing interesting hypotheses is an art but people can become adept at 
this with dedication and practice. Ford (2000:Chaps. 4 and 13) and Gotelli and 
Ellison (2004:Chap. 4) provide relevant reading. Cox (1990, 1995) reviews 
the relationships between hypothesizing and modeling. Krebs (2000) offers 
a relevant and easy-to-read review of hypotheses and models. Peirce (1955), 
Moore and Parker (1986), Abelson (1995), Pigliucci (2002b), and Cohen and 
Medley (2005) give valuable perspectives on hard thinking, statistical reason-
ing, and science principles. Careful reading of journal papers in one’s field can 
be enlightening as you can begin to understand how others thought about their 
science. However, only a minority of papers are exemplary in this important 
regard. Beyond reading one must think broadly about alternatives, draw from 
conversations with colleagues, attend conferences, and use new technologies 
(e.g., the Internet and e-mail) to forge science ideas.

Mead (1988) and Manly (1992) provide methods for the design and analy-
sis of experimental data. Cook and Campbell (1979) and Shadish et al. (2002) 
deal with quasiexperiments, both design and analysis, in readable books. 
Observational studies are well covered by Rosenbaum (2002). There are many 
dozens of good books on experimentation and applied statistics. I will let the 
readers make their own choices; however, I find that Resetarites and Bernardo 
(1998) and Williams et al. (2002) make many deeper issues clear with examples.

It might seem surprising but during Chamberlin’s time there was an effort to 
minimize theorizing; this dead end was an attempt to reform “ruling theory” that 
was in place then. Chamberlin believed his strategy “promotes thoroughness 
and suggests line of inquiry that might otherwise be overlooked.” Additional 
insights on Chamberlin’s method are found in Elliott and Brook (2007).
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Many science problems arise where the objective is a structural issue (see 
Blanckenhorn et al. 2004 for an evolutionary issue that focuses on linearity 
vs. nonlinearity).

Rao’s (2004) short comment is full of interesting insights and Krebs (2000) 
provides a readable treatment concerning hypothesizing. Forsche’s (1963) one-
page paper in Science is delightful reading. More troublesome is O’Connor’s 
(2000) paper on lack of progress in ecology compared to other areas of biology 
(also see the interesting follow-up by Swihart et al. 2002). However, see Mauer 
(1999) for evidence of substantial progress.

Kendall and Gould (2002) respond to the criticism that statistics departments 
often provide poor course material for people in the life sciences. Their excel-
lent point is that biologists often arrive for statistics courses with a poor science 
background! Biology students arrive without a grounding in experimentation, 
causation, confounding, and other subjects, making statistical concepts seem out 
of context (because students often lack that context). Biology students should 
have a better grounding in the history of science in general and in their field in 
particular. Science philosophy is equally fundamental in university courses.

Anderson et al. (2001a) provide an overview of the issue of spurious effects 
and how to minimize this risk. Hobbs and Hilborn (2006) examine alternatives 
to null hypothesis testing in a readable paper aimed at  ecologists. Their Fig. 1 
is interesting to compare with the results shown by Anderson et al. (2000).

O’Connor (2000) states: “Moreover, many of the critical breakthroughs in 
molecular biology have come from experiments that discriminate between 
alternative outcomes. Critically, ecology seems to have substituted the state-
ment of what will be observed as the hypothesis.”

Freedman (1983) used MC simulation methods and stepwise regression to 
illustrate the difficulties faced when one has (1) little or no theory, (2) a large 
number of “models” (as there is little theory leading to a priori hypotheses, 
and (3) small sample size. In such cases, inference is very risky and a plethora 
of spurious results are found (also see Flack and Chang 1987, Freedman 1983, 
and Rencher and Pun 1980). Freedman demonstrated this phenomenon by a 
large matrix of uncorrelated random numbers and stepwise regression. While 
there were clearly no relationships underlying the data, numerous “significant 
findings” resulted. This has become known as Freedman’s paradox. Unfortu-
nately, many studies in the life sciences are done under these conditions and 
find their way into the published literature.

The paper by Goodman and Royall (1988) contains many philosophical 
insights and are well worth careful reading. Recently, Keppie (2006:244) pro-
vides fresh perspectives, including mention of the “…temptation to advocate 
value beyond evidence.” Hilborn and Mangle (1997) and Kuhn (1970) contain 
valuable insights.

There are many good books on science philosophy; I enjoy Horner and 
Westacott (2000), and Ford’s (2000) book is a standard one. Papers by Platt 
(1964) and Popper (1972) are highly recommended. Taper and Lele (2004) 
summarize several philosophies of interest. Platt (1964) is quoted by Pigliucci 



(2002:92) saying, “Scientists become method oriented rather than problem 
oriented. Stop doing experiments for a while and think.”

1.11 Exercises

The following exercises are provided to strengthen the understanding of some 
of the conceptual issues in this introductory chapter. These questions can 
be addressed individually but I find it more effective and fun to tackle these 
issues in small groups of people. This assumes everyone in the group has read 
the paper and is ready to think hard about the issues.

1. Obtain a good scientific journal in your subdiscipline of interest and 
look for an article where the investigators used a confirmatory approach 

 following questions:

a. Were only two alternatives hypothesized? Or, were there more alterna-
tives hypothesized?

b. In any case, do you consider these to be plausible?
c. Did the investigators justify their set of alternative science hypotheses 

or was there a rush to models?
d. Was there a clear statement of the a priori hypotheses in the set?
e. Did the authors entertain all possible models? What problems might this 

cause (advanced question)?
f. Did the authors clearly present the body of evidence to the reader?
g. Did they then offer some qualification (value judgment) of the evidence 

to aid in interpretation?
h. What alternative hypotheses would you have added? Before data collec-

tion and analysis? After data analysis (post hoc)?
i. As an associate editor, what would be your basis for rejection of this 

paper (had this been a submitted manuscript)?
j. As a reviewer, what constructive advice would you have given the 

authors of the submitted manuscript?
k. What other issues might be considered in your critique?

2. Using the same scientific journal as above, find a paper in your subdisci-
pline of interest that used null hypothesis testing as the basis for the results. 
Consider the following questions:

a. Isolate the null hypotheses tested (these are often not stated explicitly). 
Can you offer your judgment as to the plausibility of these null hypoth-
eses? That is, before data analysis or reading the Results section of the 
paper, were the null hypotheses to be tested plausible? Interesting?

b. Were estimates of effect size given with a measure of their precision? If 
not, can you explain this omission?

1.11  Exercises  17
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c. Define exactly what is meant by P-value. Did the author use this defini-
tion correctly or (possibly inadvertently) redefine it in an ad hoc man-
ner? How are data involved in P-value? Is P-value an estimate?

d. Which hypothesis is being formally “tested”? Is it H
0
 or H

a
? Why?

e. Is P-value a measure of strength of evidence?
f. Do the authors provide qualitative statements concerning “signifi-

cance”? Do they differentiate statistical vs. biological significance?
g. Was a causal result implied or claimed? Do you feel this was justified? 

How? Why?
h. In what sense were the units (e.g., experimental, observational, sample) 

taken from a well-defined sample from a population studied? This issue 
relates to the proper scope of inference. A very large number of similar 
questions could be asked here. What other issues might you consider?

3. Using a journal of choice in your field of interest, find a paper that provides 
the results of an experiment. Read it carefully and consider the following 
questions:

a. Were there clearly defined treatment and control groups?
b. How much replication was used? Was the sample size given?
c. Were the experimental units randomly assigned to treatment vs. control 

groups? How, specifically?
d. Did the authors imply a causal result? Does this seem justified to you?
e. Did the authors provide an estimate of the size of the effect caused by 

the treatment? And some measure of its precision?
f. How could the experiment been better (list 3–4 ways)?
g. Assuming that the answer to at least one of the questions a, b, or c was 

negative, what are the consequences? Elaborate. What was lost? What 
could have been done differently? Is the result still of interest, in your 
opinion?

4. Cohen (1966, 1967, 1968) used a combination of imagination and modeling 
leading to several science hypotheses about optimizing reproduction of a 
desert plant species in randomly varying environments. This set of papers 
triggered perhaps dozens of field experiments to gain further insights into 
this issue. This set of papers would make a great brown bag discussion for 
those interested in developing sophisticated alternative hypotheses.



2
Data and Models

Ludwig Eduard Boltzmann (1844–1906) was one of the most famous  scientists 
of his time and he made incredible contributions in theoretical physics. He 
received his doctorate in 1866; most of his work was done in Austria, but he 
spent some years in Germany. He became full professor of mathematical physics 
at the University of Graz, Austria, at the age of 25. His mathematical expression 
for entropy was of fundamental importance throughout many areas of science. 
The negative of Boltzmann’s entropy is a measure of “information” derived over 
half a century later by Kullback and Leibler. J. Bronowski wrote that Boltzmann 
was “an irascible, extraordinary man, an early follower of Darwin, quarrelsome 
and delightful, and everything that a human should be.” Several books chronicle 
the life of this great science figure, including Cohen and Thirring (1973) and 
Broda (1983) and his collected technical papers appear in Hasenöhrl (1909).

2.1 Data

Data should be taken from an appropriate probabilistic sampling protocol or 
from a valid experimental design, which also involves a probabilistic compo-
nent. These are important steps leading to a degree of scientific rigor. Such 
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data often arise from probabilistic sampling of some kind and are said to be 
“representative.” Outside of this desirable framework lie populations where 
such ideal sampling is largely unfeasible. For example, human populations 
are often composed of members that are heterogeneous to sampling. Thus, by 
definition, it is impossible to draw a random sample and such heterogeneity 
can lead to negative biases in estimators of population size. Estimators that are 
robust to such heterogeneity have been developed and these approaches have 
proven to be useful, but the standard error is often large. In general, care must 
be exercised to either achieve reasonably representative samples or derive 
models and estimators that can provide useful inferences from (the sometimes 
unavoidable) nonrandom sampling.

Unfortunately, it has been common in some subdisciplines to take data via 
what has been called “convenience sampling,” that is, data are taken from 
roads or sidewalks or in other “convenient” ways (e.g., near a parking lot or 
under the shade of a tree). I believe these approaches violate accepted science 
practice; certainly there is not a valid basis for an inductive inference. All that 
might be validly said is something about only the sample itself. For example, 
a conclusion might be “I counted the number of birds I saw along 12 roads in 
western Ohio and 10% were raptors. Here, nothing can be said about birds 
in western Ohio in general or about the percent of the birds that were raptors 
as an inductive inference to some well-defined population. This situation 

of activity never seems to lead to a new theory or an important discovery. We 
know a great deal about proper data collection. There are dozens of books 
on sampling protocols and experimental designs. There is little excuse for 
 getting this issue seriously wrong.

Another common error is the use of the so-called index values as the 
response variable. Under this approach, the response variable of interest is 
not recorded, rather it is replaced by a crude index value. Such index  values 
are usually a raw count or some sort of averaging of such counts. These num-
bers are recorded and “analyzed.” Much has been written about the use of 
index values and I think the evidence is conclusive that they represent an 
amateur, unthinking approach and is not scientific. The word “data” has the 
 connotation that there is recoverable information in the data; index values are 
not data, they are just numbers. None of the procedures in this primer claim to 
make sense out of nonsense. If the data have not been taken with care, using 
proper procedures, then the so-called findings will likely be only an assort-
ment of uncertainty and disinformation. DeLury (1947), a famous fisheries 
biologist, asked, “Is an untrustworthy estimate better than none?” Meaningful 
data of sufficient quantity are the grist of scientific bread.

There are two conceptual aspects. First, is the study sound so that an induc-
tive inference can be justified? Second, are the data analysis methods sound? 
The first is not a data analysis issue, rather this question asks if the science of 
the matter is reasonably well in place and if the data have been collected in a 
reasonable manner. The second relies on adequate modeling and on objective 

is little different than a child who reports, “I saw some squirrels” – this sort 



approaches to model selection (Chap. 3). We must try to guard against rushing 
too quickly to data analysis, when the subject matter science is still underde-
veloped or if the data are seriously compromised. The science question should 
be carefully thought out and plausible hypotheses derived. These matters rep-
resent hard work and must typically take thought over a period of many weeks 
or months. The success, in the end, will rest on these science issues being 
well done – we must not think the analysis will somehow make up for serious 
inadequacies during these initial steps. These issues will never live up to the 
ideal; thus, the concept of evolving sets of hypotheses often prove very useful 
and lead to an effective strategy for fast learning.

In serious work, data are carefully collected during a pilot study. The pilot 
study allows investigators the chance to work out the bugs in field or labora-
tory application and attempt some degree of optimization of the sampling 
protocol or experimental design to be used. Required sample sizes are esti-
mated, stratification is considered, etc. Engineers routinely conduct feasibil-
ity studies before they begin a project and life scientists should take a similar 
approach before the actual data collection begins. If resources are found to be 
inadequate for the task, it is often better to wait until the needed resources are 
assembled before beginning the project. Such waiting allows time for addi-
tional planning and refinement while gathering the resources needed.

If data are collected in an appropriate manner, then there is information in 
the sample data about the process or system under study. In simple cases with 
continuous data, some of this information can be retrieved and understood using 
graphs (e.g., X vs. Y), plots, histograms, or elementary descriptive statistics (e.g., 
estimated means and standard deviations). However, in nearly all interesting 
cases, a mathematical model is required to retrieve the information in the data 
and allow some understanding of the system. Scientists often want to make a 
formal inductive inference; that is, the process of going from the sample data to 
an inference about the population from which the sample was drawn. Deductive 
statements can usually be classed as either valid or invalid. However, inductive 
statements (inferences) are not made with certainty and inferential statements 
can range from very weak to very strong. Inductive inference concerns weighing 
evidence and judging likelihood, not proof itself. Statistical science has allowed 
the inductive process more rigor and the ability to address a deeper level of com-
plexity. Nearly all questions in life sciences seem to be inductive.

Valid inductive inference is another example of rigor in science but it rests on 

has had a long history in the sciences. The inference comes from a model that 
approximates the system or process of interest. In some sense we can think of 
a properly selected model as the inference (at least for inferences made from a 
single model).

Investigators should continue to think and rethink the collection of working 
hypotheses as the data are collected. This is a place to delete a hypothesis in 
the set because of field evidence or because it seems unfeasible to measure 
variables that are central to a particular hypothesis. This is a time to add new 
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certain important requirements. This leads to “model based inference” and this 



22  2. Data and Models

hypotheses or refine existing hypotheses. At any given time, our knowledge is 
based on hypotheses that have shown their competitive fitness by surviving to 
this point; a “survival of the fittest” as hypotheses struggle for continued exist-
ence. There is a competitive struggle that eliminates hypotheses that are unfit 
(found to be implausible, based on one or more data sets). For example, per-
haps elevation is not important to a response variable, as first thought, rather it 
is actually temperature (which is negatively correlated with elevation). Should 
some interaction terms be considered due to observations in the laboratory? 
Does it seem that two variables might be very negatively correlated, suggest-
ing care will be needed to understand this? The focus should remain on the 
candidate set of science hypotheses; ideally, these should be fixed once the 
analysis begins. Following these activities, some tentative hypotheses might 
be added post hoc, but such results must be treated more carefully.

Some common sense and art are involved in the concept of an evolving set 
of hypotheses. Sometimes it might be premature to delete some hypotheses if 
the data set is small; in such cases perhaps judgment should be reserved until 
another data set is available. In analyzing data from small samples, one must 
guard against dismissing some larger models with more structure because a 
new and larger data set might be able to support the additional structure. Such 
judgments can be guided by methods given in Chap. 4.

2.1.1 Hardening of Portland Cement Data

Our first example will be the data on four explanatory variables thought to be 
related to cement hardening. The meager (n = 13) data are shown in Table 2.1.

TABLE 2.1. Cement hardening data from Woods et al. (1932). Four variables (in 
percent), x

1
 = calcium aluminate (3CaO.Al

2
O

3
), x

2
 = tricalcium silicate (3CaO.SiO

2
), 

x
3
 = tetracalcium alumino ferrite (4CaO.Al

2
O

3
.Fe

2
O

3
), x

4
 = dicalcium silicate (2CaO.

SiO
2
), are given with the response variable, y = calories of heat evolved per gram of 

cement after 180 days of hardening.

x
1
 x

2
 x

3
 x

4
 Y

 7 26 6 60 78.5
 1 29 15 52 74.3
 11 56 8 20 104.3
 11 31 8 47 87.6
 7 52 6 33 95.9
 11 55 9 22 109.2
 3 71 17 6 102.7
 1 31 22 44 72.5
 2 54 18 22 93.1
 21 47 4 26 115.9
 1 40 23 34 83.8
 11 66 9 12 113.3
 10 68 8 12 109.4



In this case, the sample size is 13 and this must be considered to be gener-
ally inadequate. One is taught in STAT101 that a sample of 25–30 is often 
required just to estimate a simple mean from a sample of a population that 
is approximately normally distributed. Kutner et al. (2004) recommend 7–10 
observations for each predictor variable. Thus, we have to be realistic when 
our interest lies in the estimation of more complicated parameters such as 
finite rates of population change (λ

i
), or an enzyme inhibition rate (f), or some 

hazard rate (h
(t)

). The cement hardening process is likely to be somewhat 
deterministic with a fairly weak stochastic component. Thus, even with the 
small sample available, perhaps some interesting insights can be found in this 
example. Note that both the response variable and the predictor variables are 
continuous; the response variable is unbounded while the predictor variables 
are percentages and bounded between 0 and 100.

The basis for a valid inductive inference in this example rests on the various 
chemical compounds being reasonably uniform. That is, dicalcium silicate 
(2CaO·SiO

2
) is the “same” from place to place. Thus, random samples would 

produce little variation in this variable or, for that matter, the other three vari-
ables. This is an important step or generalized inference from these data will 
be compromised.

Large sample size conveys many important, but sometimes subtle, advan-
tages in the statistical sciences. Large sample size carries more information 
and such information is a major focus of this primer. Investigators should 
make every attempt to garner the resources to allow an adequate sample size to be 
realized. There is a large literature on the establishment of sample size, given 
either some background data from a small pilot survey or outright considered 
guesses about the system to be studied (see Eng 2004). Monte Carlo simula-
tion studies provide another means to predict the sample size for a particular 
application (see Muthen and Muthen 2002).

2.1.2 Bovine TB Transmission in Ferrets

The second example is the data on disease transmission in ferrets in New 
Zealand (Table 2.2). While the sample size here is moderate (n = 319), 
estimates of the per year force of infection (λ̂  ) varies by a factor of 88; thus 
it seems realistic that the data might be adequate to reveal some interesting 
insights. High variances seem to be the rule in many areas of life sciences, 
making data analysis challenging and making inferences somewhat tentative 
in many cases because of the uncertainty. Increased sample size can often help 
combat these issues.

These data consist of counts and are therefore of a substantially different 
type than the data in the earlier example. Ferrets were caught in baited traps 
systematically placed in selected areas (based on prior information from wild-
life surveys or from tuberculin testing of cattle herds). Traps were checked 
daily over a 5–10-day sampling period. We might ask if the data came from 
a strict probabilistic sampling frame – no, probably not. Animals willingly 

2.1 Data  23



24  2. Data and Models

or unwillingly get trapped and there is surely heterogeneity in individual 
 trapability. Are the sample data “representative” to allow a valid inductive 
inference to the population of interest? I suspect so; however, the authors 
should ideally make this argument.

2.1.3 What Constitutes a “Data Set”?

There is sometimes confusion as to what represents a “data set” in the litera-
ture (e.g., Stephens et al. 2005). There are few restrictions on a data set as long 
as its components have information on the same issue of interest.

Questions concerning the extent of a data set can often be answered by 
examination of the response variable. In a treatment-control experimental 
 setting, the response variable might be a concentration level of a compound 
in a blood sample; thus, one data set because both data sets have information 
on the same issue of interest. However, if different response variables are 
used (different issues of interest) across some categories, then these constitute 
 different data sets.

I will provide some examples that might help people understand this matter. 
Consider a simple treatment and control study; one might think there are two 
“data sets” here, one for the control and another for treatment. Not so – this 
is to be treated as a single data set. Consider a discriminant function analysis 
with seven discriminator variables with the analysis being to find out which 
subset of the seven might serve in a parsimonious model for inference about 
the discrimination. Here the “data set” consists of the binary response variable 
and the seven discriminator variables. Of course, given several models in the 
set, only one (at most, assuming a global model) will have all seven variables 

TABLE 2.2. The data on infection and the estimated force of infection (l̂ ) of Mycobacte-
rium bovis infection using modified exponential models (from Caley and Hone (2002).

Site Gender No. examined No. infected l̂ / year

Lake Ohau M 57 3 0.19
 F 54 2 0.09
 Total 111 5 0.14
Scargill Valley M 37 5 1.40
 F 39 8 0.65
 Total 76 13 1.02
Cape Palliser M 15 11 2.69
 F 23 10 1.24
 Total 38 21 1.97
Castlepoint M 27 21 7.90
 F 21 10 3.65
 Total 48 31 5.77
Awatere Valley M 24 16 4.64
 F 22 12 2.15
 Total 46 28 3.40



in it. Other models will have fewer than seven variables, but this does not 
invalidate the notion of the “data set” (see Lukacs et al. 2007).

2.2 Models

Quantification is nearly essential in the empirical sciences where stochastic-
ity is substantial, there are several different sources of variability (factors), or 
there is some degree of complexity. This complexity might arise from multiple 
variables, interactions between and among variables, high variability, nonlin-
earities (e.g., threshold effects, asymptotes), and a host of other issues. Unless 
one is engaged in simple descriptive studies, they must deal with mathemati-

We should not think of this requirement as negative; instead, quantification 
allows both rigor and the ability to better understand far deeper science issues. 
Soule (1987:179) offered, “Models are tools for thinkers, not crutches for the 
thoughtless.” Box (1978:436) records that R. A. Fisher felt some statisticians 
were trained strictly mathematically and that many of them seem to have no 
experience of the valuable process known as “stopping to think.”

We are not trying to model the data; instead, we are trying to model the 
information in the data. The goal is to recover the information that applies more 
generally to the process, not just to the particular data set. If we were merely try-
ing to model the data well, we could fit high order Fourier series terms or poly-
nomial terms until the fit is perfect. Data contain both information and noise; 
fitting the data perfectly would include modeling the noise and this is counter 
to our science objective. Overfitting is a poor strategy and it goes against the 
notion of parsimony, a subject to be addressed shortly.  Models are central to 
science as they allow a rigorous treatment and integration of:

● Science hypotheses (the all important set {H
i
})

● Data (e.g., continuous or discrete or categorical),
● Statistical assumptions (e.g., Weibull errors, linearity)
● Estimates of unknown model parameters (q) and their covariance matrix Σ

Models are only approximations to full reality. Box (1979) said “… all mod-
els are wrong, some are useful.” We should think of the value of alternative 
models as better or worse, instead of right or wrong. While a driver’s license 
is “valid” or not, models do not share this property. The strength of evidence 
for competing models is very much central to both science and this textbook.

Models must be derived to carefully represent each of the science hypoth-
eses. These models are always to be probability distributions. The idea is that 
each hypothesis has a model that fully represents it; then we can think of 
hypothesis i and model i as almost synonyms. That is, the goal is to have a 
one-to-one mapping between the ith hypothesis and the ith model:

H g H g H g1 1 2 2 R R⇔ ⇔ ⇔, ,..., .
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People in the life sciences are often poorly trained in modeling techniques; 
this might be a place where the investigator will want to seek advice or 
 collaboration with a person in the statistical sciences.

Then the science question asks, “What is the support or empirical evidence 
for the ith hypothesis (via its corresponding model), relative to others in the set. 
This leads us to the “model selection” problem. So, finally the issue becomes 
the evidence for each of the hypotheses (and their associated models), given 
the data. Of course, hypotheses and their corresponding models not in the set 
are out of consideration until, perhaps, they are added at a latter time as the 
set evolves. So, now we can ask if hypothesis C is 10 times as likely as hypoth-
esis A? Is the support for hypotheses A and B nearly equal? Is hypothesis A 
655 times more likely than hypothesis D? If so, would we take this as very 
strong evidence? These are the types of science issues that can be answered 

Often inferences are based on the best hypothesis in the set. While “best” 
is not defined until Chap. 3, standard analysis often tries to determine or 
 estimate which of the hypothesis is the best, based on the data. Inference is 

inference. Assuming models have been derived to represent the hypotheses 
in the set, this is the so-called model selection problem. A “good” model is 
able to  properly separate information in the data from “noise” or noninfor-
mation. Finding such a model is a generic goal of model selection. Now I 
begin to use the concept that a science hypothesis and its model are (ideally) 
 synonymous.

Many standard approaches to model selection have been developed, 
including adjusted R2; Mallows’ C

p
; step-up, step-back, and stepwise regres-

sion, to name a few. As one might expect, the early approaches are rarely 
the best ones; what is not expected is that the early methods are still being 
taught in mainstream statistics classes (at least for nonstatistics majors) 
and readily available in the most well-known statistical computing pack-
ages. Most selection approaches (e.g., stepwise regression) are based on 
some sort of theory but they are often not based on any underlying theory 
concerning what is a good fitted model, given the data; hence, no rigorous 
criterion of “best” model. The methods do not have a proper underlying 
theory, just a semblance of semirelevant theory. The model (or hypothesis) 
selection issue is central to data analysis: “Which hypothesis/model should 
I use for the analysis of a particular data set?” and “How can this be best 
done?”

Approaches are needed to provide quantitative evidence for the hypotheses 
in the set. As information can be quantified in various ways, approaches have 
been recently developed to address the model selection problem as well as an 
empirical ranking of the hypotheses in the set, through the associated models. 
Here it starts to become clear that the modeling step is nearly as important as 
the hypothesizing step in empirical science.

easily using the existing theory for model based inference.

then based on this hypothesis, via its corresponding model – model based 



2.2.1 True Models (An Oxymoron)

Models are never “true”; models do not reflect reality in its entirety. In the real 
world with real data, there is no valid concept of a model that is exactly true, rep-
resenting full reality. Models are approximations by definition if nothing else. If 
we had a true model, we would still have to estimate its many parameters and 
try to interpret the complex result. Any such true model would be quite com-
plicated and involve a great many parameters. Thus, an extraordinarily large 
sample size would be required, unless it is also assumed that the true model 
somehow came with its true parameters known to the investigator! I find it hard 
to imagine a situation where the researcher knew the exact  functional form of 
the true model and all of its parameter values! Some scientists might take the 
view that any such “true” model must be considered infinite dimensioned; per-
haps, this is a useful concept but it is just another way of saying there is no valid 
notion of a true model. Recently I have seen the term “inexact models” used; I 
believe all models are approximations and, therefore, “inexact.”

Computer simulation studies often use Monte Carlo methods to simulate 
“pseudodata” from a mathematical model, with parameters known or given. 
Here the exact form of the model and its parameters are known – this is prop-
erly termed a generating model. In this computer sense, the “true model” and 
its parameters are known. A common mistake in the statistical literature has 
been to provide many replicate pseudodata sets from a generating model, 
include this model in the set, and then proceed to ask questions about which 
model selection method most often selects the generating model. Such  circular 
results are of little use in the real world where data arise from complex (and 
only partially observable) reality, not from a simple parametric model. Real 
data do not come from models and selection criteria that are designed to select 
a so-called true model are misguided.

Going further, there is the notion of “consistency” in model selection. Here, 
some procedures are classed as being “consistent,” meaning that as sample 
size increases (often by three to five orders of magnitude) the probability of 
selecting the “true” model approaches 1, given the true model is in the set (see 
Appendix D). This concept seems strained if either the true model is not in 
the set or if the “true” model is infinite dimensional. In reality, the model set 
changes as sample size is increased by orders of magnitude and this makes the 
notion of consistency strained.

The concept of truth and the false concept of a true model are deep and 
surprisingly important. Often, in the literature, one sees the words correct 
model or simply the model as if to be vague as to the exact meaning intended. 
Bayesians seem to say little about the subject, even as to the exact meaning 
of the prior probabilities on models. Consider the simple model of population 
size (n) at time t

n n st t t+ = ⋅1 , ,
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where s
t
 is the survival probability during the interval from t to t + 1. This is 

a “correct” model in the sense that it is algebraically and deterministically 
 correct; however, it is not an exact representation or model of truth. This 
model is not explanatory; it is definitional (it is a tautology as it implies that 
s

t
 = n

t+1
/n

t
). For example, from the theory of natural selection, the survival 

probability differs among the n animals. Perhaps the model above could be 
improved if average population survival probability was a random variable 
from a beta distribution; still this is far from modeling full reality or truth, 
even in this very simple setting. Individual variation in survival could be 
caused by biotic and abiotic variables in the environment. Thus, a more exact 
model of full reality would have, at the very least, the survival of each indi-
vidual as a nonlinear function of a large number of environmental variables 
and their interaction terms. Even in this simple case, it is surely clear that one 
cannot expect any mathematical model to represent full reality – there are no 
true models in life sciences. We will take a set of approximating models g

i
, 

without pretending that one represents full reality and is therefore “true.”
Approximating models share some features with maps. Maps fail to cap-

ture every detail on the landscape, regardless of their scale. Both data and 
maps contain errors of omission; this seems unavoidable. Errors of commis-
sion should, in principle, be avoided. A map should not show a road or stream 
that does not exist, while we should not find an effect in the data that does not 
exist (a spurious effect). All maps are wrong, but some are useful, at least in 
certain contexts. A map of Switzerland is of limited use in the United States, 
but might be very useful in Switzerland. Of course, there is no true map.

2.2.2 The Concept of Model Parameters

In many cases, parameters are real entities. For example, the size of a popula-
tion of parrots in an aviary can be determined by a census at a given point in 
time and this count is a parameter (N, the population size). If we have a time 
series of censuses of this population, the parameters are N

t
, where t is time. 

However, parameters are often human constructs and are important in under-
standing systems or processes. The probability of death in a fish population in 
a large lake is unobservable and not really a parameter in some sense. Instead, 
we, as investigators, define an arbitrary time interval (such as a month or a 
year) and derive models that include the probability of death as a parameter, 
and proceed to estimate this. It is a model parameter, but is it a parameter inti-
mately associated with the population of fish? Perhaps not? Linear regression 
models are merely first-order approximations to often complex processes of 
interest. Any particular b (regression “slope”) is unlikely to be a parameter 
associated with the process itself. Similarly, l, the finite rate of population 
change, is hardly a parameter that can be directly observed or measured, but it 
serves as a very useful construct in population ecology. Scientific understand-
ing can often be aided by the notion of parameters, whether real or just useful 
or directly observed or unobservable.



In fact, thinking that truth is parameterized is itself a type of (artificial) 

when used to represent reality or concepts or hypotheses. Mathematics is a 
human construct and does not exist in the same sense as reality. Sometimes 
it is useful to think of f as full reality and let it have (conceptually) an infinite 
number of parameters. This “crutch” of infinite dimensionality at least keeps 
the concept of reality even though it is in some unattainable perspective. Thus, 
f(x) represents full truth, and might be conceptually based on a very large 
number of parameters (of a type we have not even properly conceived) that 
gives rise to a set of data x.

Akaike noted that the success of the analysis of real data depends essen-
tially on the choice of the basic model. Successful use of statistical methods 
depends on the integration of subject-matter science into the statistical for-
mulation. This demands a significant amount of effort for each new problem. 
This is where the science of the issue enters consideration: a major step.

2.2.3 Parameter Estimation

It is a fitted model that is the basis for statistical inference; hence, parameter 
estimation is very important. If the sample size is small, the parameter esti-
mates will typically have large variances and wide confidence intervals and 
might be so uncertain as to be of little use. Large sample size conveys many 
important advantages in terms of parameter estimates and model selection.

Given a model and relevant data, procedures were developed nearly a 
century ago to estimate model parameters. Three common approaches have 
emerged for general parameter estimation: least squares, LS (or “regres-
sion”), maximum likelihood, ML, and Bayesian methods. Least squares has 
been popular; however, its domain is primarily the class of the so-called gen-
eral linear models (e.g., regression and ANOVA). I will say little about this 
approach. The much more general approach is Fisher’s maximum likelihood 
(see Appendix A). The notion of ML is compelling – given a model and data, 
taking as the estimate the value of the parameter that is “most likely.” Hence 
the name maximum likelihood estimate (MLE); it is the value of the param-
eter that is most likely, given the data and model.

As sample size increases (asymptotically), MLEs enjoy several proper-
ties (within certain regularity conditions): unbiased, minimum variance, 
and normally distributed. In addition, if one takes an MLE and transforms 
it to another estimate, it too is an MLE (the “invariance” property). These 
are important properties and explain partially why likelihood is so central to 
 statistical thinking.

An important component of data analysis relates to the fit of a model to 
the data. These activities focus primarily on a global model and include such 
things as a formal goodness-of-fit test, adjusted R2 value, residual analyses, 
and checking for overdispersion in count data. If the global model is judged to 
be “poor,” then further data analysis will likely be compromised.
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A person new to statistical thinking often finds it difficult to relate data, 
model, and model parameters that must be estimated. These are hard concepts 
to understand and the concepts are wound into the issue of parsimony. Let the 
data be fixed and then realize the information in the data is also fixed, then 
some of this information is “expended” each time a parameter is estimated. 
Thus, the data will only “support” a certain number of estimates, as this limit 
is exceeded parameter estimates become either very uncertain (e.g., large 
standard errors) or reach the point where they are not estimable.

2.2.4 Principle of Parsimony

A model has structural and residual components. Parsimony relates to under-
and overfitting models. Examination of the graph in Fig. 2.1 shows that an 
underfitted model (the left side of Fig. 2.1) risks not only high bias, but also 
the illusion of high precision (“a highly precise wrong answer”). Underfitting 
relates to the case where some model structure is erroneously included in the 
residuals. Of course the investigator does not necessarily know the situation 
she is in. Overfitted models are also to be avoided because further examina-
tion of the graph suggests that overfitting (the right side of Fig. 2.1) risks 
including too many parameters (that need to be estimated) and a high level 
of uncertainty. Overfitting relates to the case where some residual variation 
is included as if it were structural. This may seem like the lesser of two evils; 

FIG. 2.1. The Principle of Parsimony is illustrated here as a function of the number of esti-
mable parameters (K) in a model. There are two processes here: first, bias (or squared bias) 
declines as K increases and, second, the variance (uncertainty) increases as K increases. 
These concepts suggest a trade-off whereby the effects of underfitting and overfitting are 
well balanced.
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however, precision is lessened, often substantially. Overfitting implies that 
some noise (noninformation) has been included in the structural part of the 
model and the effects are not part of the actual process under study (i.e., 
spurious). Edwards (2001:129) says it in an interesting way,

“…too few parameters and the model will be so unrealistic as to make 
prediction unreliable, but too many parameters and the model will be so 
specific to the particular data set so to make prediction unreliable.”

Clearly, one wants a proper trade-off between squared bias vs. variance or, 
said another way, between under- and overfitting. Either extreme will result in 
unreliable prediction. Residuals might be pure noise or information that can-
not be decoded yet. The concepts of under- and overfitting depend on sample 
size; as sample size increases, additional information is available in the data, 
and smaller effects can be identified. Thus, residual variation can be under-
stood and this transfers to the structural part of the model. Parsimony cannot 
be judged against any notion of a true model.

The concept of parsimony in modeling and estimation has been an impor-
tant statistical principle for several decades. The general notion of parsimony 
has a much longer history in science and engineering and is closely related to 
Occam’s razor. Parsimony is a fundamental issue in science and it is easy to 
overlook its depth and importance. Occam’s statement has a literal translation 
from Latin, but is commonly referred to as “Occam’s razor” meaning roughly 
to “shave away all that is not needed.”

Parsimony appears to be a simple notion; however, it is easy to underrate 
its importance and its centrality in modeling, model selection, and statisti-
cal inference. Parsimony can be viewed as a trade-off between squared bias 
and variance (variance is a squared quantity, thus bias is squared for some 
comparability). Think of parsimony as a function of the number of estimable 
parameters in a model (denote this parameter count K). Given a fixed data 
set, two things happen as the number of model parameters to be estimated are 
increased (the standard example is a polynomial where additional parameters 
are introduced from a linear, to a quadratic, to a cubic, etc.). First, squared bias 
decreases as more parameters are added – this is good. Second, uncertainty 
(measured by the variance) increases as more parameters are added – this is 
not so good (Fig. 2.1).

The addition of more parameters reduces bias but, in doing so, increases the 
uncertainty. That is, for a given data set and its context, there is a “penalty” 
or “cost” for adding more parameters that must be estimated. It is the need 
to estimate parameters from the data that is the difficulty. If one could some-
how add parameters with known values, the situation would be simple: that 
is, consider only models with a large number of parameters. Unfortunately, 
parameters in these models are not known; reality is harsh in this regard and 
parameters must be estimated based on the information in the data. Each time 
a parameter is estimated, some information is “taken out” of the data, leaving 
less information available for the estimation of still more parameters.
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Parsimony exists near the small region where the lines cross – a trade-off 
(Fig. 2.1). Parsimony is a conceptual goal because neither bias nor variance 
is known to the investigator analyzing real data. There are many specific 
approaches to achieving parsimony but the important concept does not, by 
itself, lead to a specific criterion or recipe. Parsimony is a property of models 
(and their parameters that must be estimated) and the data.

There is a large literature admonishing investigators to avoid overfitting 
as this leads to spurious effects and imprecision. An equally large literature 
warns of underfitting because of bias and effects that are present, but missed 
during data analysis. Until somewhat recently, statistical science lacked an 
effective way to objectively judge the trade-off – how many are too many, 
how many are not enough. This has been largely resolved for a wide class 
of problems and is another example of the advantage (actually necessity) of 
quantification. Rigor in empirical science has a basis in quantification. All 
methods for model selection are linked in some manner with the principle 
of parsimony.

I have had biologists state that “A biologically reasonable model is ‘pun-
ished’ because it has too many unknown parameters.” Indeed, the estimation 
of parameters sucks information from the data to the point that little or no 
information is left for the estimation of still more parameters. It is easy, at 
first, to think that parameters come somehow “free” and that complex bio-
logical models can be developed with little or no data. Instead, the reality of 
the situation is that parameter uncertainty must harken back to the concept of 
parsimony. A partial solution to obtaining increased biological reality is to 
obtain a large sample size or improve study design (e.g., control some factors) 
as these allow parameter estimates with good precision and functional model 
forms to be evaluated.

In model selection, we are really asking which is the best model for a given 
sample size. Given a real process that has some realistic degree of complexity 
and high dimensionality, a high-dimensioned model might be selected as best 
if the sample was quite large. In the same situation, a small, low-dimensioned 
model might be expected if the sample was small. A very rough rule of thumb 
advises that at most n/10 parameters can be estimated; thus for observations 
on a sample of 30 individuals, one might be able to estimate about three 
parameters (e.g., b

0
, b

1
, and s2) in a regression model. This is often less than 

what biologists attempt with such small data sets.
Model selection resulting from the analysis of sparse data usually sug-

gest a simple model with few parameters. Such results should not be taken to 
suggest that the system under study is necessarily simple. On the contrary, 
if a virtually “null” model is selected, this usually points to an insufficient 
amount of data to fit anything more realistic. Even then, if the best model 
is, for example, one with no time effects, one should not infer the process is 
time invariant. Instead, the correct interpretation is that the variation in some 
parameter across time is small and such variation could not be identified with 
the small amount of information in the data.



We are really asking – how much model structure will the data support? 
A good fit is not sufficient, we need predictive ability, and this involves 
 parsimony – how many parameters can be estimated and included in a model? 
Overfitting risks (by the addition of extra parameters) the inclusion of some 
of the random “noise” as if it were structure. Model selection criteria allow 
an objective measure of how many parameters can be fitted to a model, given 
the sample size. We can chase truth, but we will never catch it and parsimony 
is central to the chase.

2.2.5 Tapering Effect Sizes

In perhaps all of the empirical sciences, there are a wide range of “effect 
sizes.” There are the large, dominant effects that can often be picked up even 
with fairly small sample sizes and fairly poor analytical approaches (e.g., 
stepwise regression). Then there are the moderate-sized effects that are often 
unveiled with decent sample sizes and more adequate analysis methods. It is 
more challenging to identify the still smaller effects: second- and third-order 
interactions and slight nonlinearities. Increasingly large samples are needed 
to reliably detect these smaller effects. Beyond these small effects lie a huge 
number of even smaller effects or perhaps important effects that stem from 
rare events. This situation is common as any field biologist can attest. We say 
there are “tapering effect sizes” and we can chase these with larger sample 
sizes, better study design, and better models based on better hypotheses. The 
notion of tapering effect sizes is everywhere in the real world and it is hard to 
properly emphasize their importance.

Tapering effect sizes are what preclude the notion of a true model. Just the 
high-order interactions are quite complex. Consider the ramifications of the 
various systems in the human body as body temperature climbs to 105° or as 
one finishes a marathon run. The life sciences are all about a wide variety of 
tapering effect sizes.

2.3 Case Studies

2.3.1 Models of Hardening of Portland Cement Data

This is a well-known data set and authors typically approach the issue as a 
multiple linear regression problem with four predictor variables. The global 
model is

E y x x x x( ) ( ) ( ) ( ) ( ),= + + + +b b b b b0 1 1 2 2 3 3 4 4

where y is the calories of heat evolved per gram of cement after 180 days, x
1
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3
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x
4
 the percent dicalcium silicate (2CaO.SiO

2
), and E(.) is the expectation 

operator (see Appendix B).
This example problem has two objectives: variable selection and prediction. 
The analysis could be done in a least squares (LS) or maximum likelihood 
(ML) framework (Appendix A). The LS and ML estimates of the b

i
 para-

meters will be identical; the two estimates of s 2 will differ slightly. This might 
be a place for the reader to review quantities such as the residual variance 
s 2, residual sum of squares RSS, adjusted R2, the covariance matrix Σ., vari-
ous residual analyses, and the notion of a global model.

Because only four variables are available, the temptation is to consider all 
possible models (24−1 = 15) involving at least one of the regressor  variables. 
Burnham and Anderson (2002), strictly as an exploratory example, consid-
ered the full set of models, including the global model {1234} with K = 6 
parameters (i.e., b

0
, b

1
, b

2
, b

3
, b

4
, and s 2). They generally advise against 

consideration of all possible models (15 in this example) of the x
i
 (note that 

even more models would be needed if interactions, powers of the predictor 
variables, or other nonlinear relationships were employed).

In contrast, for this example, I will try to limit the set to those that seem 
plausible, particularly in view of the small sample size. Using all possible 
models usually represents an unthinking, naive approach. I have already noted 
that the global model is essentially singular as the numerical values for the 
four variables sum to approximately 1 (rounding prevents some sums to be 
exactly 1). Thus, the global model can be dismissed in the example. I already 
eliminated the four single variable models as cement is a mixture of ingredi-
ents. So, now the set is down to 10 models.

Additional thinking (Sect. 1.8) about the chemical similarity of the pair of 
variables 1 and 3 and the pair 2 and 4 was relevant. Without the curse of data 
dredging, it is advisable to examine the correlations between these pairs, based 
on the data available. Such correlation analysis substantiates the observation; 
the correlation coefficient between x

1
 and x

3
 was −0.824 and the correlation 

between x
2
 and x

4
 was −0.973). Thus, including both variables within a pair 

would not be advisable, particularly in view of the fact that the sample size is 
only 13 observations. However, we do not know if x

1
 or x

3
 is the better predic-

tor, nor do we know if x
2
 or x

4
 is the better predictor. Thus, the following five 

hypotheses and variables lead to five models making up the candidate set:

H
1
 0 variables g

1
 E(y) = b

0
H

2
 x

1
 and x

2
 g

2
 E(y) = b

0
 + b

1
(x

1
) + b

2
(x

2
)

H
3
 x

1
 and x

2
 and x

1
*x

2
 g

3
 E(y) = b

0
 + b

1
(x

1
) + b

2
(x

2
) + b

3
(x

1* x2
)

H
4
 x

3
 and x

4
 g

4
 E(y) = b

0
 + b

1
(x

3
) + b

2
(x

4
)

H
5
 x

3
 and x

4
 and x

3*x
4
 g

5
 E(y) = b

0
 + b

1
(x

3
) + b

2
(x

4
) + b

3
(x

3* x4
)

Hypothesis H
1
 has no predictor variables and is not in the original 15 pos-

sible models. I include it here as an example. Of course, the numerical values 
for the ML estimates of the b parameters will differ across models (i.e., b

1
 

“means” different things and is model specific). Now it becomes clear that 



hypothesis 4 (H
4
), for example, has its corresponding model (g

4
). This is a set 

of first-order models with all the variables entering a linear model. The model 
set is crude; however, there are little data and so more complex models might 
not be justified. Note how knowledge of sample size affects the number of 
parameters that might reasonably be estimated; this requires some experience. 
However, even a C student just finishing a class in applied regression would 
surely not attempt to estimate 8–10 parameters from this data set. This will 
serve as our initial example in later chapters.

The cement data have high levels of dependencies (correlations) among the 
predictor variables as is typical of most problems where a regression analysis 
might be appropriate. If all the regressor variables are mutually orthogonal 
(uncorrelated) then analytical considerations are more simple. Orthognality 
arises in controlled experiments where the factors and levels are designed to 
be orthogonal. In observational studies, there is often a high probability that 
some of the regressor variables will be mutually quite dependent. Rigorous 
experimental methods were just being developed during the time these data 
were taken (about 1930). Had such design methods been widely available and 
the importance of replication understood, then it would have been possible to 
break the unwanted correlations among the x variables and establish cause and 
effect if that was a goal.

2.3.2 Models of Bovine TB Transmission in Ferrets

Caley and Hone’s (2002) models for disease transmission dealt with the age-
specific force of infection, l(a) for various age classes and the age-specific 
disease prevalence model with (a > 0) and without (a = 0) disease-induced 
mortality. Their model for H

1
 without disease-induced mortality was

1− −e la ,

where a ≤ s and s is the suckling period. The corresponding model for H
1
 with 

disease-induced mortality was

l

l a

a l

a l

1−( )
−

−

−

e

e (

( )

)
.

a

a

Simple graphs of their hazard rates help in understanding the models derived. 
They introduced a guarantee parameter (I ) for the period when ferrets were 
not exposed to infection (Fig. 2.2). If a > s, then the corresponding hazard 
models are

1− −e ls ,

where s is the suckling period and no disease-induced mortality, and

l
l a

a l

a l
a( )( )

( )
( )1−

−

−

−
− −e

e
e

a

a
a s
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H1

H4 H5 = H1 + (H3 or H4)

H2 H3

0
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1

0

1
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0
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FIG. 2.2. Constant hazard functions used by Caley and Hone (2002) in modeling hypoth-
eses concerning tuberculosis transmission in feral ferrets in New Zealand.

with disease-induced mortality. In addition, all models had a gender effect and 
a site effect (data were collected at seven sites). The hazard models become 
tedious (see their Table 2.1) and they then defined p

i
 to be the modeled prob-

ability of infection. A binomial likelihood function was then used where 
the data were y = the number of infected individuals from a total of n

i
 in 

each gender class (see data in Table 2.2). Thus, p̂  
i
 = y

i
 / n

i
 as an estimate of 

p = E(y
i
)/n

i
. Several bounds and constraints were placed on parameter val-

ues during the optimization; additional details are given by Caley and Hone 
(2002). Clearly, a great deal of effort was made to derive models that accu-
rately portrayed the hypotheses about disease transmission and the force of 
infection (l) as functions of age, gender, guarantee time, and disease-induced 
mortality.

2.4 Additional Examples of Modeling

The first example provides some details on models and how the models might 
help in developing interesting science hypotheses. This is followed by  further 
considerations in the Exercises section. The other two examples are more typical 
where the task is merely to well represent the science hypotheses by models.



2.4.1 Modeling Beak Lengths

Beak size bimodality in Darwin’s finches (Geospiza fortis) on the island of 
Santa Cruz, Galapagos, Ecuador has been of interest since the early 1960s. 
Hendry et al. (2006) provide some background and analysis results on this 
set of evolutionary issues. Here we will take a hypothetical view of the data 
and general science question and provide alternative approaches to provide 
insights into hypothesizing and modeling. This example will use just beak 
length, while Hendry et al. (2006) performed a principal components analysis 
on several measurements to estimate beak “size.” I will not address these real 
world complexities here as I want to focus on a different way to approach the 
evolutionary questions of interest. This approach is not claimed to be better in 
any way; only different to give the reader a feeling for both hypothesizing and 
modeling. Interested readers are encouraged to read Hendry et al. (2006) for 
their results with the real data.

Beak length data were collected on 1,755 birds during 1964–2005 at Acad-
emy Bay, adjacent to the town of Puerto Ayora. Histograms of the  measurements 
suggested bimodality in the early years; however, this bimodality was lost in 
concert with marked increases in human population density and activity over 
time. This observation led to hypotheses about evolutionary forces promot-
ing bimodality and driving adaptive radiation into multiple  species over time. 
Perhaps the increased human disturbance blocked or at least hampered the 
radiation and bimodality in recent years at this site. While this extension of 
the problem is only to illustrate some principles, it will follow some aspects 
of the real situation described by Hendry et al. (2006).

Before proceeding, it is interesting to note a confirmatory aspect of this 
study. There are many variables that have changed on this island over the 
past 40–50 years. A descriptive approach might have taken measurements 
on many variables and asked which is the better predictor or which varia-
bles have the highest adjusted R2 value? This is a “shot gun approach” and 
exposes the investigator to a high probability of finding spurious effects. The 
 confirmatory approach asks a more specific question (is human disturbance 
associated with evolutionary changes in bill length?), after trying to think hard 
about the issue.

We first hypothesize that the bimodality observed in the histograms (per 
year sample sizes were roughly 100) was largely an artifact. Perhaps another 
bin size for the histograms would not show any pronounced bimodality. Thus, 
we begin with the hypothesis (H

1
) that the sample data were taken from a 

unimodal population (this model might be of particular use in the analysis 
of data for the later years). Beak lengths cannot be negative; so I will use the 
gamma model instead of the more usual normal model. The gamma distribu-
tion (denote this first, unimodal, model as g

1
) is

g x
x x

1

1

( )
( )

.
/

=
− −a b

aa b
e

Γ
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This model (a PDF) has two parameters, a and b, and x is the beak length. 
Note the expanded model notation to make it clear that the model is a function 
of the data x. This complicated looking model has a nice simple form (Fig. 2.3) 
and seems adequate as a mathematical representation of the measurement data 
on beak lengths (assuming unimodality).

This distribution is useful in that its mean value is estimated as  â    b ̂   and the 
variance is estimated as â    b ̂   2. The shape of the distribution changes depending 
on the values of a and b; thus, the gamma distribution, like many statistical 
distributions, is a family of curves. Note too, in this type of modeling there 
is no response variable, instead it is the distribution of bill lengths (x) that is 
being modeled.

Considering the apparent observed bimodality, one might consider a mixture 
of two gamma distributions as a second model. This hypothesis assumes there 
is a small-beaked phenotype with some variability across individuals around 
a mean. Similarly, a large-beaked phenotype has some variability across 
 individuals around a different (larger) mean. Thus, it is quite possible that 
an individual from the small-beaked phenotype might have a longer beak than an 
individual from a large-beaked phenotype. The data are hypothesized to be 
an unknown mixture of the two (perhaps highly variable) phenotypes. These 
considerations lead to a model (g

2
) for the second hypothesis, H

2
 (Fig. 2.4):

g g g2 1= + −p p( ) ( )( ),s b

where the parameter π is the “mixture coefficient” and g
s
 and g

b
 are gamma 

distributions for small (s)- and big (b)-beaked individuals, respectively. Here, 
0 ≤ π ≤ 1 and is the proportion of the population that have small beaks. For 
example, if 17% of the individuals in a given year were from a population of 
small-beaked phenotypes, then

0

0.0
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D
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ty

2 4
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FIG. 2.3. The hypothesis of unimodality in finch bill lengths is represented as a gamma 
distribution.



g g g2 0 17 0 83= +. ( ) ( . )( ).s b

Of course, the two gamma distributions above would each have parameters 
a and b to specify the exact shape of the distributions. This model has five 
parameters: p, a, and b for the small-beaked animals and an a and b for the 
big-beaked animals. If we have a way to measure the strength of evidence for 
these two models we could answer questions about unimodality vs. bimodal-
ity: i.e., compare models g

1
 vs. g

2
.

Now we hypothesize (H
3
), a linear change in bimodality over years and 

this is easily done by adding a submodel on the mixture coefficient π. We 
take model 2 and extend it to obtain a model that allows bimodality to change 
(drift) over years:

g g g3 1= + −p p( ) ( )( )s b

and replace the parameter π (in two places) with the submodel

p b b= +0 1( ),T

where T is the year of the study. The parameter π no longer appears in the 
model as it is replaced by the submodel that allows the mixture to be a func-
tion of year. Carrying out this substitution,

g T g T g3 0 1 0 11= +( )⋅ + − +( )⋅b b b b( ) ( ) ( ( )) ( ).s b

FIG. 2.4. The model representing the hypothesis that finch bill lengths arise from an 
unknown mixture of two phenotypes, each phenotype is modeled as a gamma distribution.
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This model has six parameters: b
0
, b

1
, a, and b for the small-beaked ani-

mals, and an a and β for the big-beaked animals (p has been deleted and the 
two b parameters added). Hendry et al. (2006) hypothesized that bimodality 
decreased after the first few years (T), thus we expect b ̂ 

1
 to be negative in this 

example. This model gets directly at the main evolutionary hypotheses; this is 
the role of these models.

We can hypothesize still other plausible alternatives, as Chamberlin would 
have urged. The bimodality was hypothesized to change over years (that is H

3
) 

but perhaps caused or at least influenced by human population density over 
time (T) and associated disturbance (denote this environmental covariate as 
X

1
 not to be confused with bill length, x). This covariate was measured; so we 

have the model (g
4
) to represent the fourth hypothesis (H

4
):

s bg g g4 1= + −p p( ) ( )( ).

Now replace the mixture coefficient π with a similar submodel, but with the 
human covariate as

p b b= +0 1 1( ).X

In a sense, g
3
 asked what? while g

4
 begins to ask why?

We now turn our attention to a supposed covariate dealing with yearly pre-
cipitation (denote this as X

2
). We will assume this variable has been measured 

and we will let it enter the analysis as binary: 1 for heavy precipitation and 0 
for virtually no rainfall (the usual case). One can already see the pattern here 
as we will hypothesize (H

5
) that the bimodality is influenced by (only) pre-

cipitation over the years of the study. Its associated model is

g g g5 1= + −p p( ) ( )( ),s b

where p = b
0
 + b

1
(X

2
).

An astute biologist then hypothesizes (H
6
) that bimodality is influenced 

by both human activity (X
1
) and precipitation (X

2
), leading to an expanded 

submodel for π:

g g g

X X
6

0 1 1 2 2

1= + −
= + +

p p
p b b b

( ) ( )( ),

( ) ( ).
s b

Finally, investigators hypothesize (H
7
) to reflect interest in an interaction term 

in the submodel for π as

g g g

X X X X
7

0 1 1 2 2 3 1 2

1= + −
= + + +

p p
p b b b b

( ) ( )( ),

( ) ( ) ( * ).
s b

This model has eight parameters: b
0
, b

1
, b

2
, b

3
, a, and b for the small-beaked 

animals, and an α and b for the big-beaked animals. [I hope it is clear that the 
b parameters differ from model to model; i.e., the value for the MLE for b

1
 

and the interpretation differ by model.]



Given the sample of 1,755 beak measurements and the seven models of 
the seven science hypotheses, one could estimate the model parameters using 
maximum likelihood (see Appendix A) and proceed with a formal analysis 
of the evidence for each of the seven. Note that there is a nice one-to-one 
mapping of each hypothesis with its model. Of course, each submodel could 
have been hypothesized to be quadratic (or even cubic), but additional b para-
meters would be needed to chase these potential nonlinearities. This example 
attempts to show how hypothesizing and modeling can have catalytic effects. 
We will see this example again in the subsequent chapters.

2.4.2 Modeling Dose Response in Flour Beetles

Young and Young (1998:510–514) give as an example (originally from Bliss 
1935) of modeling acute mortality of flour beetles (Tribolium confusu) caused 
by an experimental five-hour exposure to gaseous carbon disulfide (CS

2
). The 

data are summarized in Table 2.3. The sample size is the 471 beetles in the 
dose–response experiment. One can see from Table 2.3 that the observed 
mortality rate increased with dosage. It is typical to fit a parametric model to 
effectively smooth such data, hence to get a simple estimated dose–response 
curve and confidence bounds, and to allow predictions (perhaps even outside 
the dose levels used in the experiment (i.e., extrapolation) ).

A generalized linear models approach may easily, and appropriately, be 
used to model the probability of mortality, π

i
, as a function of dose level x

i
. 

The likelihood function for the data for a single dose is assumed to be bino-
mial and is proportional to

L( | , ( ) .p p pn y y n yand binomial) ∝ 1− −

This notation (above) is read – the likelihood of the unknown mortality param-
eter π, given the data (the n and y) and the binomial model. The likelihood 
function would be different with different data or when using a model other 
than the binomial. Use of the binomial model brings certain assumptions with 

TABLE 2.3. Flour beetle mortality at eight dose levels of CS
2
 (from Young 

and Young 1998).

 Number of beetles

Dose (mg/L) Tested Killed Observed mortality rate

49.06 49 6 0.12
52.99 60 13 0.22
56.91 62 18 0.29
60.84 56 28 0.50
64.76 63 52 0.83
68.69 59 53 0.90
72.61 62 61 0.98
76.54 60 60 1.00
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it, such as independence). Note, as is always the case, likelihoods are products 
of probabilities and functions of only the unknown parameters; everything 
else is known (i.e., given). Shorthand notation includes L(π|data) or just L if 
the context is clear. The symbol “∝” means “proportional to” because a con-
stant term (the binomial coefficient), independent of the model parameters, 
has been omitted (Appendix A).

The flour beetles were dosed at eight levels and the likelihood for the entire 
data set is merely a product of the eight binomial likelihoods (given the usual 
assumption of independence, which seems quite reasonable here):

L p p pi i i i

y

i

n y

i

n y i i i| binomialand ,( ) ∝ ( ) −( ) −

=
∏ 1

1

8

or just the shorthand

L p p pi i

y

i

n y

i

i i i| .data  or ( ) ∝ ∝ ( ) −( ) −

=
∏L 1

1

8

This likelihood sets up a model of the unknown mortality probabilities, 
but they do not depend on dose. Thus, we can hypothesize some monot-
onic parametric submodels involving dose p

i
 ≡ p(x

i
). I will denote dose 

at level i simply as x
i
 and constrain the probability of mortality (π) to be 

within 0–1.
In the context of generalized linear models, there must be a nonlinear trans-

formation (i.e., link function) of p(x) to give a linear structural model in the 

based linear model but no single model form that is theoretically the correct, 
let alone true, one. We consider three commonly used generalized linear mod-
els and associated link functions: logistic, hazard, and probit. Each of these 
models has two unknown parameters that may be estimated from the data 
using ML. The logistic model form is

p a b( )
( )

x
x

=
+ − +

1

1 e

with link function

log
( )

( )
log ( ( )) .

p
p

p a b
x

x
x x

1−
⎛
⎝⎜

⎞
⎠⎟

= = +it

The hazard function and the associated complementary log–log link func-
tion are

p a b( ) ( )x x= − − +1 exp{ e }

and

log[ log( ( ))] g log( ( )) .− − = = +1 p p a bx x xclo

parameters. There are several commonly used forms for such a link-function



The cumulative normal model and associated probit link are

p
p

F a b
a b

( ) ( )( / )x z xz
x

=
⎡

⎣
⎢

⎤

⎦
⎥ ≡ +−

−∞

+

∫
1

2
1 2 2

e d

and

F p p a b− = = +1( ( )) ( ( )) .x x xprobit

Here, f(•) denotes the standard normal cumulative probability distribution, 
which does not exist in closed form.

In each of the three cases above, the model is sigmoidal, bounded by 0 and 
1, and has two parameters. These are little more than descriptive models; i.e., 
they have about the “right” shape and have been useful in this class of experi-
ments since the 1930s. The link functions let the investigator “think” of the 
models as simple regressions, a + bx and this is a useful construct.

Substituting the logistic model for dose level into the likelihood for a prod-
uct of binomials gives

L ∝
+

⎛
⎝⎜

⎞
⎠⎟

⋅ −
+

⎛
⎝⎜

⎞
⎠⎟− +

=
− +

−

∏ 1

1
1

1

11

8

e e( ) ( )
,a b a bx

i

y

x

n y

i

i

i

i i

where x
i
 is the dose level and the likelihood (L above) is formally L(a,b|data). 

Thus ML can be used to get the MLEs â    and b ̂  (the probabilities of mortality are 
removed and they are replaced by a simple function of dose level, x

i
). This particu-

lar example happens to be logistic regression and can be done easily in software 
packages (e.g., SAS Institute 2004). This is another example where one might 
start with a simple model, such as the binomial model here. Assuming independ-
ence (Sect. 6.1 and Appendix A), one can take the product of all eight binomials 
as the likelihood. Then, adding submodels in place of one or more model para-
meters can bring tremendous flexibility and realism to the modeling process.

At some early point we must ask if a model fits the data in a reasonable way. 
A simple Pearson observed vs. expected chi-square comparison often suffices 
as a goodness-of-fit (GOF) assessment:

c 2
2

= ∑
−( )O E

E
j j

j

ˆ

ˆ

where O
j
 is the observed values and Ê

j
 is the estimated expected values. These 

test statistics each have six degrees of freedom (=8 − 2, as each model has two 
estimated parameters). The chi-square statistic is

c
p

p p
2

2

1

8

1
=

−( )
−( )=

∑ y n

n
i i i

i i ii

ˆ

ˆ ˆ
.
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Goodness-of-fit results are

 Model χ2

 cloglog 3.49
 probit 7.06
 logit 7.65

indicating a good fit for each of the three models. Normally GOF is assessed 
only for the global model; in this case there is no such model, but three non-
nested competitors all with K = 2 unknown model parameters (see Appendix A). 
If the response variable is continuous, there are a large number of standard 
diagnostics and procedures to analyze residuals; these are widely available in 
computer software.

A key feature of this beetle mortality example is causality. The  experimentally 
applied dose caused the observed mortality. By the design we can establish 
a priori that (1) the only predictor needed, or useful, is dose and (2)  monotonicity 
of expected response should be imposed (i.e., the higher the dose, the higher 
the probability of death). The issue about a model is thus reduced to one of an 
appropriate functional form, hence, in a generalized  linear models framework, 
to what is the appropriate link function. However, as a result, we have no global 
model, but rather several (three were used) alternatives for a best causal-
predictive model (many observational studies lack a global model).

2.4.3 Modeling Enzyme Kinetics

Over many years, a series of models have been developed for understanding 
enzyme inhibition (Nelder 1991; Brush 1965, 1966). This field has matured 
and I will give some general models that have found use in this issue. We 
will review four models, each representing a hypothesis concerning the rate 
of enzyme-mediated reaction (R). There are only two predictor variables: 
S = substrate concentration and I = inhibiting substance. Four hypotheses are 
represented by the following models:

H
1
 noncompetitive (general) model Parameters

R
S

I S I
=

⋅
− ⋅ + + ⋅

b
b b b

1

2 3 41 1( ) ( )
 {b

1
,b

2
,b

3
,b

4
,σ2} = 5

H
2
 Michaelis–Menten model 

R
S

S
=

⋅
+

b
b

1

2

 {b
1
,b

2
,0,0,σ2} = 3

H
3
 competition model 



R
S

I S
=

⋅
− ⋅ +
b

b b
1

2 31( )  {b
1
,b

2
,b

3
,0,σ2} = 4

H
4
 uncompetitive model 

R
S

S I
=

⋅
+ + ⋅

b
b b

1

2 41( )
 {b

1
,b

2
,0,b

4
,σ2} = 4

Two of the model parameters have scientific interpretations: b
1
 is the  maximum 

reaction rate and b
2
 is the half saturation level. Parameters b

3
 and b

4
 are 

called inhibition kinetic values. Here each hypothesis has been represented 
by its associated model and we can speak of hypothesis i or model i synony-
mously. The parameters can be estimated using ML methods and inferences 
made. Critically, we would like measures of the evidence for each of the four 
 hypotheses in the set: “What is the empirical support for hypothesis i vs. j?” 
A set of models such as this does not arise overnight; instead, these models are 
the result of much effort in the laboratory and much analytical thought. Model 
building should take full advantage of past research.

that often only a single hypothesis and its model are the focus of the study. 
Clyde (2000) and Remontet et al. (2006) provide examples of multiple models 
and model selection in this important area.

2.5 Data Dredging

Data dredging (also called post hoc data analysis) begins after the planned 
(a priori) analysis and after inspecting those results. Data dredging should 
generally be minimized or avoided, except in (1) the early stages of explora-
tory work or (2) after a more confirmatory analysis has been completed. In 
this latter case, the investigator should fully admit to the process that lead to 
the post hoc results and should treat the results much more cautiously than 
those found under the initial, a priori approach. One approach in post hoc 
analyses is to start with the best model (from the a priori results) and expand 
around it. When done carefully, we encourage people to explore their data 
beyond the important a priori phase. Still, post hoc results are like skating 
on thin ice – lots of risks of getting in trouble (i.e., finding effects that are 
 spurious because noise is being modeled as structure).

I recommend a substantial, deliberate effort to get the a priori thinking and 
models in place and try to obtain more confirmatory results; then explore the 
post hoc issues that often arise after seeing the more confirmatory results. 
Data dredging activities form a continuum, ranging from fairly trivial (venial) 
to the grievous (mortal). There is often a fine line between dredging and not 
dredging; my advice is to stay well toward the a priori end of the continuum 
and thus achieve a more confirmatory result. One can always do post hoc 
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analyses after the a priori analysis; but one can never go from post hoc to 
a priori. Why not keep one’s options open in this regard?

Grievous data dredging is endemic in the applied literature and still 
 frequently taught or implied in statistics courses without the needed caveats 
 concerning the attendant inferential problems. Rampant rummaging through 
the data looking for patterns and then “testing” them would be called, in any 
other human endeavor, cheating.

Running all possible models is a thoughtless approach and runs the high 
risk of finding effects that are, in fact, spurious if only a single model is 
chosen for inference. If prediction is the objective, model averaging is use-
ful and  estimates of precision should include model selection uncertainty; 
these are subjects to be addressed in later sections of this book. Even in 
this case, surely one can often rule out many models on a priori grounds 
(e.g., the cement hardening data). There are recent papers in major journals 
that provide the results of analyses where well over a million models have 
been run with  sample sizes <100. I suspect nearly every result was actually 
spurious in such cases. Running all possible models is usually a signal of an 
unthinking science approach.

2.6  The Effect of a Flood on European Dippers: 
Modeling Contrasts

Lebreton et al. (1992) provided a small set of capture–recapture data on the 
European Dipper (Cinclus cinclus). This is a small bird that spends its life 
along small streams; the data come from eastern France and were collected by 
Marzolin. The study took place over seven years; thus there are six survival 
intervals. A flood took place toward the end of the second survival interval and 
continued into the beginning of the third survival interval. The simple  science 
question asked if survival probability was lower in the two flood years. Note 
that causation (the flood caused lowered survival) cannot be addressed here as 
this is an observational study, not a strict experiment.

Some notation is needed; let j be the time-averaged annual survival 
 probability while j

f
 and j

nf
 be the time-averaged annual survival probabilities 

for flood and nonflood years, respectively. Specifically, j is the conditional 
 probability that a dipper survives the annual interval and stays on the study 
area, given it is alive at the beginning of the interval. Finally, we denote the 
time-averaged probability of capture or recapture as p.

2.6.1 Traditional Null Hypothesis Testing

Standard practice would be to define a null and alternative hypothesis and 
their corresponding models. The null hypothesis (H

0
) would be that there is 



no effect (exactly no effect) of the flood on annual survival probability, while 
the alternative hypothesis (H

a
) would be that the flood did have an effect on 

annual survival probability. So, we have two models representing the null and 
alternative hypothesis, respectively:

H
0
: {j,p} with two unknown parameters

H
a
: {j

f
,j

nf
,p} with three unknown parameters

The null model is nested within the more general alternative model and 
this fact allows standard “tests” to be computed to address the issue of a 
flood effect on annual survival probabilities. This test is done by testing 
(only) the null hypothesis; the alternative is not the subject of the test. If 
the null is rejected, then, by default, the alternative is said to be supported. 
The alternative hypothesis (the one the investigator usually believes) is 
never tested.

2.6.2 Information-Theoretic Approach

The information-theoretic approach would begin with the same two hypotheses, 
{j,p} and {j

f
, j

nf
,p}, claiming that these models are only simple approxi-

mations to the complex reality. There is no need that the models are nested 
(they happen to be in this case). The information-theoretic approach asks 
for  measures of relative support (i.e., from the data, empirical) for the two 
hypotheses. It is not alleged that hypothesis {j,p} is exactly true; rather it is a 
hypothesis and a model that are approximations.

In this early example, perhaps relatively little thought went into the hypoth-
eses to be included in the set – two hypotheses seem “obvious.” A little more 
thought suggests that other hypotheses could be examined (as Bacon and 
Chamberlin would have wanted):

● Was there a survival effect just the first year of the flood {j
f1
,j

nf
,p}?

● Or just the second year of the flood {j
f2
,j

nf
,p}?

● Or was the recapture probability (p) also effected by the flood {j
f
,j

nf
,p

f
,p

nf
}?

● Or even {j,p
f
,p

nf
}, where survival was not impacted, but the recapture prob-

abilities were?

Note that few of the models above are nested; thus each model must be tested 
against the null and this raises the multiple testing problem, a scourge of null 
hypothesis testing. Traditional tests do not allow much evidence about the 
relative merit of the four hypotheses/models above.

Thinking hard about hypotheses to be evaluated before data analysis nearly 
always has its clear rewards. In this simple example, the addition of four more 
hypotheses was not particularly “heavy mental lifting” but in more challeng-
ing problems considerable thought is usually required. We must all do more to 
encourage a culture of hard thinking and rigor in scientific work. A premium 
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must be placed on thinking, innovation, and creativity – do not expect the 
computer to tell us what is “important.”

Simple problems such as the dipper problem can be effectively addressed 
with the methods developed in this text; just because the problem is simple 
does not mean one must use null hypothesis testing methods.

2.7 Remarks

Romesburg (2002) wrote a fascinating book about thinking and the creative 
spirit; I have found this very useful and recommend it.

Chatfield (1995a,b) provides very good guidelines concerning statistical 
practice. Gotelli and Ellison (2004) provide sage advice on data handling and 
archiving. Manly’s (1992) book covers both sampling and design issues and is 
easy reading.

Chamberlin’s paper is well worth reading after more than 100 years. How 
many papers in Science have been reprinted in the same journal (as was Cham-
berlain’s in 1890 and in 1965)?

Fisher first published on his likelihood approach when he was a third year 
undergraduate (1912) and a very much extended account in 1922. Likelihood 
is among the great achievements in statistics (like aspirin in medicine); it is 
the backbone of statistical thinking, including Bayesian approaches. It might 
be noted that the Fisher information matrix addresses precision (a measure of 
repeatability) when translated into the covariance matrix, rather than strictly 
information. Of course, precision is tied to “information.” The first book 
(Edwards 1976) on likelihood was written well after Fisher’s fundamental 
paper on the subject in 1922; this was followed by an expanded treatment in 
1992. It is fitting that Edwards was Fisher’s last Ph. D. student. Oddly, there 
are still relatively few books on the subject (good examples include Azzalini 
1996; Royall 1997; Severini 2000; Pawitan 2001); like the ubiquitous “delta 
method”–everyone is supposed to (somehow) know it!

Draper and Smith (1981) provide a review of results found by others that 
have analyzed the cement hardening data (also see Hald 1952 and Hand 
1994). Hendry et al. (2006) give an analysis of the actual data on beak size 
in Darwin’s finches; the hypothetical example here takes their work in a 
conceptually different modeling direction. Additional results on bovine 
tuberculosis in feral ferrets in New Zealand are provided by Caley and Hone 
(2005).

Many papers exist on modeling but there is a clear need for a nice book 
synthesizing the literature and providing effective examples. Levins (1966), 
Leamer (1978), Gilchrist (1984), Lehman (1990),  Starfield et al. (1990, 1991), 
Cox (1990, 1995), O’Connor and Spotila (1992), Scheiner and Gurevitch 
(1993), and Lunneborg (1994). Chatfield (1995a,b, 1991), Nichols (2001), 
and Shenk and Franklin (2001), and Zuur (2007) offer good introductions into 



the statistical modeling literature. White and Lubow (2002) provide examples 
of modeling data from differing sources.

Much of statistical theory is based on an assumption about so-called inde-
pendence and this is often compromised with data in the life  sciences. What 
is required, in general, is a correct likelihood for the data that reflects any 
dependence. There is a simple way to handle some lack of  independence in 
making inferences (Sect. 6.1). An easy reading paper on spurious effects 
and how to minimize these is Anderson et al. (2001a). Inferential problems 
when using convenience sampling are outlined by Anderson (2001), but 
see also Hairston (1989) and Eberhardt and Thomas (1991).

2.8 Exercises

1. Reread the paper by Caley and Hone (2002).

a. They demonstrated that estimating the force of infection (λ) from 
age-prevalence data is possible and assists in discriminating between 
 alternative hypotheses about routes of disease transmission. Discuss 
this finding and compare it with similar studies of disease transmission 
in humans.

b. Their hypothesis concerning dietary-related transmission from the age 
of weaning had the best empirical support. Think hard about this and 
ask if there are logical next steps in understanding the transmission 
issue. For example, since there was a debate or controversy over this 
whole issue, what might you want as an opponent?

c. What would your value judgment be concerning inductive inferences from 
their sample data to the five populations of ferrets in New Zealand?

2. For those readers with an advanced understanding of mathematical statis-
tics, what worries might you have about getting MLEs of the parameters 
in the seven models of beak lengths in Darwin’s finches? What might be 
done to avoid problems here?

3. What is “wrong” in merely presenting the eight estimates of flour  beetle 
mortality probability as a function of dose level, either in a table or a 
 simple graph? Why go through the modeling and reparameterization 
(e.g., the substitution of a submodel involving the parameters β

0
 and β

1
 

for π)? What is the principle here and what are the advantages? (Advanced 
 question).

4. Can you think of any model in the life sciences that is strictly true? What 
about the physical sciences? Or medicine? Or economics? If possible, ask 
people in those disciplines for examples of exactly true models in their 
field. How would a person know with certainty that the true model was in 
the set, but not know which one is was? Lastly, how do we know a model 
is exactly true? Can you imagine methods that would allow one to deter-
mine (e.g., test for) the exact truth of a model? [Probably not a good Ph.D. 
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project.] This would be a case where the form of the true model would be 
known, but not its parameters. It seems a shame that true models do not 
come with their true parameters, making estimation unneeded!

5. Few editors, associate editors, and reviewers seem to be aware of the infer-
ential issues with unadulterated data dredging. They seem to believe that 
all analysis results are created equal and it makes no difference if the 
hypothesis was posed before or after data analysis. Discuss this issue. How 
can this issue be improved so our science moves ahead more rapidly?

6. Linhart and Zucchini (1986) analyzed data on weekly storm events at a 
botanical garden in Durban, South Africa. They had data over 47  consecutive 
years and were interested in prediction of weekly storm events (i.e., i = 1, 
2,…, 52 weeks). They knew that an estimator of the probability of a storm 
in week i was p̂

i
 = y

i
 / 47, where y

i
 is the number of storms in week i. Thus, 

they computed the binomial estimator (an MLE) for all 52 weeks. Critique 
this approach. What is “wrong” here?



3
Information Theory and Entropy

Solomon Kullback (1907–1994) was born in Brooklyn, New York, USA, and 
graduated from the City College of New York in 1927, received an M.A. degree 
in mathematics in 1929, and completed a Ph.D. in mathematics from the George 
Washington University in 1934. Kully as he was known to all who knew him, had 
two major careers: one in the Defense Department (1930–1962) and the other 
in the Department of Statistics at George Washington University (1962–1972). He 
was chairman of the Statistics Department from 1964–1972. Much of his pro-
fessional life was spent in the National Security Agency and most of his work 
during this time is still classified. Most of his studies on information theory 
were done during this time. Many of his results up to 1958 were published in his 
1959 book, “Information Theory and Statistics.” Additional details on Kullback 
may be found in Greenhouse (1994) and Anonymous (1997).

When we receive something that decreases our uncertainty about the state of the 
world, it is called information. Information is like “news,” it informs. Informa-
tion is not directly related to physical quantities. Information is not material and 
is not a form of energy, but it can be stored and communicated using material 
or energy means. It cannot be measured with instruments but can be defined in 
terms of a probability distribution. Information is a decrease in uncertainty.
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This textbook is about a relatively new approach to empirical science called 
“information-theoretic.” The name comes from the fact that the foundation 
originates in “information theory”; a set of fundamental discoveries made 
largely during World War II with many important extensions since that time. 
One exciting discovery is the ability to actually quantify  information and this 
has led to countless breakthroughs that affect many things in our daily lives 
(e.g., cell phone and global positioning system technologies). One might think 
of information theory as being things like coding and encrypting theory and 
signal transmission, but it is far more general than these subjects.

Allowing “data analysis” to hook up with information theory has had 
 substantial advantages and statistical scientists are still trying to exploit this 
combination. The concepts and practical use of the information-theoretic 
approach are simpler than that of hypothesis testing, and much easier than 
Bayesian approaches to data analysis.

Before proceeding further, I want to summarize the necessary “setting.” 
This setting will set the tone for all of the following material. I will assume 
the  investigator has a carefully considered science question and has proposed 
R hypotheses (the “multiple working hypotheses”), all of which are deemed 
plausible. A mathematical model (probability distribution) has been derived to 
well represent each of the R science hypotheses. Estimates of model para meters 
(q) and their variance–covariance matrix (Σ) have been made under either a least 
squares (LS) or maximum likelihood (ML) framework. In either case, other 
 relevant statistics have also been computed (adjusted R2, residual analyses, 
goodness-of-fit tests, etc.). Then, under the LS framework, one has the residual 
sum of squares (RSS), while under a likelihood framework, one has the value 
of the log-likelihood function at its maximum point. This value (either RSS 
or max log(L) ) is our starting point and allows answers to some of the 
relevant questions of interest to the investigator, such as:

● Given the data, which science hypothesis has the most empirical support 
(and by how much)?

● What is the ranking of the R hypotheses, given the data?
● What is the probability of, say, hypothesis 4, given the data and the set of 

hypotheses?
● What is the (relative) likelihood, say, of hypothesis 2 vs. hypothesis 5?
● How can rigorous inference be made from all the hypotheses (and their 

 models) in the candidate set? This is multimodel inference.

3.1 Kullback–Leibler Information

The scope of theory and methods that might be classed as “information the-
ory” is very large. I will focus primarily on Kullback–Leibler information and 
this comes from a famous paper by Soloman Kullback and Richard Leibler 
published in 1951. Their work was done during WWII and published soon 
after the termination of the war.



Kullback–Leibler Information

In the context of this book, Kullback–Leibler (K–L) information is a function 
denoted as “I” for information. This function has two arguments: f represents 
full reality or “truth” and g is a model. Then, K–L information I(f, g) is the

“information” lost when the model g is used to approximate full  reality, f.

An equivalent, and very useful, interpretation of I(f, g) is the

“distance” from the approximating model g to full reality, f. 

Under either interpretation, we seek to find a candidate model that mini-
mizes I(f, g), over the hypothesis set, represented by models.

Thus, if one had a set of five hypotheses, each represented by a model, 
I(f, g) would be computed for each of the five. The model with the smallest 
 information loss would be the best model and, therefore, would represent the 
best hypothesis. The model g has its parameters given; there is no estimation 
and no data involved at this point (this will change as we go forward).

Alternatively, one could interpret the model with the smallest I(f, g) value as 
being “closest” to full reality. Thus, when a “best model” is mentioned, the “best” 
will stem from the concept of the smallest information loss or a model being 
closest to full reality. This is a conceptually simple, yet powerful, approach. The 
idea of a “distance” between a model and full reality seems compelling.

Kullback–Leibler information is defined by the unpleasant-looking integral 
for continuous distributions (e.g., the normal or gamma):

I f g f x
f x

g x
x( , ) ( ) log

( )

( | )
.=

⎛
⎝⎜

⎞
⎠⎟∫ q

d

K–L information is defined as the summation for discrete distributions (e.g., 
Poisson, binomial, or multinomial):

I f g p
p

i
i

ii

k

( , ) log .=
⎛
⎝⎜

⎞
⎠⎟=

∑ p1

Here, there are k possible outcomes of the underlying random variable; the 
true probability of the ith outcome is given by p

i
, while the p

1
,…,p

k
 constitute 

the approximating probability distribution (i.e., the approximating model). In 
the discrete case, we have 0 < p

i
 < 1, 0 < p

i
 < 1, and pi i∑ ∑= p  = 1. Hence, 

here f and g correspond to the p
i
 and p

i
, respectively. In the following material, 

we will generally think of K–L information in the continuous case and use the 
notation f and g for simplicity.

Some readers might start to “lose it” thinking that they must compute K–L 
information loss for each model in the set. It turns out that I(f, g) cannot be used 
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directly because it requires knowledge of full reality (f) and the parameters (q) 
in the approximating models, g

i
; we will never have knowledge of these enti-

ties in real problems. We will see that K–L information can be  easily estimated, 
without advanced mathematics (although the derivation is very deeply math-
ematical). This estimation requires data relevant to the science question.

Kullback–Leibler information is the most fundamental of all information meas-
ures in the sense of being derived from minimal assumptions and its additivity 
property. It can be viewed as a quantitative measure of the  inefficiency of assum-
ing a model g when truth is f. Again, one wants to select a model from the set that 
minimizes inefficiency. While the Kullback–Leibler distance can be conceptual-
ized as a “distance” between f and g, strictly speaking this is a measure of “dis-
crepancy.” It is not a simple distance because the measure from f to g is not the 
same as the measure from g to f – it is a “directed” or “oriented” distance.

3.2 Linking Information Theory to Statistical Theory

We usually think that “data analysis” is tied in with the subject of “statis-
tics.” How are statistical principles linked with information theory, and K–L 
 information in particular? This linkage was the genius of Hirotugu Akaike in 
an incredible discovery first published in 1973.

A glimpse into the linkage between information and entropy and their 
 relationship to mathematical statistics is given below; a full and technical 
derivation appears in Burnham and Anderson (2002:Chap. 7). I urge people 
to wade through this to gain a notion of the derivation. In particular, when 
there are unknown parameters to be estimated from data, the criterion must 
change. This change is introduced in the derivation to follow:

Akaike’s main steps started by using a property of logarithms (i.e., 
log(A/B) = log(A) − log(B) ) to rewrite K–L information as

I f g f x f x x f x g x x( , ) ( ) log( ( )) ( ) log( ( | )) .= − ∫∫ d dq

Both terms on the right-hand side are statistical expectations (Appendix B) 
with respect to f (truth). Thus, K–L information can be expressed as

I f g E f x E g xf f( , ) [log( ( ))] [log( ( | ))],= − q

each expectation with respect to the true distribution f. This last expression 
provides insights into the derivation of AIC. Note that no approximations 
have been made, no parameters have been estimated and there are no data at 
this point; K–L information has merely been re-expressed.

The first expectation is a constant that depends only on the conceptual true 
distribution and it is not clearly known. However, this term is constant across 
the model set. In other words, the expectation of [log(f(x) )] does not change 



from model to model; it is a constant. Thus, we are left with only the second 
expectation,

I f g C E g xf( , ) [log( ( | ))].− = − q

The constant term (C) can be made to vanish in a subsequent step (Chap. 4). 
The question now is if we can somehow compute or estimate E

f
[log(g(x|q) )]. 

The short answer is no as the criterion or target must be altered to achieve a 
useful result and this will require data.

Kullback–Leibler information or distance I(f, g) is on a true ratio scale, 
where there is a true zero. In contrast, −E

f
[log(g(x|q) )] = − ∫ f(x)log(g(x|q) )dx 

is on an interval scale and lacks a true zero, because of the constant (above). 
A difference of magnitude D means the same thing anywhere on the scale. 
Thus, D = 10 = 12 − 2 = 1012 − 1002; a difference of 10 means the same thing 
anywhere on the interval scale. Then, 10 = V

1
 − V

2
, regardless of the size of 

V
1
 and V

2
. A large sample size magnifies the separation of research hypotheses 

and the models used to represent them. Adequate sample size conveys a wide 
variety of advantages in making valid inferences (e.g., improved estimates of 
E

f
[log(g(x|q) )]).

3.3 Akaike’s Information Criterion

Akaike introduced his information-theoretic approach in a series of papers 
in the mid-1970s as a theoretical basis for model selection. He followed 
this pivotal discovery with several related contributions beginning in the 
early 1980s and classified these as falling under the entropy maximization 
principle. This world class discovery opened the door for the development 
of relatively simple methods for applied problems, ranging from simple to 
quite complex, but based on very deep theories – entropy and K–L informa-
tion theory on the one hand and Fisher’s likelihood theory (see Appendix A) 
on the other.

Akaike’s (1973) seminal paper used Kullback–Leibler information as a 
fundamental basis for model selection and recognized model parameters 
must be estimated from data and there is substantial uncertainty in this 
estimation. The estimation of parameters represents a major distinction 
from the case where model parameters are assumed to be known. Akaike’s 
finding of a relation between the K–L information and the maximized log-
likelihood has allowed major practical and theoretical advances in model 
selection and the analysis of complex data sets. deLeeuw (1992) said it 
well, “Akaike found a formal relationship between Boltzmann’s entropy 
and Kullback–Leibler information (dominant paradigms in information 
and coding theory) and maximum likelihood (the dominant paradigm is 
statistics).”

3.3 Akaike’s Information Criterion  55



56  3. Information Theory and Entropy

Akaike’s next step was stymied as no way could be found to compute or 
estimate the second term, E

f
[log(g(x|q) )]. However, the expectation of this 

quantity led to a major breakthrough. Data enter the derivation and allow 
parameter estimates (q̂ )Akaike found that he could not estimate K–L, but he 
could estimate the expectation of K–L information. This second expectation 
is over the data (denote these data as y)

E
f 
[log(g(x| q̂ ))],

where the estimates q̂  are based on the data (y). 

The Modifi ed Target

Akaike showed that the critical issue became the estimation of

E
y
E

x 
[log(g(x| q̂ ( y))].

This double expectation, both with respect to truth f, is the target of all 
model selection approaches based on K–L information. This notation 
makes it clear that the first (outer) expectation is over the data (y) and these 
data allow estimates of the unknown model parameters. Thus, we now 
have modified the target of relevance here due to the need for data to esti-
mate model parameters. The proper criterion for model selection relates to 
the fitted model. The modification required is expected K–L information; 
Akaike called this a “predictive likelihood.”

Akaike realized that this complex entity was closely related to the log-
likelihood function at its maximum. However, the maximized log- likelihood 
is biased upward as an estimator of this quantity. Akaike found that, under 
certain conditions, this bias is approximately equal to K, the number of esti-
mable parameters in the approximating model. This is an asymptotic (mean-
ing as sample size increases to infinity) result of fundamental importance.

Thus under mild conditions, an asymptotically unbiased estimator of

Ey
E

x 
[log(g(x| q̂ ( y))] = log(L(q̂ |data) – K.

This stunning result links expected K–L information to the maximized  log-like-
lihood (log(L) ) corrected for bias. The important linkage is summarized as, 

 negentropy = K–L information and E(K–L information) = log(L) − K

 thermodynamics information theory statistics 

Akaike’s final step defined “an information criterion” (AIC) by multiplying 
both terms through by −2 (“ taking historical reasons into account”). Thus, 
both terms in log(L(q̂ | data) ) − K were multiplied by −2 to get

AIC = –2log(L(q̂  )|data) + 2K.



This has become known as Akaike’s Information Criterion or AIC. AIC has 
a strong theoretical underpinning, based on entropy and expected  Kullback–
Leibler information. Akaike’s inferential breakthrough was finding that the 
maximized log-likelihood could be used to estimate the expected (averaged) 
K–L distance between the approximating model and the true generating 
mechanism. The expectation of the logarithm of f(x) drops out as a constant 
across models, independent of the data.

In practice, one computes AIC for each of the models in the set and then 
selects the model that yields the smallest value of AIC for inference. One justi-
fies this selection because that selected model minimizes the information lost 
when approximating full reality by a fitted (i.e., parameters estimated from 
the data using, for example, ML or LS methods) model. Said another way, 
that selected model is “closest” to full reality, given the data. This approach 
seems a very natural, simple concept; select the approximating model that is 
closest to the unknown reality.

It might be argued that I should have merely defined l = log(L(q|data,model)); 
then AIC = −2l + 2K, making the criterion appear more simple. While this may 
have advantages, I believe the full notation works for the reader and helps in 
understanding exactly what is meant. The full notation, or abbreviations such 
as log(L(q|x,g

i
) ), makes it implicit that the log-likelihood is a function of 

(only) the parameters (q); while the data (x) and model (g
i
, say multinomial) 

must be given (i.e., known). These distinctions become more important when 
we introduce the concept of a likelihood of a model, given the data: L(g

i
|data) 

in Chap. 4. Both concepts are fundamental and useful in a host of ways in this 
book and the notation serves an important purpose here.

3.3.1 The Bias Correction Term

Correction of estimators for bias has a long history in statistics. The usual 
estimator of the variance is a ready example

variance =
−

−
∑ ( )

,
x

n
i m^ 2

1

where the subtraction of 1 from the sample size (n) in the denominator corrects 
for a small sample bias (note that as n gets large the bias correction becomes 
unimportant). The bias correction term (K = the number of estimable param-
eters), above, is a special case of a more general result derived by Takeuchi 
(1976) and described in Sect. 3.9.1. AIC is a special case of Takeuchi’s Infor-
mation Criterion (TIC) and is, itself, a parsimonious approach to the estima-
tion of expected K–L information.

3.3.2 Why Multiply by −2?

Akaike multiplied the bias-corrected log-likelihood by −2 for “historical rea-
sons.” It is a well-known statistical result that −2 times the logarithm of the 
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ratio of two maximized likelihood values is asymptotically chi-square dis-
tributed under certain conditions and assumptions (this is the likelihood ratio 

sonable that Akaike performed this simple operation to get his AIC. Three 
points frequently arise and I will note these here.

First, the model associated with the minimum AIC remains unchanged had 
the bias-corrected log-likelihood (i.e., log(L) − K) been multiplied by −0.17, 
−51.3, −3.14159, or any other negative number. Thus, the minimization is not 
changed by the multiplication of both terms by any negative constant; Akaike 
merely chose −2. Second, some investigators have not realized the formal 
link between expected K–L information and AIC and believed, then, that the 
number 2 in (only) the second term in AIC was somehow arbitrary and that 
other multipliers should also be considered. This error has led to consider-
able confusion in the technical literature; −K is the asymptotic bias correc-
tion and is not arbitrary. Akaike chose to work with −2log(L), rather than 
log(L); thus the term + 2K is theoretically correct for large sample size. As 
long as both terms (the log-likelihood and the bias correction term) are mul-
tiplied by the same negative constant, the model where the criterion is mini-
mized is unchanged and there is nothing arbitrary. Third, −2log(L) is termed 
“ deviance” in mathematical statistics. People with a statistical background 
immediately interpret deviance as a way to quantify lack of fit and they then 
view AIC as simply “deviance + 2K.” I suspect that this was Akaike’s thinking 
when he multiplied through by −2; that is simply, “deviance penalized by 2K 
to correct for asymptotic bias.”

3.3.3 Parsimony is Achieved as a by-Product

AIC is linked directly to the estimation of expected K–L information. The der-
ivation itself was not based on the concept of parsimony. It was after Akaike’s 
elegant derivation of AIC that people noticed a heuristic interpretation that 
was interesting and allowed insight into how parsimony is enforced with AIC. 
The best model is closest to full reality and, therefore, the goal is to find the 
model where AIC is smallest. The first term (the deviance) in AIC

AIC = −2log(L(q̂)| x) +2K

is a measure of lack of model fit, and can be made smaller by adding more 
parameters in the model g

i
. Thus, for a fixed data set, the further addition of 

parameters in a model g
i
 will allow it to fit better. However, when these added 

parameters must be estimated (rather than known or “given”), further uncer-

some point, the addition of still more estimated parameters will have the oppo-
site effect and the estimate of expected K–L information will increase because 
“noise” is then being modeled as if it were structural. The second term in AIC 
(2K) then functions as a “penalty” for adding more parameters in the model. 

test). The term −2 occurs in other statistical contexts, and so it was not unrea-

tainty is added to the estimation of expected K–L information or distance. At 



Thus, the penalty terms (2K) gets larger as more parameters are added. One 
can see that there is a tension between the deviance and the  penalty term as the 
number of parameters is increased – a trade-off.

Without a proper penalty term the best model would nearly always be the 
largest model in the set, because adding more and more parameters to be 
 estimated from the fixed amount of data would be without “cost” (i.e., no pen-
alty). The result would be models that are overfit, have low precision, and risk 
spurious effects because noise is being modeled as structure.

This heuristic explanation does not do justice to the much deeper theo-
retical basis for AIC (i.e., the link with expected K–L information). How-
ever, the advantage of adding parameters and the concomitant disadvantage 
of adding still more parameters suggests a trade-off. This is the trade-off 
between bias and variance or the trade-off between underfitting and overfit-
ting that is the Principle of Parsimony (see Sect. 2.4). Note that parsimony 
was not a condition leading to AIC, instead parsimony appears almost as a 
by-product of the end result of the derivation of AIC from expected K–L 
information.

Inferences for a given data set are conditional on sample size. We must 
admit that if much more data were available, then further effects could prob-
ably be found and supported. “Truth” is elusive; model selection tells us what 
inferences the data support, not what full reality might be. Full reality cannot 
be found using a finite data set.

3.3.4 Simple vs. Complex Models

Data analysis involves the critical question, “how complex a model will the 
data support?” and the proper trade-off between underfitting and overfitting. 

inference. As biologists, we think certain variables and structure must be in a 
‘good model’ often without recognition that putting in too many variables and 
too much structure introduces large uncertainties, particularly when sample 
size is relatively small or even moderate. In addition, interpretability is often 
decreased as the number of parameters increases.

As biologists, we have a strong tendency to want to build models of the 
information in the data that are too complex (overfit). This is a parsimony 
issue that is central to proper model selection. One cannot rely on intuition 
to judge a proper trade-off between under- and overfitting, a criterion based 
on deep theory is needed. Expected K–L information and AIC provide the 
basis for a rigorous trade-off. This seems a very natural, simple concept; select 
the fitted approximating model that is estimated, on average, to be closest to 
the unknown full reality, f.

Ideal model selection results in not just a good fitting model, but a model 
with good out-of-sample prediction performance. This is a tall order. The 
selected model should have good achieved confidence interval coverage for the 
estimators in the model and small predictive mean squared errors (PMSE).
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3.3.5 AIC Scale

As defined, AIC is strictly positive. However, during an analysis, it is com-
mon to omit mathematical terms that are constant across models and such 
shortcuts can result in negative values of AIC. Computing AIC from regres-
sion statistics often results in negative AIC values. This creates no problem, 
one just identifies the model with the smallest value of AIC and declares it 
is the model estimated to be the best. This fitted model is estimated to be 
“closest” to full reality and is a good approximation for the information in the 
data, relative to the other models considered. For example,

 Model AIC

 g
1
 1,400

 g
2
 1,570

 g
3
 1,390

 g
4
 1,415.

One would select model g
3
 as the basis for inference as it has the smallest 

AIC value; meaning that it is estimated to be closest to full reality. Because 
these values are on a relative scale, one could subtract, say, 2,000 from each 
and have the following rescaled AIC values: −600, −430, −610, and −585. 
The rank of each model is not changed by the rescaling; the ranks, in each 
case remain g

3
 (best), g

1
, g

4,
 and g

2
 (worst). I have seen AIC values that range 

from −80,000 to as high as 340,000 in different scientific applications. It is 
not the absolute size of the AIC value, it is the relative values, and particu-
larly the differences, that are important (Chap. 4).

3.4 A Second-Order Bias Correction: AICc

Second-Order Bias Correction: AICc

Akaike derived an asymptotically unbiased estimator of expected K–L infor-
mation; however, AIC may perform poorly if there are too many estimated 
parameters in relation to the size of the sample. A second-order variant of AIC 
has been developed and it is important to use this criterion in practice:

AICc 2 log( ( )) 2
1

,= - +
- -

L q^ K
n

n K
⎛
⎝⎜

⎞
⎠⎟

where n is sample size. This can be rewritten as

AICc 2 log( ( )) 2K
2 ( 1)

1
= - + + +

- -
L q^ K K

n K

or equivalently

AICc = AIC +
2 ( + 1)

1
.

K K
n K- -



AICc merely has an additional bias correction term. If n is large (asymp-
totic) with respect to K, then the second-order correction is negligible 
and AICc converges to AIC. AICc was derived under Gaussian assumptions 
and is weakly dependent on this assumption. Other model-specific assump-
tions can be made and this might be worthwhile in data analysis where there 
are severe controversies or consequences (Burnham and Anderson 2002:
Chap. 7). The use of AICc is highly recommended in practice; do not use 
just AIC.

3.5 Regression Analysis

Least squares regression is a very useful approach to modeling. Here, model 
selection is often thought of as “variable selection.” It is easy to move from 
regression statistics such as the residual sum of squares (RSS) to the log-like-
lihood function at its maximum point; this allows one to use AICc. Note, LS 
and ML provide exactly the same estimates of the b

j
 in linear models; how-

ever, the estimates of the residual variance s2 can differ appreciably if sample 
size is small. 

Mapping the RSS into the Maximized Log-Likelihood

The material to this point has been based on likelihood theory (Appendix 
A) as it is a very general approach. In the special case of LS estimation 
(“regression”) with normally distributed errors, and apart from a constant, 
we have

log( )
2

log .2L = - .n
( )ŝ

Substituting this expression, AICc for use in LS models can be expressed 
as

AICc = log( ) + 2
1

,2n K
n

n K
s^

- -
⎛
⎝⎜

⎞
⎠⎟

where s e^ 2 2
= Σ ˆ

i
n  (the MLE) and ê

i
 are the estimated residuals for a par-

ticular candidate model.
A common (but minor) mistake is to take the LS estimate of s2 from 

the computer output, instead of the ML estimate (above). In regression 
models, K is the total number of estimated parameters, including the 
intercept and s2. The value of K is sometimes computed incorrectly as 
either b

0
 or s2 are mistakenly ignored in obtaining K. AICc is easy to 

compute from the results of LS estimation in the case of linear models. 
It is not uncommon to see computer software that computes simple AIC 
value incorrectly; few packages provide AICc; however, this can be com-
puted easily manually.
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Given a set of candidate models g
i
, with parameters to be estimated from 

the observed data, the model which minimizes the predictive expectation is 
“closest” to full reality (f) and is to be preferred as a basis for inference. AICc 
allows an estimate as to which model is best for a given data set; however, 
a different best model might be selected if another (replicate) data set was 
available. These are stochastic biological processes, often with relatively high 
levels of complexity, we must admit to uncertainty and try to quantify it. This 
condition is called “model selection uncertainty.” We must also admit that if 
much more data were available, then further effects could probably be found 
and supported. “Truth” is elusive; proper model selection helps us understand 
what inferences the data support.

AICc attempts to reformulate the problem explicitly as a problem of approxi-
mation of the true structure (probably infinite dimensional) by a model. Model 
selection then becomes simply finding the model where AICc is minimized. 
I will show in a later chapter that model selection is much more than this.

AICc selection is objective and represents a very different paradigm to that of 
null hypothesis testing and is free from the arbitrary a levels, the multiple test-
ing problem, and the fact that many candidate models are not nested. The prob-
lem of what model to use is inherently not a null hypothesis testing problem.

The fact that AIC allows a simple comparison of models does not justify 
the comparison of all possible models. If one had 10 variables, then there are 
1,024 possible models, even if interactions and squared or cubed terms are 
excluded. If sample size is n ≤ 1,000, overfitting is almost a certainty. It is 
simply not sensible to consider such a large number of models because an 
overfit model will almost surely result and the science of the problem has 
been lost. Even in a very exploratory analysis it seems like poor practice to 
consider all possible models; surely some science can be brought to bear on 
such an unthinking approach. I continue to see papers published where tens of 
thousands or even millions of models are fit and evaluated; this represents a 
foolish approach and virtually guarantees spurious effects and absurdities.

As a generally useful rule, when the number of models (R) exceeds the sam-
ple size (n), one is asking for serious inferential difficulties. I advise  people to 
think first about their set of a priori science hypotheses; these will typically be 
relatively few in number. A focus on models is the result of computer software 
that is very powerful, but unthinking.

3.6 Additional Important Points

3.6.1 Differences Among AICc Values

Often data do not support only one model as clearly best for data analysis (i.e., 
little or no model selection uncertainty). Instead, suppose three models are 
essentially tied for best, while another subset of models is clearly not appropri-
ate (either under- or overfit). Such virtual “ties” for the estimated best model 



must be carefully considered and admitted. The inability to ferret out a single 
best model is not a defect of AICc or any other selection criterion, rather, it is an 
indication that the data are simply inadequate to reach such a strong inference.

It is perfectly reasonable that several models would serve nearly equally well 
in approximating the information in a set of data. Inference must admit that 
there are sometimes competing hypotheses and the data do not support selecting 
only one. Large sample sizes often reduce close ties among models in the set. 
The issue of competing models is especially relevant in including model selec-
tion uncertainty into estimators of precision and model averaging (Chap. 5).

Consider studies of Plasmodium infection of children in tropical Africa and 
data from two different sites have been modeled and fitted. The best model for 
the eastern site has AIC = 104, whereas the best model for the western site has 
AIC = 231. Are the models better for the western site? Perhaps, however, just 
the fact that the best model for the western site has a larger AIC value is not 
evidence of this. AIC values are functions of sample size and this precludes 
comparing AIC values across data sets.

3.6.2 Nested vs. Nonnested Models

The focus should be on the science hypotheses deemed to be of interest. 
 Modeling of these hypotheses should not be constrained to only models that 
are nested. AICc can be used for nonnested models and this is an important 
feature because likelihood ratio tests are valid only for nested models. The 
ranking of models using AICc helps clarify the importance of modeling.

3.6.3 Data and Response Variable Must Remain Fixed

It is important that the data are fixed prior to data analysis. One cannot switch 
from a full data set to one where some “outliers” have been omitted in the mid-
dle of the analysis. It would be senseless to evaluate two hypotheses using data x 
and the remaining four hypotheses using a somewhat different data set. The fixed 
nature of the data is implied in the shorthand notation for models: g(q |data), the 
model as a function of the known parameters (q), given the (fixed) data (x).

Some analyses can be done on either the raw data or some grouping of the 
raw data (e.g., histogram classes). In such cases, one must be consistent in per-
forming the analysis on one data type or the other, not a mixture of both types. 
Any grouping of the raw data loses some information, thus grouping should be 
carefully considered.

If Y is the response variable of interest, it must also be kept fixed during the 
analysis. One cannot evaluate models of Y and then switch to models of log(Y) 
or Y . Having a mix of response variables in the model set is an “apples and 
oranges” issue. Such changes make the AICc values uninterpretable; more 
importantly, the science problem is muddied. For example,  presence–absence 
data on some plant species cannot be compared to counts of that plant on a 
series of plots.
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3.6.4 AICc is not a “Test”

Information-theoretic approaches do not constitute a statistical “test” of any 
sort (see Appendix C). There are no test statistics, assumed asymptotic sam-
pling distributions, arbitrary a-levels, P-values, and arbitrary decision about 
“statistical significance.” Instead, there are numerical values that represent the 
scientific evidence (Chaps. 4 and 5), often followed by value judgments made 
by the investigators and perhaps others.

It is poor practice to mix evidence from information-theoretic approaches 
with the results of null hypothesis testing, even though this is a common mis-
take in the published literature. One sees cases where the models are ranked 
using AICc and then a “test” is carried out to see if the best model is “signifi-
cantly better” than the second-best model. This is seriously wrong on several 
different technical levels and I advise against it. Null hypothesis testing and 
information-theoretic results are like oil and water; they do not mix well.

3.6.5 Data Dredging Using AICc

Ideally science hypotheses and their models are available prior to data analysis 
and, ideally, prior to data collection. These a priori considerations led to a con-
firmatory result. Following that, I often encourage some post hoc examination 
of the data using hypotheses and models suggested by the a priori results. Such 
after-thoughts are often called “data dredging.” I do not condone the use of infor-
mation-theoretic criteria in data dredging, even in the early phases of exploratory 
analysis. For example, one might start with 8–10 models, compute AICc for each, 
and note that several of the better models each have a gender effect. Based on 
these findings, another 4–7 models are derived to include a gender effect. After 
computing AICc for these models, the analyst notes that several of these models 
have a trend in time for some parameter set; thus more models with this effect are 
derived, and so on. This strategy constitutes traditional data dredging but using 
an information theoretic criteria instead of some form of test statistic or visual 
inspection of plots of the intermediate results. I recognize that others have a more 
lenient attitude toward blatant data dredging. I think investigators should under-
stand the negative aspects of data dredging and try to minimize this activity.

3.6.6 Keep all the Model Terms

It is good practice to retain all the terms in the log-likelihood in order for AICc 
to be comparable across models. This is particularly important for nonnested 
models (e.g., the nine models of Flather, Sect. 3.9.6) and in cases where dif-
ferent error distributions are used (e.g., log-normal vs. gamma). If several 
computer programs are used to get the MLEs and the maximum log(L), then 
one is at risk that some terms in one model were dropped, while these terms 
were not dropped in other models. This is a rather technical issue: Burnham 
and Anderson (2002, Sect. 6.7) provide some insights and examples.



3.6.7 Missing Data

A subtle point relates to data sets where a few values of the response variable 
or predictor variables are missing. Such missing values can arise for a host of 
reasons, including loss, unreadable recording, and deletion of values judged 
to be incorrect. If a value or two are missing from a large data set, perhaps no 
harm is done. However, if the missing values are numerous at all then more 
careful consideration is called for. In particular, if some values for covariates 
are missing, this can also lead to important issues, including the fact that some 
software may either stop or give erroneous results. There are ad hoc routines 
for assigning “innocent” values to be used in place of the missing values; 
these could be considered. There are a variety of Bayesian “imputation” tech-
niques that have merit; these are far beyond the scope of this text. The real 
moral here is to collect data with utmost care and in doing so, avoid issues 
with missing data.

3.6.8 The “Pretending Variable”

Putting aside the second-order correction for bias for a moment, AIC is 
just −2log(L) + 2K or deviance + 2K. The addition of each new parame-
ter suffers a “penalty” of 2. Now, consider the case where model A has K 
parameters and model B has K + 1 parameters (i.e., one additional param-
eter). Occasionally, we find that model B is about 2 units from model 
A and thus, we would view model B as a good model – it is a good model. 
Problems arise when the two AIC values are about 2 units apart but the devi-
ance is little changed by the addition of a variable or parameter in model B. In 
this case, the additional variable does not contribute to a better fit, instead, it 
is a “good” model only because the bias correction term is only 2 (i.e., 2 × 1). 
This should not be taken as evidence that the new parameter (and the variable 
it is associated with) is important. The new parameter is only “pretending” to 
be important; to confirm this, one can examine the estimate of the parameter 
(perhaps a regression coefficient b) and its confidence interval. However, the 
real clue here is that the deviance did not change and this is an indication that 
the model fit did not improve.

I will call this issue a “pretending variable” as a noninformative variable 
enters as one additional parameter and therefore incurs only a small “penalty” 
of about 2, but does not increase the log-likelihood (or decrease the deviance). 
Is this model (B) a good model? YES. Can we take this result to further imply 
that the added variable is important? NO. Thus, scientists must examine the 
table of model results to be sure that added variables increase the log-likelihood 
values. Pretending variables may arise for any models i and j in the set where 
the difference in AIC values increase by about 2. Less commonly, a model (call 
it C) will add two parameters and its added penalty is 4 (still a decent model). 
However, unless there is a change in the log-likelihood, the two new variables 
or parameters are only “pretending” to be important. Finally, when using AICc, 
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the values are a bit different from 2 or 4; still a focus on the log-likelihood or 
deviance is advised, to be sure that the fit has improved.

3.7 Cement Hardening Data

The computation of AICc from the cement hardening data from Sect. 2.2.1 is 
shown in the table below:

Model K ŝ 2 log(L) AICc Rank

{mean} 2 208.91 −34.72 74.64 5
{12} 4 4.45 −9.704 32.41 1
{12 1*2} 5 4.40 −9.626 37.82 2
{34} 4 13.53 −16.927 46.85 3
{34 3*4} 5 12.42 −16.376 51.32 4

PROC REG (SAS Institute 1985) was used to compute the residual sum of 
squares (RSS), the LS estimates of the b parameters, and the standard errors 
of the parameter estimates for each model. The MLE of the residual  variance 
is ŝ 2 = RSS/n, where the sample size (n) = 13. AICc = nlog(ŝ  2) + 2K + 2K(K 
+ 1)/(n − K − 1) was used. The calculations can be illustrated using the infor-
mation from the {mean} model above where K = 2. The MLE of the residual 
variance is 208.91, thus the first term in AICc is 13 log(208.91) = 69.444, the 
second term is 2·2 = 4, and the third term is (2·2·3)/(13 − 3) = 1.2. Summing 
the three terms leads to 74.64. The computations are easy but the reader should 
compute a few more entries in the table above to be sure they understand 
the notation and procedure. Note, log-likelihood values are usually negative, 
while AICc values are generally positive.

3.7.1 Interpreting AICc Values

AICc is an estimator of expected K–L information and we seek the fitted 
model where the information loss is minimal. Said another way, we seek the 
model where the estimated distance to full reality is as small as possible; this 
is the model with the smallest AICc value. The model that is estimated to be 
closest to full reality is referred to as the “best model.” This best model is {12} 
from the table above, namely,

E(Y) = b0 + b
1
(x

1
) +b

2
(x

2
)

0 1
2

variable, thus only two parameters are estimated, b
0
 and s 2. The model nota-

tion {12 1*2} denotes the model

with four parameters (K = 4 = b , b , b , and s ).
The {mean} model in the table is just the mean and variance of the response 

2



E(Y) = b0 + b
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1
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where an interaction term is introduced. This model is estimated to be the 
second best model; however, one can quickly see that the interaction is not an 
important predictor by examining the MLEs and their standard errors:

 Parameter MLE ŝe(b̂)

 b
1
 1.275 0.581

 b
2
 0.636 0.091

 b3 0.004 0.012

Note that the estimated standard error on b̂3
 is three times larger than the 

MLE, thus it certainly seems to be unimportant. This result allows an impor-
tant, but subtle, point to be made here. Let us ask two questions from the 
information above. First, is the interaction model {12 1* 2} a relatively good 
model? The answer is YES, this can be seen from the table of AICc  values. 
Second, does this answer imply that the interaction term is an important 
 predictor? The answer is no; to judge its importance one needs to examine the 
standard error of the estimate and a confidence interval (i.e, −0.020 to 0.028 
for b

3
). This interval was computed as b̂

3
 ± 2 × ŝe(b̂3

) and is essentially cen-
tered on zero and fails to support the hypothesized importance of b

3
.

Another thing to note is that the scale (i.e., the size, Sect. 3.3.5) of the AICc 
values is unimportant. One cannot look at the AICc value for the third model 
(37.82) and judge weather it is “too big” or not “big enough.” These AICc 
values have unknown constants associated with them and are functions of 
sample size. It is the relative values of AICc that are relevant. In fact, we will 
see in Chap. 4 that it is the differences in AICc values that become the basis 
for extended inferences.

Of course AICc allows a quick ranking of the five hypotheses, repre-
sented by the five models. The ranks are (from estimated best to worst): 
g

2
, g

3
, g

4
, g

5
, and g

1
 for this simple example. Models {34} and {34 3*4} 

are poor and the mean-only model is very poor in the rankings. The ability 
to rank science hypotheses is almost always important; however, it will be 
seen that far more information can be gained using methods introduced in 
the following chapter.

3.7.2 What if all the Models are Bad?

If all five models are essentially worthless, AICc will still rank them; thus, 
one must have some way to measure the worth of the best model or the global 
model. In regression, a natural measure of the worth of a model is the adjusted 
R2 value. In other contexts, one can use a method outlined by Nagelkerke (1991) 
for a likelihood-based analysis. In this case of cement hardening, the model 
 estimated to be the best in the set was model {12} with an adjusted R2 = 0.974. 
This suggests that the best model is quite good, at least for these data.
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If this best model and its MLEs were used with a new, replicate data set, 
one would find that the adjusted R2 would be substantially lower than 0.974. 
Adjusted R2 exaggerates our notions about the out-of-sample predictive 
 ability of models fit to a given data set. The derivation of AICc is based on 
a  predictive likelihood and this attempts to optimize performance  measures 
such as  predictive mean squared error. Thus, AICc attempts to deal with out-
of-sample prediction by its very derivation. Even model {34 3*4} had an 
adjusted R2 = 0.921. R2 is a descriptive statistic and should not be used for 
formal model selection (it is very poor in this regard). A likelihood version of 
“R2” is given in Appendix A and is useful when the analysis has been done in 
a likelihood framework.

The danger of having all the models in the set be useless arises most often 
in exploratory work where little thought went into hypothesizing science 
 relationships or data collection protocols. I have seen a number of habitat–
 animal association models where the best model in the set had an R2 value 
around 0.06, certainly indicating that more work is needed. In such cases, the 
rankings of the models carry little meaning.

Generally some assessment of the worth of the global model is suggested. 
This assessment might be a goodness-of-fit test, residual analysis, adjusted R2, 
or other similar approach. If a global model fits, AICc will not select a more 
parsimonious model that fails to fit. Thus, it is sufficient to check the worth 
and fit of the global model. Often it is appropriate to provide an R2 value for 
the best model in reports or publications.

Another approach relies on including a “null” model in the set to evaluate 
the worth of particular hypotheses or assumptions. Consider a study of growth 
in tadpoles where density is a hypothesized covariate. One could evaluate a 
model where growth depends on density and another model where growth is 
independent of density. This procedure, used carefully, might allow insights 
as to the worth of models in the set. Details for such evaluations are given in 
Chap. 4.

3.7.3 Prediction from the Best Model

One goal of selecting the best model is to use it in making inferences from 

and prediction is one objective. In this case, prediction would come from the 
model structure:

E(Y) = b0 + b
1
(x

1
) +b

2
(x

2
),

where x
1
 = calcium aluminate and x

2
 = tricalcium silicate. The least 

squares estimates of b
1
 and b

2
 allow predictions to be made from the fitted 

model:

E(Ŷ) = 52.6 + 1.468(x
1
) + 0.662(x

2
)

the sample data to the population. This is model based inductive inference 



The adjusted R2 for this model is 0.974 suggesting that prediction is expected 
to be quite good until one realizes that the out-of-sample prediction perform-
ance might be poor with a sample size of 13 and the fitting of four parameters. 
This issue will be further addressed in Chap. 5.

3.8  Ranking the Models of Bovine 
Tuberculosis in Ferrets

The computation of AICc from the tuberculosis data allows a ranking of the 
five science hypotheses and these are shown in the table below:

Hypotheses K log(L) AICc Rank

H
1
 6 −70.44 154.4 4

H
2
 6 −986.86 1,987.2 5

H
3
 6 −64.27 142.1 3

H
4
 6 −45.02 103.6 1

H
5
 6 −46.20 105.9 2

AICc for the model corresponding to H
5
 is computed as

AICc = − + + +
− −

= − − + ⋅

+ ⋅ ⋅

2 2
2 1

1
2 46 20 2 6

2 6 7

log( ( ))
( )

( . )

( ) /(

L q^ K
K K

n K
662 5 92 4 12 1 474 105 9− = + + =) . . . .

Because K = 6 for all five models in this example, AIC and AICc would 
select the same model.

Parameter estimates for these models were MLEs and there were no 
estimates of residual variance ŝ 2; instead, the maximized value of the log-
likelihood was available directly. Here it is easy to compute AICc, given 
the number of estimable parameters (six for each model here), the sample size 
(n = 62), and the value of the maximized log-likelihood function (tabled 
above) for each of the five models. The reader is asked to verify the com-
putation for a few entries in the table to be sure they understand the issues. 
Note, too, because a likelihood approach was used here, there is no statistics 
strictly analogous to an R2 value in the usual (i.e., least squares) sense 
(but see Nagelkerke (1991) for a useful analog. A final technical note is 
that there is often no unique measure of “sample size” for binomial out-
comes such as these; Caley and Hone were conservative in using n = 62 in 
this case.

Empirical support favors H
4
, the dietary-related hypothesis as the best of 

the five hypotheses. Ranking hypotheses from best to worst was H
4
, H

5
, H

3
, 

H
1
, and H

2
. Clearly, H

2
 (transmission during mating and fighting from the age 
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of 10 months when the breeding season starts) seems very poor relative to the 
other hypotheses. Such observations and interpretations will be made more 
rigorous in Chap. 4. At this time it might be reasonable to begin to wonder 
about the ranking of hypotheses if a different data set of the same size was 
available for analysis; would the rankings be the same? This issue is termed 
“model selection uncertainty” and will turn out to be very important.

3.9 Other Important Issues

3.9.1 Takeuchi’s Information Criterion

I mention Takeuchi’s information criterion (TIC) but it is rarely used in practice. 
However, it is important in the general understanding of information criteria. 
Akaike’s derivation assumed, at one step, an expectation over the model (not 
full reality). This has lead to the assumption that AIC was based on a true model 
being in the set; although Akaike clearly stated otherwise in his papers.

Takeuchi (1976), in a little known paper in Japanese, made the first pub-
lished derivation clearly taking all expectations with respect to full reality. 
Takeuchi’s TIC is an asymptotically unbiased estimate of expected K–L and 
does not rest in any way on the assumption that a “true model” is in the set. 
TIC is much more complicated to compute than AICc because its bias adjust-
ment term involves the estimation of the elements of two K × K matrices of 
first and second partial derivatives, J(q) and I(q), the inversion of the matrix 
I(q), and then the matrix product. TIC is defined as

TIC = −2log(L(q̂ )|data) + 2tr(J(q)I(q)–1),

where “tr” is the matrix trace operator. Unless sample size is very large, the 
estimate of tr(J(q)I(q)−1) is often numerically unstable; thus, its practical 
application is nil (I have never seen TIC used in application). However, it 
turns out that a very good estimate of this messy term is merely K or K + 
K(K + 1)/(n − K − 1), corresponding to AIC and AICc. Thus, it can be seen 
that AIC and AICc represent a parsimonious approach to bias correction! That 
is, rather than trying to compute estimates of all the elements in two K by K 
matrices, inverting one, multiplying the two, and computing the matrix trace, 
just use K or K + K(K + 1)/(n − K − 1), as these are far more stable and easy to 
use. [In fact, if f was assumed to be in the set of candidate models, then for that 
model tr(J(q)I(q)−1) ≡ K. If the set of candidate models includes any decent 
models, then tr(J(q)I(q)−1) is approximately K for those models.]

It is important to realize that the deviance term nearly always dwarfs the 
“penalty” term in AICc or TIC. Thus, poor fitting models have a relatively 
large deviance and, thus, the exact value of the penalty term is not critical in 
many cases.



3.9.2 Problems When Evaluating Too Many Candidate Models

A common mistake is to focus on models without full consideration of 
the all important science hypotheses. Armed with too little science think-
ing and computer software that allows “all possible” models to be fit to 
a  hapless data set, one is ready to find a wide variety of effects that are 
spurious. This is a subtle but important point and there is a large statistical 
literature on this  matter. The entire fabric of the investigation breaks down 
in many exploratory studies where sample size might be only 35–80 and 
there are 15–20 explanatory variables, leading to about 33,000 or 1,050,000 
models, respectively. In these cases, one may expect substantial overfitting 
and the finding of many effects that are actually spurious (Freedman 1983; 
Flack and Chang 1987; Anderson 2001). One useful rule of thumb is when 
the sample size is smaller than the number of models (i.e., n < R), then the 
analysis must be viewed as only exploratory (see Burnham and Anderson 
2002:267–284). If one thinks as Chamberlin suggested, the focus will be on 
the science issues and multiple working hypotheses. Then develop models 
to represent these hypotheses, keeping an eye on the science and less so on 
countless models that can be run easily by sophisticated (but unthinking!) 
software. Good application can expect n » R.

Hoeting et al. (2006) provide an example of geostatistical modeling of whip-
tail lizards in southern California. There were 37 predictor variables available, 
leading to 1.4 × 1011 possible models. They were able to reduce the number of 
variables to six which resulted in a tractable 160 models. Three of these were 
judged to be good models and involved similar variables.

3.9.3  The Parameter Count K and Parameters 
that Cannot be Uniquely Estimated

Often there are some parameters in a model that are not uniquely estimable 
from the data and these should not both be counted in K. Such “noniden-
tifiability” can arise due to inherent confounding (e.g., the estimators of 
survival and sampling probabilities, S

t−1
 and f

t
, respectively, in certain band 

recovery models of Brownie et al. 1985). In such cases, the correct value 
of K counts the product S

t−1
 f

t
 as a single parameter (not two parameters). 

Here, it is the estimators Ŝ
t−1

 and f̂
t
 that are confounded, not the parameters 

themselves.
Smith et al. (2005) provide another example of nonidentifiablity in their 

study of entomological inoculation rates and Plasmodium falcipraum infec-
tion in children in Africa. Their best model was

PR = − +⎛
⎝⎜

⎞
⎠⎟

−

1 1
b

rk

ke
,
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where PR = parasite ratio, b = transmission efficiency, e = annual entomologi-
cal inoculation rate, r = inverse of the expected time to clear an infection and 
1/k = the coefficient of variation of the population infection rate. They found 
that b and r were exactly collinear, only the ratio b/k was relevant or identifi-
able. Thus, K would be 3 in this case: (b/r), e, and 1/k. If an error distribution 
was included, then K would be increased by 1. Nonestimability and noniden-
tifiability are common issues in some life science problems.

Sometimes a parameter is estimated on a boundary and this can be con-
fusing. If the parameter being estimated is a probability (e.g., a transition 
 probability of moving from state i to state j, say y

ij
), then it may be that the 

MLE ŷ is either 0 or 1 (i.e., on a boundary). Often the estimated standard 
error is 0, with a confidence interval of 0 width. In such cases, this parameter 
estimate must enter the count for K, even though some software may indicate 
such a parameter was “not estimated.” Here, the parameter was estimated, 
it just happened that the most likely estimate was 0 or 1 (a boundary) and it 
should be counted in K.

Another technical point is the case where the iterative numerical procedure 
fails to “converge” in likelihood-based estimation. This condition is important 
and is nearly always noted on the output by the software. Until convergence 
is obtained or the specific situation understood, the analysis for that model 
should not go forward (i.e., the maximum of the log-likelihood function has 
not been found). Often, the failure to converge is due to the log-likelihood 
surface (see Appendix A) being nearly perfectly flat over some region in the 
parameter space. Thus, repeated tries to find the exact maximum point can 
fail. Alternatively, the log-likelihood surface might have more than a single 
mode, making valid inference more difficult (but there are many ways to 
address this problem).

3.9.4 Cross Validation and AICc

Basing AICc on the expectation (over q̂ ) of E
x
[log(g(x|q̂ (y)))] provides the 

criterion with a cross validation property for independent and identically 
 distributed samples (Stone 1974, 1977). Golub et al. (1979) show that AIC 
asymptotically coincides with generalized cross validation in subset regression 
(also see review by Atilgan 1996). These are important results for  application 
and are another by-product of Akaike’s predictive likelihood. The practi-
cal utility of these findings suggest that computer-intensive cross  validation 
results will average about the same result as just using AICc.

3.9.5 Science Advances as the Hypothesis Set Evolves

Evolution importantly involves time and information. Consider an investi-
gator with R = 5 good, plausible science hypotheses, a mathematical model 
representing each of the five, and a set of relevant data from a proper collec-
tion scheme. Upon completion of the analysis using an information-theoretic 



approach, it may become clear that two of the hypotheses have virtually no 
empirical support; their likelihoods (Chap. 4) are perhaps 3,000 or 6,600 to 
one of having utility.

At this point, one wants the hypothesis set to “evolve” allowing rapid progress 
in learning and understanding the system under study. First, the set is now 
reduced to three plausible alternatives (i.e., the two hypotheses lacking empiri-
cal support can be dropped from further consideration). Second, perhaps the 
three remaining hypotheses can be refined or their models can be made a better 
reflection of the intended hypothesis. Third, more hard thinking and considera-
tion might lead to the introduction of one or more new hypotheses into the set. 
At this point, new data are collected and the process is repeated.

There is some art involved in this evolution. For example, if a large amount 
of new data can be anticipated, one must be careful and not discard some intri-
cate hypotheses with high dimensioned models because such models might 
find support with a much larger data set. Often a scientist might prefer a more 
simple model if it predicts well, has parameters that are directly related to the 
system, and captures the main effects. Thus, there is some flexibility to use a 
model other than that estimated to be best for some inferences. An important 
aspect of science is that it never stops; each step (the set continually evolves) 
tends to lead to new and better understanding. Some steps might go “back-
ward” for awhile, but science has a way of correcting missteps.

3.10 Summary

The crucial, initial starting point for advancement in the life sciences is a set 
of “multiple working hypotheses” defined prior to data analysis. These are 
the result of a determination to address the background science of the issue at 
hand. Following this important step, the science of the matter, experience, and 
expertise are used to define an a priori set of candidate models, representing 
the hypotheses. These are important philosophical issues that must receive 
increased attention. The research problem should be carefully stated, fol-
lowed by careful planning concerning the sampling or experimental design. 
Sample size and other planning issues should be considered fully before the 
data gathering program begins. Information-theoretic procedures are not for 
rectifying poor science questions or resurrecting bad data.

Of course, hypotheses and models not in the set remain out of considera-
tion. AICc can be useful in selecting the best model in the set; however, if all 
the models are very poor, AICc will still select the one estimated to be best 
and rank the rest. However, even that relatively best model will be poor in 
an absolute sense. Thus, every effort must be made to assure that the set of 
hypotheses and models is well founded.

A good model separates “information” from noise or noninformation. We are 
not trying to model the data; instead we are trying to model the information in 
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the data. We are trying to use the data at hand to make inferences about the proc-
ess that generated the data and to make good out-of-sample predictions.

The underlying basis of AIC is (heuristically) a model that minimizes

E I f gq _q^
^

( ( , ( | ))).⋅

This is the K–L distance or information loss, given the model is fit to the 
data (in the sense that parameters are estimated from the data). When faced 
with data and unknown model parameters, the target changes to expected K–L 
information and is based on the fitted model.

The Principle of Parsimony provides a conceptual guide to model selection, 
while expected K–L information provides an objective criterion, based on a 
deep theoretical justification. AICc provides a practical method for model 
selection and associated data analysis and are estimates of expected K–L 
information. AIC, AICc, and TIC represent extensions of classical likelihood 
theory, are applicable across a very wide range of scientific questions, and 
AICc is quite simple to use in practice.

I advise that the theories underlying the information theoretic approaches 
and hypothesis testing are fundamentally quite different. AICc is not a “test” 
in any sense and there are no associated concepts such as test power or 
a-levels; statistical hypothesis testing represents a very different paradigm. 
The results of model selection under the two approaches might happen to be 
similar with simple problems and a large amount of data; however, in more 
complex situations, with many candidate models and less data, the results 
can be quite different.

3.11 Remarks

Guiasu (1977) and Cover and Thomas (1991) provide an overview of the broad 
field of information theory for those wanting to read more. Akaike’s main results 
on this issue appeared in 1973, 1974, and 1977, but these are for the statistically 
and  mathematically gifted. His broader and more contextual papers appeared 
in 1981a and b, 1985, 1992, and 1994 and these are more readable by mortals. 
Many of Akaike’s collected works were published by Parzen et al. (1998) and 
insights into Akaike’s career are found in Findley and Parzen (1995).

Cohen and Thirring (1973) and Broda (1983) give a full account of  Boltzmann’s 
life and science contributions. It is said that Boltzmann was the nineteenth cen-
tury’s greatest scientist. Gallager (2001) and Golomb et al. (2002) provide infor-
mation on Claude Shannon’s life and contributions to information theory. It is 
said that Shannon’s Master of Science thesis is the most famous or well-known 
thesis ever written. Claude Shannon wanted to go into genetics and his Ph.D. 
dissertation (never published) was on genetics. Like Boltzmann, Shannon was 
working far beyond existing science frontiers of the time.



Pronunciation is important; Akaike is pronounced with an accent on the 
“ka” and the “i” is pronounced like an “e” – AKAeke. Leibler is pronounced 
with the accent on the “i” while the “e” is silent – LIbler.

Akaike (1973) considered his information criterion to be a natural exten-
sion of R. A. Fisher’s likelihood theory. It is of historic interest that Fisher 
(1936) anticipated such an advance when he wrote,

“an even wider type of inductive argument may some day be developed, 
which shall discuss methods of assigning from the data the functional 
form of the population.”

Zellner’s book (Zellner et al. 2001) and particularly Forster’s chapter make 
for interesting reading about modeling and inference (also see Jessop 1995 
and Wallace 2004). Some authors view K, the asymptotic bias correction term 
in AIC, as a measure of “complexity.” Perhaps no harm is done in viewing 
it this way; however, it does not need to be so defined. I doubt if our word 
“ complexity” can be quantified in a satisfactory way as a single number or 
quantity. I view K as merely an asymptotic bias correction term.

A technical point: Given a parametric structural model, there is a unique 
value of q that, in fact, minimizes K–L information I(f, g). This (unknown) 
minimizing value of the parameter depends on truth f, the model g through 
its structure, the parameter space, and the sample space (i.e., the structure 
and nature of the data that can be collected). In this-sense there is a “true” 
value of q underling ML estimation (let this value be q

o
). Then q

o
 is the abso-

lute best value of q for model g; actual K–L information loss is minimized 
at q

o
. If one somehow knew that model g was, in fact, the K–L best model, 

then the MLE q̂ would estimate q
o
. This property of the model g(x|q

o
) as 

the minimizer of K–L, over all possible q, is an important feature involved in 
the derivation of AIC or AICc (Burnham and Anderson 2002:Chap. 7).

Another technical point concerns f the conceptual full reality. At a high 
level of abstraction we consider entities such as random variables and proba-
bility distributions. These are intellectual ways of thinking and understanding. 
Such abstraction carries over the notion of full reality which I denote as f. This 
symbol relates to the concept of the best “model” of full reality. There are no 
unknown parameters; reality may not even be parameterized. We parameter-
ize models in an effort to understand full reality, f.

Some computer software use the expression 2log(L) − 2K as “AIC” and 
then the objective is to maximize this across models. While this is not incor-
rect, it is certainly confusing and thus statements such as “bigger is better” 

ing it is the best model! I recommend against this practice; AIC has a clear 
 definition and I think it is best to use it.

A colleague wrote his explanation for the “pretending variable” issue. 
 Consider two models, (1) E(Y) = b

o
 + b

1
(X

1
) and (2) E(Y) = b

o
 + b (X

1
) + b

2
 

(independent random variable). Both models will have essentially the same 
deviance because of the addition of only a “noise” variable. The models will 
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differ by one parameter; the first model has K = 3, whereas the second model 
has K = 4, hence, ∆ for the second model will be bigger that the first model 
by two. The clue here is that the deviance did not change with the addition of 
another variable and its parameter.

The nonparametric bootstrap can be used in model selection; this was 
investigated by Burnham and Anderson (2002) and in general we found the 
performance of the analytic approach to be as good as if not better. Given the 
computer-intensive nature of the bootstrap, we have not given this approach 
much more attention or interest. Still, it is a general approach and might find 
use in some cases.

One can find in the published literature that AIC is only for nested models; 
this statement is incorrect. Likewise, other literature states that AIC is only 
for nonnested models. This, too, is incorrect. The general derivation (e.g., 
Takeuchi 1976 or Burnham and Anderson 2002:Chap. 7) makes no restriction 
concerning nestedness.

The methods outlined in this book apply to virtually all problems where 
a likelihood exists (Lahiri 2001). In addition, there are general information-
theoretic approaches for models well outside the likelihood framework (Qin 
and Lawless 1994; Ishiguro et al. 1997; Hurvich et al. 1998; Pan 2001a,b). There 
are now model selection methods for generalized estimation equations, kernel 
methods, martingales, nonparametric regression, and splines. Thus, methods 
exist for nearly all classes of models we might expect to see in the theoretical 
or applied life sciences.

Richard Leibler explained to me (about 1997) that many people thought 
their 1951 paper was a direct result from the war effort. Instead, the moti-
vation for that (now) famous paper was to provide a rigorous definition 
of what Fisher meant by the word “information” in relation to his “suffi-
cient statistics.” Indeed, they showed that all the “information” in the data 
was contained in sufficient statistics, given the model; just as Fisher had 
alleged. Few people realized the importance of the 1951 paper; they got no 
reprint requests for their paper for many years! Also interesting, Leibler 
had never realized that K–L information was the negative of Boltzmann’s 
entropy.

The K–L information or distance has also been called the K–L discrepancy, 
divergence, and number – I will treat these terms as synonyms, but tend to use 
information or distance in the material here (see Ullah 1996 for applications). 
Later, Kullback (1987) preferred the term discrimination information. Kullback 
served as head of the Statistics Department at George Washington University 
from 1964–1972 where he had a profound impact. He believed that information 
theory provides a unification of known results, leads to generalizations and the 
derivation of new results, and offers a unifying principle in statistics.

The second-order bias correction (leading to AICc) stems from Suguira’s 
(1978) work and several follow-up papers by Hurvich et al. While these papers 
are not theoretical contributions on the same scale as Akaike’s papers, they 
are very important in application. One should not use AIC in standard 



application; people should be using AICc, the second-order version of AIC 
(or derive new results if a specific distribution is required, see Burnham and 
Anderson 2002:Sect. 7.4.2).

It must be noted that Rissanen (1989, 1996) has derived a sophisticated 
model selection theory based on information and coding theory. His approach 
is very different, both conceptually and mathematically, than that presented 
in this book. His initial contribution was MDL for minimum description 
length and he has extended this in later publications and books (Rissanen 
2007). The MDL approach does not require prior distributions on param-
eters or models and many people would see this as an advantage in science 
issues. The MDL result was the same form as BIC (Appendix D), but later 
theory expands on this result. I will not go further into Rissanen’s work as it 
is quite technical unless one has the required background in coding theory. 
I note only that this interesting class of “information-theoretic” alternatives 
exists.

Akaike (1973, 1974) used what he called a predictive log-likelihood in 
deriving his information criterion; this has advantages and properties that are 
still not well recognized in the literature. Full discussion of his approach is 
technical and I will not provide more than a few insights here (see Akaike 
1973, 1987:319, 1992; Bozdogan 1987; Sakamoto 1991; deLeeuw 1992; and 
Burnham and Anderson 2002:Chap. 7). His approach involves a statistical 
expectation based on a different, independent sample. It is this second expec-
tation over a conceptually independent “data set” that provides AIC with a 
cross validation property (see Tong 1994; Stone 1977). Akaike’s predictive 
log-likelihood is

E
p 
[log(L(q̂ ))] = E

f 
E

f 
[log(L(q̂ 

y
)|x)].

Thus, E
f   
E

f 
[log(L  (q̂

y 
)| x)] is the “target” of estimation; under certain 

 conditions, log(L(q̂  )) − K is an estimator of this target when sample size is 
large ( asymptotically). The expectation over both the data x and the estimated 
parameters q̂  are taken with respect to the true f(x). This expectation addresses 
the technical issue of parameter uncertainty. Zucchini (2000) provides a nice 
introduction to model selection using a well chosen example that helps under-
standing. Konishi and Kitagawa (2007) provide a technical review of these 
issues and introduce another extension.

It is not easy to see why including a great many models in the candidate 
set is poor practice. One sidesteps this issue if they concentrate on science 
hypotheses first, and then think hard about a good model to represent each 
hypothesis. It is the availability of software to “run practically everything 
in sight” that leads to this confusing issue. Zucchini (2000) provides sev-
eral figures to illustrate the dangers of evaluating an excessive number of 
models.

Some software packages offer a “stepwise AIC” as an option for model selec-
tion (often termed variable selection in regression analysis). This is hardly in 
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the spirit of the information-theoretic approach and I strongly  recommend 
against it. Such ad hoc procedures strongly encourage an “all possible models” 
approach that seems counter to good science. Good science has to be more 
about hard thinking and developing what seem to be plausible hypotheses; 
then proceed to build models as a way to evaluate the strength of evidence for 
these a priori hypotheses.

Shannon Entropy

Claude Shannon, working during the 1940s, is often regarded as the father of 
information theory. Shannon (1948) justified entropy for discrete variables 
with discrete and finitely many outcomes as

H = –Â P
i 
log P

i
, 

where P
i
 is the probability of outcome i. He approached this by positing three 

conditions that information (in the context of probability) should satisfy. He 
then proved that H was the unique solution that satisfied the conditions. The 
entropy of a probability distribution is

H = –∫p(x)log p(x)dx,

where p(x) denotes the probability density with respect to the measure dx. 
Ecologists toyed with computing entropies in the early 1970s (an endeavor 
that Shannon termed the “bandwagon” in an editorial in the Transactions of 
Information Theory). While hundreds of papers presented entropies in leading 
ecological journals, most people now believe that this avenue produced little 
of value. In actuality, the definition of information was designed to help com-
munication engineers send messages, rather than to help people understand 
the meaning of messages.

Goldman (1953) considers information to be the difference between our 
uncertainty before and after receiving a message. In this thinking, information 
is not an absolute quantity as implied from H, but is seen as a change in uncer-
tainty. Let q

i
 be the probability of the ith event before receiving the message 

and p
i
 be the revised probability after receipt of the message. The change in 

the uncertainty is

[–log(q
i
)] – [–log(p

i
)] = log(p

i
) – log(q

i
) = log(p

i  
/q

i
).

If the message received indicates that the ith event is certain, then p
i
 = 1 and 

log(p
i
) = 0, resulting in a change in information of −log(q

i
). Jessop (1995) 

terms this “surprisal.” Taking the expectation

E p q p p q[log( / )] log( / )i i i i i= ∑



and is the discrete version of K–L information! Kullback–Leibler information 
is an extension of Shannon’s contribution and is sometimes called a “relative 
entropy” (Hobson and Cheng (1973)). The K–L information between models 
(probability distributions) is a fundamental quantity in science and informa-
tion theory and is the logical basis for model selection.

Boltzmann’s Entropy

Ludwig Boltzmann, working in the late 1800s, originally defined entropy in 
thermodynamics, demonstrated the second law of thermodynamics (e.g., there 
could not be a perpetual motion machine), and proved the irreversibility of 
entropy. Entropy is “disorder,” max entropy is maximum disorder or minimum 
information. While the theory of entropy is a large subject by itself, readers 
here can think of entropy as nearly synonymous with uncertainty.

Conceptually, Boltzmann’s entropy is −log(f(x)/g(x)) and taking its expec-
tation one gets

E
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which is K–L information (see Good 1979). It is fascinating that Kull-
back–Leibler information is equal to the negative of Ludwig Boltzmann’s 
entropy. Thus, minimizing the K–L information or distance is equivalent 
to maximizing the entropy; hence the name maximum entropy principle 
(Jaynes 1957).

Maximizing entropy is subject to a constraint – the model of the  information 
in the data. A good model contains the information in the data, leaving only 
“noise.” It is the noise (entropy or uncertainty) that is  maximized under the 
concept of the Entropy Maximization Principle. Minimizing K–L informa-
tion then results in an approximating model that loses a minimum amount of 
information in the data. Entropy maximization results in a model that maxi-
mizes the uncertainty, leaving only information (the model) “maximally” 
justified by the data. The concepts are equivalent, but minimizing K–L dis-
tance (or information loss) certainly seems the more direct approach. In 
summary,

– entropy = K – L information

and K–L information is often referred to as negative entropy or negentropy.
Boltzmann’s discoveries concerning entropy are seen as the zenith of nine-

teenth century science. Of course, K–L information was derived along very 
different lines than entropy; the mutual convergence is striking and suggests 
something very fundamental. K–L information is averaged entropy, hence 
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the expectation with respect to f. Then, −E(entropy) = K–L information. 
 Boltzmann derived the fundamental theorem that,

entropy is proportional to log(probability).

Entropy, information, and probability are thus linked, allowing probabilities 
to be multiplicative while information and entropies are additive.

3.12 Exercises

1. Cox (2006:117) states, “The relevance of automatic model selection depends 
strongly on the objectives of the analysis, for example as to whether it is for 
explanation or for empirical prediction.” By “automatic model selection” 
I think he means criteria such as AICc, BIC, TIC, etc. Can examples be 
found where an investigator might need to use, say, AICc for prediction, 
but another criteria (or an entirely different approach?) for explanation 
(given the data are fixed)? What theory might bear on his  statement? What 
practical advice might be given as to how to approach model selection 
when the main objectives of the analysis might vary? Discuss this with 
colleagues and see if the premise has merit.

2. In ecology increased diversity is often associated with ecotones. In a sense, 
Akaike was at a science ecotone when he saw a way to relate information 
theory and statistical theory in his AIC. Can you think of other parallels 
of this nature? What might this say about coursework to be taken by an 
exceptional Ph.D. student?

3. Akaike found an analytic expression for the asymptotic bias when the 
maximized log(L) was used as an estimator of expected K–L information; 
this bias correction was simply K, the number of estimated parameters 
in the model. Give other examples of estimators in your field where bias 
adjustments have been found.

4. AICc is simple to compute and understand, but it rests on very deep statis-
tical theory. This makes it an ideal science tool. Give other examples where 
this is the case.

5. The data on hardening of Portland cement had four predictor variables; 
this leads to 24−1 = 15 models. If all 2- and 3-way interactions would have 
been added, how many models would there be? What is the danger here in 
focusing on the models during data analysis?

6. Traditional statistics provided judgments about “significance” and this 
is related to some predefined, but arbitrary a-level. Such terms and 
dichotomies are shunned under the information-theoretic approach. 
Discuss and attempt to reconcile your thoughts on this matter of fixed 
dichotomies.



 7. Examine a recent issue of a journal in your field of interest. Can you find a 
well written paper that carefully sets out several working hypotheses before 
data analysis? In some subdisciplines, such papers can be easily found. Once 
having found such a paper, what approach did the authors use as a measure 
of “strength of evidence” for and against the science  hypotheses?

 8. Atmar (2001) wrote a fitting obituary of Claude Shannon that makes inter-
esting reading. He also references Dawkins (1986:111–112):

A few years ago, if you asked almost any biologist what was special about 
living things as opposed to nonliving things, he would have told you about 
a special substance called protoplasm. Protoplasm wasn’t like any other 
substance; it was vital, vibrant, throbbing, pulsating, “irritable” (a school-
marmish way of saying responsive).… When I was a school boy, elderly text-
book authors still wrote of protoplasm, although, by then, they really should 
have known better. Nowadays you never hear or see the word. It is as dead 
as phlogiston and the universal aether. There is nothing special about the 
substances from which living things are made. Living things are collections 
of molecules, like everything else. What is special is that these molecules are 
put together in much more complicated patterns than the molecules of non-
living things, and this putting together is done by following programs, sets 
of instructions for how to develop, which the organisms carry around inside 
themselves. Maybe they do vibrate and throb and pulsate with “irritability,” 
and glow with living warmth, but these properties all emerge incidentally. 
What lies at the heart of every living thing is not a fire, not a warm breath, 
not a “spark of life.” It is information, words, instructions. It you want a 
metaphor, don’t think of fires and sparks and breath. Think, instead, of a 
billion discrete, digital characters carved in tablets of crystal. If you want to 
understand life, don’t think about vibrant, throbbing gels and oozes, think 
about information technology.

 This thinking is certainly exciting – evolution and life are about informa-
tion! Think hard about this and discuss it with colleagues and instructors. 
Is evolution so much about information? Where might these concepts lead 
us in the life sciences?

 9. Assume you have some data on a well-defined science issue and the 
 models for the four hypotheses are complimentary log–log models for a 
binary response variable. You have n = 19 and the global model has K = 6 
parameters and AIC has been used as the first step in providing measures 
of strength of evidence for the four hypotheses. What is the issue that 
might be of concern here? Why?

10. Your new student questions the concern about models with “too many” 
parameters that must be estimated from the data. You speak of overfitting 
but he insists that biology is complex and some simple models are not 
“realistic.” Prepare a clear response to help him understand this issue.
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11. Recompute the information at the beginning of Sect. 3.7 using AIC.  Provide 
your interpretation of any differences you encounter. What is the “moral” of 
this example?

12. You have just been hired by a government laboratory that has access to a 
very large amount of data from a Superfund site in Georgia. The  questions 
were well formed, data collection was quite sophisticated, and sample sizes 
were very large by any usual standard. You are to work in a team situation 
and the team members have been educated and experienced in a variety of 
relevant disciplines. Some members of the team want to do an analysis using 
AIC, while others have heard about TIC and they favor this approach. They 
look to you for advice and council. What do you tell them? Why?

13. The bovine tuberculosis study by Caley and Hone (Sect. 3.8) is interesting 
in many ways. For example, they collected data by gender (also across 
five sites) and gender was a variable in all their models. A reviewer with 
expertise in mustelids claims that gender is unimportant in disease trans-
mission and should not have been in the models (for parsimony reasons, if 
no other). Using AICc, how could you determine if the deletion of gender 
was better than models including gender? Be specific but concise.



4
Quantifying the Evidence About 
Science Hypotheses

Richard Arthur Leibler (1914–2003) was born in Chicago, Illinois on March 
18, 1914. He received a Bachelors and Masters degree in mathematics from 
Northwestern University and a Ph.D. in mathematics at the University of Illinois 
(1939). After serving in the Navy during the war, he was a member of the Insti-
tute for Advanced Study at Princeton and a member of the von Neumann Com-
puter Project 1946–1948. From 1948–1980 he worked for the National Security 
Agency (1948–1958 and 1977–1980) and the Communications Research Divi-
sion of the Institute for Defense Analysis (1958–1977). He then was the presi-
dent of Data Handling Inc., a consulting firm for the Intelligence Community. 
He received many awards, including the Exceptional Civilian Service Award.

The ability to simply rank science hypotheses and their models is a major 
advance over what can be done using null hypothesis tests. However, much 
more can be done, all under the framework of “strength of evidence,” for 
hypotheses in the a priori candidate set. Such evidence is exactly what Platt 
(1964) wanted in his well-known paper on strong inference. I begin by describ-
ing four new evidential quantities.
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4.1 ∆
i
 Values and Ranking

In Chap. 2 it became clear that AIC values were relative rather than absolute 
for three reasons: (1) sample size impacted the size of AIC values, (2) there 
was the unknown constant E

f
[log(f(x) )] in the derivation of AIC from K–L 

information, and (3) some terms in the model set that are constant across mod-
els are often omitted. Simple differencing renders these issues moot. These 
differences, denoted as ∆

i
, are standardized by the AICc value for the best 

model (the minimum AICc value). In fact, such differencing defines the best 
model as always having ∆

best
 ≡ 0.

AICc Differences are Fundamental Units

Formally, the differences, ∆
i
, are defined as

D
i
 = AICc

i
 - AICc

min
.

These values are estimates of the expected K–L information (or distance) 
between the best (selected) model and the ith model. These differences 
apply when using AICc, QAICc (Sect. 6.2), or TIC, are on the scale of 
information, and are additive.

At this point we have science hypotheses and their associated models on a stand-
ard measurement scale. Although a scale of “information” might seem odd at first, it 
is little different than working with meters and kilometers or feet and miles.

Kullback–Leibler information is the distance from each of the models to 
full reality, whereas the ∆

i
 values relate to the distance between each of the 

models to the best one (Fig. 4.1). Everything is scaled to the best model where 
∆

best
 ≡ 0. This is convenient and is like so many other things in our experi-

ence. For example, in horse racing everything is scaled to the winner (quickest 
horse). The absolute time of the winning horse is unimportant because track 
conditions change from race to race and year to year. So, we speak of the 
 winning horse and the second horse being two lengths behind, etc. Putting 
various science hypotheses in terms of the best one (i.e., the one with the most 
empirical support) is expected and should not be mistaken as arbitrary.

In a similar way, we measure the height of mountains and cities as the dis-
tance above sea level. Sea level has been convenient as a basis in scaling heights, 
much like ∆ 

best
 is convenient in scaling information and assessing the distance to 

other hypotheses and their models. Of course, such scaling to ∆
i
 values does not 

change the ranks based on AICc. It does make the examination of ranks visu-
ally easy as one merely looks for the model with ∆ = 0 and realizes that this is 
the model estimated to be the best (closest to truth). We must bear in mind that 
these are estimates and if we had a replicate data set of the same size and from 
the same process, a different hypothesis might be estimated to be the best in 
that case. We will quantify this uncertainty (called model selection uncertainty) 
using simple methods outlined in this chapter and Chap. 5.



An interesting issue arises because the ∆
i
 are on an information scale (Sect. 

hypotheses and their models having ∆
i
 values in the range of 0 to perhaps 9–12 

are plausible to most objective people (plausibility is a value judgment!). Even 
though AICc values for a particular problem might be in the 175,800–179,400 
range, only models where ∆ is within about 0 to 9 or 12, or 14 have much 
credibility. This will turn out to be a very useful result in practical application 
with real data. When I give the “window” above, I am deliberately trying to be 
vague about the upper bound as I do not want readers to consider some arbi-
trary cutoff (as in the α-level in testing theory). Science is about estimation and 
understanding; it is not about cutoffs or dichotomies.

Still, models with ∆ values close to 0 have a lot of empirical support. Models 
with ∆ values in the rough range 4–7 have considerably less support, whereas 
models with ∆ values in the fringes (say 9–14) have  relatively little support. 
Others, still further away, might be dismissed by most observers as implausible. 
The rationale for these rough guidelines is provided in Sect. 4.4; in addition, 
Royall (1997) offers similar guidelines. If observations are not independent but 
are assumed to be independent then these simple guidelines cannot be expected 
to hold. Likewise, if there are thousands of models, these guidelines may not 
hold entirely (however, if there are thousands or millions of models, then the 
endeavor is questionable anyway). The reader should not take these guidelines 
as inviolate as there are situations to which they may not apply well. Approaches 
to allow a more careful interpretation of the evidence are covered in the follow-
ing material; thus, these rough guidelines are not necessary.

g2

g2

“DISTANCES”

(best model)(full reality)f

I (f,g)

g1

g4

g3

g4

g3
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401
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408

420
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FIG.  4.1. Kullback–Leibler distances are with respect to the conceptual full reality (left), while 
the ∆

i
 are distances with respect to the best model and are on the scale of information.

4.1 ∆
i
 Values and Ranking  85

3.3.5). Under some fairly weak assumptions it turns out that only  science 
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The Old Rule About D
i
 > 2

One occasionally sees a rule that when a model has ∆
i
 > 2 it is a poor model, or of 

little value, etc. This rule was seen in some early literature but I advise against it. 
Models with ∆

i
 values of 2 or 4 or even 6–7 or so have some meaningful support 

and should not be dismissed. In particular, the multimodel inference framework 
(Chap. 5) invites the use of information in such “second string” models.

The analysis is hardly finished once the ranking has been done and the best model 
has been estimated. One would examine and interpret the estimates of model param-
eters, the covariance matrix, and other aspects of the model estimated to be the best.

The absolute value of AICc is unimportant, it is the differences that can be 
directly related to information. These differences are an important quantity in 
the methods introduced immediately below.

4.2 Model Likelihoods

Parameter estimation under a likelihood framework is based on

L(q_ | x_ ,g
i
),

meaning “the likelihood as a function of only the unknown parameters (q_), 
given the data (x) and the particular model (g

i
, such as binomial or normal 

or log-normal).” The likelihood is a function of the unknown parameters that 
must be estimated from the data (Appendix A). Still, the point is, this function 
allows the computation of likelihoods of various (tentative) parameter values. 
Likelihood values are relative and allow comparison. The objective is to find 
the parameter value that is most likely (i.e., the one that maximizes the like-
lihood) and use it as the MLE, the asymptotically best estimate of the unknown 
parameter, given the data and the model. With this background as a backdrop, 
I can introduce the concept of the likelihood of a model, given the data.

The Likelihood of Model i, Given the Data

The concept of the likelihood of the parameters, given the data and the 
model, i.e., L(q | x,g

i
) can be extended to the likelihood of model i given 

the data, hence L(g
i
 | x),

L ( ) exp .1
2g xi i∝ ( )- D

Akaike suggested this simple transformation in the late 1970s. The likeli-
hood of a model, given the data, offers the analyst a powerful metric in 
assessing the strength of evidence between any two competing hypoth-
eses. This likelihood is very different from the usual one used in parameter 
estimation (obtaining MLEs). Both likelihoods are relative and useful in 
comparisons; they are not probabilities in any sense.



This simple expression allows one to compute the discrete likelihood of 
model i and compare that with the likelihood of other hypotheses and their 
models. Such quantitative evidence is central to empirical science. Chamber-
lin and Platt would greatly appreciate having the (relative) likelihood, based 
on the data, of each of his multiple working hypotheses. Notice that the −½ 
in the simple equation above merely removes the −2 that Akaike introduced 
in defining his AIC. Had he not used this multiplier, the likelihood of model i 
would have been just exp(∆

i
) or e∆i.

Likelihoods are relative and have a simple raffle ticket interpretation. One must 
think of likelihoods in a stochastic sense, such as the chance of  winning a raffle 
based on the number of tickets the opponent has. Likelihoods are not like lifting 
weights, where the results are largely deterministic; if someone can lift consider-
ably more than his/her opponent, the chances are good that he/she can do this 
again and again. There is little or no variation or “chance” in such activities. It is 
useful in evaluating science hypotheses to think in terms of the number of tickets 
each of the R hypotheses might have. If H

3
 has a likelihood of 3 and H

5
 has a like-

lihood of 300, then it is clear that  evidence points fairly strongly toward support of 
hypothesis H

5
 as it has 100 times the empirical support of hypothesis H

3
 (we can 

say formally that it is 100 times more likely). Models having likelihoods of 3 and 
300 are  similar in principle to two people, one having three raffle tickets and the 
other having 300 tickets. Likelihoods are another way to quantify the strength of 
 evidence between any model i and any other model j; there is no analogy with the 
“multiple testing problem” that arises awkwardly in traditional hypothesis testing. 
Computation of the model likelihoods is trivial once one has the ∆

i
 values.

4.3 Model Probabilities

Before proceeding to define model probabilities, we must define a relevant tar-
get value of such probabilities. Given a set of R models, representing R science 
hypotheses, one of these models is, in fact, the best model in the K–L information 
or distance sense. Like a parameter, we do not know which of the models in the 
set is actually the K–L best model for the particular sample size. Given the data, 
the parameters, the model set, and the sample size, one such model is the K–L 
best; we do not know which model is the best but we can estimate it using AICc. 
Moreover, we can estimate the uncertainty about our selection (our estimate of the 
model that is the best). This is crucial; we need a measure of the “model selection 
uncertainty.” The target is not any notion of a “true model,” rather the target is the 
actual best-fitted model in an expected K–L information sense. This concept must 
include the uncertainty in estimating the model parameters.

It is important not to confuse the “K–L best” model with a “good model.” 
If all the models in the set are poor, these methods attempt to identify the best 
of these but in the end they all remain poor. Thus, one should examine such 
things as adj R2, residual plots, and goodness-of-fit tests to be sure some of the 
models in the set are worthwhile.
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It must be noted that the best model in a K–L sense depends on sample 
size. If n is small then the K–L best model will be of relatively low dimension. 
Conversely, if n is large, the K–L best model will be richer in structure and 
parameterization. These concepts tie back to the Principle of Parsimony (Sect. 
2.3.4) and tapering effect sizes (Sect. 2.3.5). These are not easy concepts to 

calculations here are trivial relative to the more difficult conceptual issues.

Model Probabilities

To better interpret the relative likelihoods of models, given the data and the 
set of R models, one can normalize these to be a set of positive “Akaike 
weights,” w

i
, adding to 1,

wi
i

r

=
( )

( )
=

∑
exp

exp

1
2

1
2

- D

- D
r

R

1

.

These weights are also Bayesian posterior model probabilities (under the 
assumption of savvy model priors) and the formula applies when using 
AICc, QAICc (see Sect. 6.2), or TIC. A given w

i
 is the probability that 

model i is the expected K–L best model

w gi i= { }Prob data .

These probabilities are another weight of evidence in favor of model i as 
being the actual K–L best model in the candidate set. These w

i
 values are 

most commonly called model probabilities (given the model set and the 
data). These can be easily computed by hand, but a simple spreadsheet 
might avoid errors or too much rounding off. The term “Akaike weight” 
was coined because of their use in multimodel inference (Chap. 5) and 
before it was realized that these could be derived as Bayesian posterior 
model probabilities. The term model probability will often suffice.

The estimated K–L best model (let this best model be indexed by b) always 
has ∆

b
 ≡ 0; hence, for that model exp(−(½)∆

b
) ≡ 1. The odds for the ith model 

actually being the K–L best model is just exp(−(½)∆
i
). It is often convenient 

to reexpress such odds as the set of model probabilities as above.
The bigger a ∆

i
 is, the smaller the model probability w

i
, and the less plausi-

ble is model i as being the actual K–L best model for full reality based on the 
sample size used. These Akaike weights or model probabilities give us a way 
to calibrate or interpret the ∆

i
 values; these weights also have other uses and 

interpretations (see below). While most forms of evidence are relative, model 
probabilities are absolute, conditional on the model set.

grasp but are fundamental to model based inference. Oddly, the mathematical 



4.4 Evidence Ratios

In Sect. 4.1, some explanation was given to help interpret the ∆
i
 values. 

 Evidence ratios can be used to make interpretation more rigorous and people 
should not use these as automatic cutoff values. Evidence is continuous and 
arbitrary cutoff points (e.g., ∆

i
 > 3) should not be imposed or recognized.

Evidence Ratios

Evidence ratios between hypotheses i and j are defined as

E g x g x w wi j i j i j, ( ) / ( ) /= =L L .

Evidence ratios are relative and not conditioned on other models in or out 
of the model set. Evidence ratios are trivial to compute; just a ratio of the 
model probabilities or model likelihoods.

Evidence ratios can be related back to the differences, ∆
i
. An evidence ratio 

of special interest is between the estimated best model (min) and some other 
model i. Then the ∆ value for that ith model can be related to the best model as

E w w ei i
i

min, min
( ( / ) )/ .= = − 1 2 ∆

Evidence ratios also have a raffle ticket interpretation in qualifying the strength 
of evidence. For example, assume two models, A and B with the evidence 
ratio = L(g

A
|data)/L(g

B
|data) = 39. I might judge this evidence to be at least 

moderate, if not strong, support of model A. This is analogous to model A 
having 39 tickets while model B has only a single ticket.

Some relevant values of ∆
i
 and the evidence ratio are given below.

Interpreting AICc Differences

The strength of evidence for the best model vs. any other model i is shown 
as a function of ∆

i
: 

∆
i
 Evidence ratio

 2 2.7
 4 7.4
 6 20.1
 8 54.6
10 148.4
11 244.7
12 403.4
13 665.1
14 1,096.6
15 1,808.0
16 2,981.0
18 8,103.1
20 22,026.0
50 72 billion
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The second row, for example, is read as “if a model i has ∆
i
 = 4, then 

the best model has 7.4 times the weight of evidence relative to model i 
(i.e., the best model has 7.4 raffle tickets whereas the other model has only 
one ticket). Using the information in the table above it is easy to see why 
models with ∆ somewhere in the 8–14 range would be judged by most 
objective people as having little plausibility. Even odds of 55 to 1, (i.e., 
∆ = 8) might often be judged as a “long shot.” Models with delta >15–20 
must surely be judged to be implausible.

A 7.4 to 1 advantage is pretty good and you might bet your used bike 
on a game with these odds; however, you must be careful as there is still 
a  reasonably large chance (risk) that you would lose. Thus, a model where 
∆ = 4 should not be dismissed; it has some reasonable empirical support. 
In contrast, a model with ∆ = 16 has but one ticket whereas the best model has 
almost 3,000 tickets (see table above). This is a clear case where you would 
not want to bet on the model where ∆ = 16; it is probably better to dismiss 
the model as being implausible! More extreme is the case where a model 
has ∆ = 25; here the odds of that model being, in fact, the best K–L model 
are remote (about 270,000 to 1) and most reasonable people might agree that 
the model should be dismissed. Still, an important point is that the evidence is 
the numerical value of the evidence ratio; this is where the objective science 
stops. Value judgments may follow and help interpret and qualify the science 
result. This is a good place to ask if the reader of this material is motivated to 
buy a ticket for a state or national lottery?

The table above makes it clear that models with ∆ values below about 8 
or 12 are in a window of some reasonable plausibility. Surely models with 
∆ > say 20 can probably be dismissed (unless the data are quite dependent 
(Sect. 6.2) or have been substantially compromised). No automatic cutoff is 
appropriate here; we must “qualify our mind to comprehend the meaning of 
evidence” as Leopold said in 1933. The “science answer” stops at the ranks, 
the model likelihoods, the model probabilities, and the evidence ratios. The 
interpretation involves a value judgment and can be made by anyone, includ-
ing the investigator. Burnham and Anderson (2002:320–323) provide a more 
complicated example of these measures of evidence involving T

4
 cell counts 

in human blood.
If the sample size is small or even of moderate size, care is needed in dis-

missing high-dimensional models as implausible. As sample size increases, 
additional effects can be identified. Often when sample size is small, there is a 
large amount of model selection uncertainty, keeping one from rejecting mod-
els with several parameters. This is another reason to design data collection 
such that sample size is as large as possible to meet objectives.

As Chamberlin pointed out, everyone wants a simple answer, even in cases 
where the best answer is not simple. Prior training in statistics has imprinted 
many of us with dichotomies that are in fact artificial and arbitrary (e.g., 
P < 0.05 in null hypothesis testing). However, in everyday life, people can 
live comfortably without such arbitrary cutoffs and rulings of “significance.” 



 Consider a football score, 7 to 10. Most neutral observers would conclude the 
game was “close,” but the team with 10 points won. No one bothers to ask if 
the win was “statistically significant.” Of course, the winning team (hardly 
expected to be neutral) could claim (a value judgment) that they hammered 
their hapless opponents. However, alumni for the losing team might claim 
“last minute bad luck” or “poor refereeing” toppled their otherwise superior 
team. Still others might look at the number of yards rushing, the number of 
interceptions, and other statistics, and perhaps point to further interpretations 
of the evidence. In the end, perhaps all we can really say is that the game was 
close and if the teams played again under similar conditions, we could not 
easily predict the winner. This is a case where value judgments might vary 
widely; that is, the hard evidence is a bit thin to clearly suggest (an inference) 
which might be the better team.

Going further, two other teams play and the score is 3 to 35. Here, one must 
fairly conclude that the winning team was very dominating. The quantitative 
evidence is more clear in this case. Again, no issue about “statistical signifi-
cance” is needed; the score (evidence) is sufficient in this case. The game was 
a “thumping” and any neutral observer could easily judge which team was 
better. If the two teams were to play again under similar conditions, one would 
suspect the winner could be successfully predicted (an inference). In this case, 
value judgments would probably vary little from person to person, based on 
the evidence (the score).

Summarizing, in football, the evidence is the final score and in science, evi-
dences are things like model probabilities and evidence ratios. Interpretation 
of this evidence involves value judgment and these might (legitimately) vary 
substantially or little at all. Scientists should avoid arbitrary dichotomies and 
“cutoffs” in interpreting the quantitative evidence.

4.5 Hardening of Portland Cement

Here we return to the example of the hardening of Portland cement from Sects. 
2.2.1 and 3.7 to illustrate the nature of scientific evidence

Model K σ̂ 2 log L AICc ∆
i
 w

i

{mean} 2 208.91 −34.72 71.51 39.1  0.0000
{12} 4 4.45 −9.704 32.41 0.0 0.9364
{12 1*2} 5 4.40 −9.626 37.82 5.4 0.0629
{34} 4 13.53 −16.927 46.85 14.4 0.0007
{34 3*4} 5 12.42 −16.376 51.32 18.9 0.0000

Readers should verify the simple computations in the last two columns of the 
table above. For example, using D

i
 = AICc

i
 − AICcmin, ∆1

 = 71.51 − 32.41 = 
39.1, ∆

2
 = 32.41 − 32.41 = 0 and ∆

3
 = 37.82 − 32.41 = 5.4. The computation 

of the model probabilities (w
i
) is made from
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wi
i

r
r

R
=

−( )
−( )

=
∑

exp

exp

1
2

1
2

∆

∆
1

and this is more simple than it might appear. The first step is to tabulate the 
values of exp(−(½)∆

i
) for i = 1, 2,…, 5 as these are needed for both numerator 

and denominator

exp exp . . ,

exp exp ,

ex

−( )= − ⋅( )=

−( )= − ⋅( )=

1
2

1
2

1
2

1
2

∆

∆
1 39 1 0 0000

0 12

pp exp . . ,

exp exp . .

−( )= − ⋅( )=

−( )= − ⋅( )=

1
2

1
2

1
2

1
2

∆

∆
3

4

5 4 0 0672

14 4 0 00007

18 9 0 00015

,

exp exp . . .−( )= − ⋅( )=1
2

1
2∆

More decimal places should often be carried; I will give the results to four 
places beyond the decimal (thus, 0.0000 is not meant to reflect exactly zero, 
it is only zero to four places). The quantity ∑ =r

R
1 exp(−(1 / 2)∆

r
) in the denomi-

nator is merely the sum of these five numbers, 1.068. Finally, the model 
probabilities are w

1
 = 0.0000/1.068 = 0.0000, w

2
 = 1/1.068 = 0.936, w

3
 = 

0.0672/1.068 = 0.063, and so on.
Until this chapter, we could only rank the five hypotheses and their models; 

this, of course, allowed the estimated best model (i.e., model {12}) to be identi-
fied. Now, we have the ability to see that two of the models can be judged to be 
implausible: models {mean} and {34 3*4} (even the better of these two (i.e., 
model {34 3*4}) has a model probability of only 0.00008) and might be dismissed 
as the set evolves. Only models {12} and {12 1*2} have noticeable empirical 
support whereas model {34} has very little empirical support (model probability 
of 0.0007). The model probabilities are exactly what Chamberlin would have 
wanted, but it must be remembered that they are conditional on the model set.

What is the evidence for the interaction 1*2? An evidence ratio answers this 
question: E = 0.9364/0.0629 = 14.9 (from the table just above). This measure 
indicates that the support for the model without the interaction is nearly 15 
times that of the model with the interaction. What would be your value judg-
ment, based on the evidence, in this case? In other words, how would you 
qualify the result concerning the interaction term?

Additional evidence here is to look at the MLE for the beta parameter 
(b

3
) for the interaction term. We find, b̂

3
 = 0.0042 with an approximate 95% 

 confidence interval of (−0.020, 0.033). One must conclude that there is little 
support for the 1*2 interaction term. Notice also that the deviance (deviance 



= −2 × log L) changed little as the interaction term was added: 19.408 vs. 
19.252, again making support for the interaction term dubious (this is the 
“pretending variable” problem, Sect. 3.6.8).

Let us imagine a member of the cement hardening team had always favored 
model {34} and felt strongly that it was superior to the rest. What support 
does the member have, based on this small sample of 13 observations? The 
evidence ratio of the best model vs. model {34} is 1,339 to 1: not much sup-
port of model {34}. He must quickly try to argue that the data were flawed, 
measurements were in error, etc. No reasonable observer will overturn odds 
of over 1,300:1; the evidence is strongly against the member’s belief and all 
reasonable value judgments would confirm this.

4.6 Bovine Tuberculosis in Ferrets

The addition of the information-theoretic differences and model probabilities 
allow more evidence to be examined:

Hypotheses K log L AICc Rank ∆
i
 w

i

H
1
 6 −70.44 154.4 4 50.8 0.0000

H
2
 6 −986.86 1,987.2 5 1,883.6 0.0000

H
3
 6 −64.27 142.1 3 38.5 0.0000

H
4
 6 −45.02 103.6 1 0.0 0.7595

H
5
 6 −46.20 105.9 2 2.3 0.2405

Here, it seems clear that the evidence strongly suggests that hypotheses 1–3 
are implausible; the probability that H

3
 is, in fact, the K–L best model is less 

than 4 × 10−8 and the other two models have far less probability. This finding 
certainly allows the set to evolve to the next level. Support of hypotheses 4 and 
5 is somewhat tied, with H

4
 having the edge by a factor of about three times 

(i.e., 0.7595/0.2405 ≈ 3) the support over H
5
. One cannot rule out the support 

for H
5
 based on the evidence (Fig. 4.2).

Note that these model probabilities are conditional on the set of five hypoth-
eses and the five model probabilities sum to 1. One can compute evidence 
ratios among any of the five, even if one or two of the hypotheses are deleted. 
Often the interest is in evidence ratios with the best model vs. some other 
model; however, one is free to select any models i and j for evaluation by sim-
ple evidence ratios. Note that because all models here have the same number 
of estimable parameters, the penalty term can be ignored in this particular 
case and one can use just the deviance (−2 × log L) as “AICc.” Finally, note 
that if, for some reason, model g

2
 is dropped from the set, then the other five 

model results must be renormalized to sum to 1 (in this particular example it 
would make no difference).
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4.7 Return to Flather’s Models and R2

els for the species accumulation curves for data from Indiana and Ohio from 

mulation and richness. Hypotheses concerning species accumulation were 
modeled as nonlinear regressions, and one model was found to be quite better 
than the other eight models. Here we will look at an interesting side issue as 
this gives some insights into the power of these newer methods.

The adjusted R2 value in regression analysis measures the proportion of 
the variance in the response variable that is in common with variation in the 
predictor variables: it is a measure of the overall “worth” of the model, at least 
in terms of within-sample prediction. Adj R2 for the nine models ranged from 
0.624 to 0.999 (Table 4.1).

Examining Table 4.1 shows that five of the models had adj R2 values above 
0.980. One might infer that any of these five models must be quite good; even 
the worst model with R2 = 0.624 might appear pretty good to many of us. Going 
further, two of the models (models 8 and 9) had an adj R2 > 0.999; surely these 
models are virtually tied for the best and are both excellent  models for a struc-
tural description of the accumulation process and for prediction. Although the 
statements above certainly seem reasonable, they are  misleading. For exam-
ple, the evidence ratio for the (estimated) best model (model 9) vs. the second 
best model (model 8) is

E w w w wmin, min / / exp ( / ) exp( . / ) .8 8 9 8
352 163 4 2 3 0 10= = = = ≈ ×( )∆8

H1 H2 H3
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FIG. 4.2. Model probabilities for the five hypothesis concerning transmission of bovine 
tuberculosis in feral ferrets in New Zealand.

Burnham and Anderson (2002:94–96) presented a reanalysis of nine mod-

Flather (1996). The science objective here was to explore the structure of
the accumulation process and allow predictions concerning species accu-



and is very convincing evidence that even the second best model has no plau-
sibility (note, too, ∆

8
 = 163.4). The evidence ratio for model 4 (where adj 

R2 = 0.624) is 1.1 × 10242.
Adjusted R2 values are useful as a measure of the proportion of the vari-

ation “in common” but are not useful in model selection (McQuarrie and 
Tsai 1998). Information-theoretic approaches show convincingly that all 
of the models are incredibly poor, relative to model 9 (the best model). 
This is a case where there is essentially no model selection uncertainty; 
the actual K–L best model among those considered, beyond any doubt, 
is model 9. Of course, everything is conditional on the set of hypotheses 
and their models. It is possible that a tenth model might be better yet; this 
is why the science objective is to let these sets evolve as more is learned. 
On the other hand, if model 9 was never considered, then model 8 would 
look very good relative to the other models. There are several reasons why 
adjusted R2 is poor in model selection; its usefulness should be restricted 
to description.

4.8 The Effect of a Flood on European Dippers

Marzolin’s data on the European dipper (Cinclus cinclus) have become a clas-
sic for illustrating various analytical issues (see Lebreton et al. 1992). Ration-
ale for the hypotheses was outlined in Sect. 2.7 and this would be a point 
where this introductory material should be reread.

The problem focused on two models, one model without a flood effect on 
survival (model {f,p}) and another with a flood effect ({f

n
,f

f
,p}), where f is 

TABLE 4.1. Summary of nine a priori models of avian species-accumulation curves from 
Flather (1992, 1996). The models are shown in order according to the number of para-
meters (K); however, this is only for convenience.

Model K log L AICc ∆
i
 w

i
 adj R2

1. axb 3 −110.82 227.64 813.12 0.0000 0.962
2. a + b log x 3 −42.78 91.56 677.04 0.0000 0.986
3. a(x/(b + x) ) 3 −172.20 350.40 935.88 0.0000 0.903
4. a(1 − e−bx) 3 −261.58 529.17 1114.65 0.0000 0.624
5. a − bcx 4 −107.76 223.53 809.01 0.0000 0.960
6. (a + bx)/(1 + cx) 4 −24.76 57.53 643.01 0.0000 0.989
7. a(1 − e−bx)c 4 25.42 −42.85 542.63 0.0000 0.995
8. a(1 − [1 + (x/c)d]−b) 5 216.04 −422.08 163.40 0.0000 0.999
9. a[1 − e−(b(x−c) )d] 5 297.74 −585.48 0 1.0000 0.999

K is the number of parameters in the regression model plus 1 for s2

Some values of the maximized log-likelihood are positive because some terms were constant across 
models and were omitted.
The first eight model probabilities are 0 to at least 34 decimal places.
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the apparent annual probability of survival, p is the annual probability of cap-
ture, and the subscripts denote a normal year (n) or a flood year (f). Under an 
information-theoretic approach, the results can be given very clearly in terms 
of the model probabilities (the w

i
):

 Model K AICc ∆
i
 Probability, w

i

 {f,p} 2 670.866 4.706 0.0868
 {f

n
,f

f
,p} 3 666.160 0.000 0.9132

The table above provides the quantitative evidence and the evidence favors 
the hypothesis that annual survival decreased in the two years when a flood 
occurred. The evidence ratio is 10.5 = 0.9132/0.0868 indicating that the 
flood-affect hypothesis had about ten times more empirical support than 
the hypothesis that survival did not change during the years of the flood. 
[Note: I am careful to avoid any notion of causation here; however, the 
result can be said to be confirmatory because of the a priori hypotheses.]

Looking deeper, the MLEs for f and measures of precision for the two 
models are:

 Model MLE 95% confidence interval

 {f,p} 0.5602 0.5105–0.6888
 {f

n
,f

f
,p} (n) 0.6071 0.5451–0.6658

      (f) 0.4688 0.3858–0.5537

The MLEs of the capture probability for the models were 0.9026 vs. 0.8998, 
respectively; these are virtually identical. The estimated “effect size” for 
survival was 0.1383 (=0.6071 − 0.4688), s.e. = 0.0532, and 95% confi-
dence interval of (0.0340, 0.2425). The “evidence” in this case includes the 
model probabilities, an evidence ratio, estimates of effect size, and measures 
of  precision. These entities allow a qualification of the hard, quantitative 
 evidence.

In Sect. 2.7, we thought deeper about the issues and considered the follow-
ing, alternative hypotheses:

● Was there a survival effect just the first year of the flood {f
f1
,f

nf
,p}?

● Or just the second year of the flood {f
f2
,f

nf
,p}?

● Or was the recapture probability (p) also effected by the flood {f
f
,f

nf
,p

f
,p

nf
}?

● Or even {f,p
f
,p

nf
} where survival was not impacted, but the recapture prob-

abilities were?

We could now address these questions as if they were a priori; they should 
have been as they are questions begging to be asked. Instead, for example, we 
will assume the candidate set was not well thought out and, these four new 
hypotheses arose post hoc (a not unusual situation). Thus, we will admit the 



TABLE 4.2. Model selection results for the European dipper data.

Model K log L AICc ∆i wi Rank “Tickets”

{f
n
,f

f
,p} 3 −330.051 666.160 0.000 0.559 1 1000a

{f
f
,f

nf
,p

f
,p

nf
} 4 −330.030 668.156 1.996 0.206 2 369

{f
f1

,f
nf
,p} 3 −331.839 669.735 3.575 0.094 3 167

{f
f 2

,f
nf
,p} 3 −332.141 670.338 4.178 0.069 4 124

{f,p} 2 −333.419 670.866 4.706 0.053 5 95
{f,p

f
,p

nf
} 3 −333.412 672.881 6.721 0.019 6 35

a This column is just 1,000 × exp(-(1/2)∆
i
) to illustrate the evidence for each of the six hypotheses in 

terms of how many raffle tickets each had. This is just a useful way to comprehend the evidence. Ticket 
numbers help in understanding; I am not proposing these be placed in publications

post hoc nature of the issue and examine a set of six models (the two original 
a priori models and the four new post hoc models). We will be prepared to tell 
our reader what we did and promise to treat these post hoc results as more ten-
tative and speculative. The results are summarized in rank order in Table 4.2.

Note that the evidence ratio between model {f,p} and model {f
n
,f

f
,p} 

did not change (0.559/0.053 = exp(4.706/2) = 10.5) as the four new models 
were added; however, the model probabilities (w

i
) related to the candidate set 

change as models are added or deleted. Model probabilities are conditional on 
the candidate set.

The key question deals with a possible flood affect on the capture  probabilities 
(p

i
). The evidence ratio for {f

n
,f

f
,p} vs. {f

n
,f

f
,p

f
,p

nf
} = 0.559/0.206 = 2.7. This 

evidence might be judged as weak; nonetheless, it does not support the notion 
that the capture probabilities varied with the year of the flood. Another piece 
of evidence lies in the MLEs and their profile likelihood intervals (Appendix 
A) for model {f

n
,f

f
,p

f
,p

nf
}:

 Parameter Estimate 95% profile interval

 p
nf
 0.904 (0.836, 0.952)

 p
f
 0.893 (0.683, 0.992)

Overall, most would judge the evidence to be largely lacking; survival seems 
to have been influenced by the flood, but not the capture probabilities. It may 
also be interesting to note that the two models with no flood effect on survival 
were ranked last. If a much larger data set had been available, perhaps other 
effects would have been uncovered (i.e., the concept of tapering effect size, 
Sect. 2.3.5).

More careful examination of the table suggests another example of the 
“ pretending variable” problem with model {f

f
,f

nf
,p

f
,p

nf
}. The addition of one addi-

tional parameter did not improve the fit as the log-likelihood value changed very 
little (−330.051 vs. −330.030) and the model was penalized by only ∆ = 2 units). 
This is further evidence that the flood had little effect on capture probabilities.
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The data on dippers were taken by gender, thus science hypotheses could 
have related gender to the flood. For example, are females more likely to have 
lowered survival in flood years as perhaps they are tending the nest close to 
the water’s edge? Perhaps the capture probability is higher for males as they 
forage over a wider area and more vulnerable to being caught. These and other 
questions are the type of thinking and hypothesizing that Chamberlin would 
have wanted – especially if it were done a priori to data analysis.

Although the dipper data and the science questions are fairly simple, they 
illustrate several key points. First, we wish to make an inductive inference 
from the sample data to the population of dippers along the streams in the 
years sampled. Second, that inference is model based. Third, the model 
 probabilities and evidence ratios admit a high degree of rigor in the infer-
ences. This approach refines Platt’s (1964) concept of strong inference.

The data here are a series of 0s and 1s indicating the capture history of each 
dipper; simple plots of these histories would reveal nothing of interest. That 
is, the data are capture histories for each bird:

11001101
10001101
00100001
00000010

for four birds in this example (see Appendix B). This is a clear case where infer-
ence must be model based as simple graphics would not be informative. Fourth, 
the models are products of multinomial distributions, and MLEs and their cov-
ariance matrix are derived from statistical theory. Fifth, the initial investigation 
was confirmatory and this allowed a more directed analysis and result. I chose to 
assume that the four additional hypotheses were post hoc although, ideally, they 
too would have been the result of a priori thinking and hypothesizing. Finally, 
perhaps no hypotheses (above) would warrant dismissal; no hypothesis seems to 
be virtually without support. Compare this situation with that from the disease 
transmission in ferrets where 2–3 of the hypotheses could easily be dismissed. 
Thus the model set for dippers might evolve by refinement of the existing models 
(not likely) or by further hypothesizing, but not by dropping some hypotheses and 
their models. Data on this population have been collected for several additional 
years and those data could be subjected to the same six hypotheses and analysis 
methods; at that time the candidate set might begin to evolve more rapidly.

4.9 More About Evidence and Inference

I find it useful to think about evidence about a parameter as the maximum 
likelihood estimate q̂  and its profile likelihood interval (a type of confidence 
interval, see Appendix A). Both of these evidential quantities are dependent 



on a model. Traditionally, the model was assumed to be given. Now we have 
rigorous methods to select the model from the data. In Chap. 5, we will see 
that estimates of model parameters can be made from all the models in the set 
(multimodel inference) and this often has distinct advantages.

Less well known, but equally important, are the types of evidences about 
alternative science hypotheses.

Types of Evidence

There are three main kinds of evidences, in addition to simple ranking, 
concerning the evaluation of alternative science hypotheses:

1. Model probabilities, the probability that model i is, in fact, the K–L 
best model. These are denoted as w

i
 and they are also formal Bayesian 

posterior model probabilities.
2. The (relative) likelihood of model i, given the data. Such likelihoods 

are denoted as L(g
i
 | data). Likelihoods are always relative to something 

else of interest; e.g., a likelihood of 0.31 means nothing by itself.
3. Evidence ratios provide the empirical evidence (or support) of hypo-

thesis i vs. j, E
ij
 = w

i
 / w

j
; simply the ratio of model likelihoods or model 

probabilities for any two models i and j.

The evidence ratio relates to any models i and j, regardless of other models in 
or out of the set. Model probabilities depend on exactly R hypotheses in the 
set; they are conditional on the set being fixed. Of course, all the three quanti-
ties stem from the differences, ∆

i
. It is the ∆

i
 that are on a scale of information 

and are the basis for the other measures of evidence.
A simple ranking of alternative science hypotheses is a form of evidence 

– ranking is based on the data and stems from “the information lost when 
using a hypothesis or model to approximate full reality.” We want models that 
keep information loss to a minimum, as seen in Chap. 3.

None of these types of evidences are meant to be used in a dichotomous yes/
no fashion. These are ways to quantify the evidence; this is where the science 
stops. From there, one can qualify the evidence to aid in understanding and 
interpretation. One should avoid thinking that, for example, “∆

4
 is greater than 

10,  therefore it is unimportant or implausible” (or worse yet, “not significant”). 
There are always value judgments in interpreting evidence; often, virtually every 
objective person might arrive at the same value judgment, whereas in other cases, 
considered opinion (judgment) will vary substantially.

An important component of the analysis of data remains model assessment 
of the global model. Here, R2, goodness-of-fit evaluations, and analysis of 
residuals have a role in assuring that some of the models are useful. When this 
is in doubt, it is sometimes useful to include a model with little or no struc-
ture and be sure that it is relatively implausible compared to, say, the global 
model.
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4.10 Summary

Going back to 1890, Chamberlin asked, “What is the measure of probability 
on one side or the other?” Although it took nearly 100 years to develop 
methods to provide such probabilities, they are very useful in the evaluation of 
alternative science hypotheses. When data are entered into a proper likelihood 
and −log L is computed, the units are “information,” regardless of the original 
measurement units associated with the data.

I suspect Chamberlin might have been fairly content (in 1890) with a way 
to merely rank alternative hypotheses, based on the empirical data. Ranking 
is so interesting and compelling. Still, I find the concept of evidence ratios to 
be very central in evaluating the “strength of evidence” for alternative science 
hypotheses. This preference is not intended to downplay the model probabili-
ties and Bayesians would certainly favor these in their framework. To me, the 
evidence ratios are so revealing and so comparative; however, I use the other 
quantities also.

It is conceptually important to recognize that the ∆
i
 define a narrow  window 

of values likely to be judged as plausible. This window might reasonably 
be defined as 0 to 8–13 or so. This window exists regardless of the scale of 
 measurement (e.g., millimeters or kilometers), the type of response  variable 
(e.g., continuous, binomial), dimensionality of the parameter vector (3–8 
or maybe 20–100), nested or nonnested models, and number of variables at 
hand. [This window assumes independence of the data ( outcomes) – but see 
Sect. 6.2. Time series and spatial models provide a proper treatment for these 
dependent data.]

Every new method described in this chapter is simple to compute and 
understand; they also seem compelling. It is very important that scientists under-
stand their results at a deep level. Biologists working in a team  situation may 
often find that others on the team “did the analysis” and they have little or no 
idea as to what was done and for what reason. These are methods that should 
be relatively easy to comprehend and this is central to good  science. Good 
science strategy tries to push the information gained to let the set evolve. This 
ever-changing set is the key to rapid advancement in knowledge and under-
standing.

Perhaps the biggest drawback to these approaches, as with all approaches, 
is the challenge to carefully define and model the hypotheses. If a model 
poorly reflects the science hypothesis, then everything is compromised. 
This is a  continual challenge; I think statistics courses for both majors and 
 nonmajors could better focus on modeling, rather than the current emphasis 
on null hypothesis testing.

Still the focus, from a science standpoint, must be on the alternative hypoth-
eses. This focus is so central but so easily distracted. Investigators running “all 
possible models” via some powerful computer software have missed the entire 
point of the study. Models should arise to represent carefully derived science 
hypotheses; they should not arise just because the software makes them pos-



sible. Finally, it should be noted that the information-theoretic approach uni-
fies parameter estimation and the selection of a parsimonious approximating 
model; both can be viewed as optimization problems.

4.11 Remarks

The idea of the likelihood of the model, given the data, was suggested 
many years ago by Akaike (e.g., Akaike 1978b, 1979, 1980, 1981b; also 
see Bozdogan 1987; Kishino 1991).

Royall’s (1997) book focused on the Law of Likelihood and likelihood 
ratios as evidence for one hypothesis over another. His treatment was useful 
in cases for simple models and where the number of parameters in the two 
models is the same, or perhaps differ by 1. This short book offers many valu-
able insights and is easy to follow, but is not a book for beginners.

It is helpful to recall that we are not just trying to fit the data; instead, we 
are trying to recover the information in the data and allowing robust prediction 

a fitted model (i.e., the parameters have been estimated from the data, given 
that model). These realities are important while trying to avoid the notion that 
a model is true and fully represents reality.

AICc formulates the problem explicitly as a problem of approximation 
of reality. Real data do not come from models. We cannot hope to find full 
reality using models and finite data. As a crutch, we can think of full reality 
as infinite dimensional; however, full reality is unlikely to be parameterized. 
Parameters are a construct useful in many science contexts, but many parts of 
full reality are not even parameterized. A “good” model successfully sepa-
rates information from “noise” or noninformation in the data, but never fully 
represents truth.

If a person insists that they have credible prior beliefs about each model 
being the actual K–L best model, then these beliefs can be formally specified 
as a set of discrete prior probabilities (in a Bayesian sense) on models, z

i
. 

It seems unlikely that we would have a prior belief in this case as this would 
entail a belief about approximations to full reality as well as the expected 
 parsimonious trade-offs in model fitting and how this varies by sample size. 
The z

i
 must be the prior probabilities as to which model, when fit to the data 

(q is estimated), is best for representing the (finite) information in the data. 
If one had a set of priors on models (z

i
), then there is a simple way to generalize 

the model probabilities to reflect this:

wi

i i

r r

=
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This is not a Bayesian approach and its properties are unknown (maybe unknow-
able?). Neither Burnham nor I would use this approach, but it does exist if people 
can honestly think they have informed beliefs about the model priors z

i
. More 

detail on this approach is given by Burnham and Anderson (2002:76–77).
It is clear now why Akaike considered the information-theoretic methods to 

be extensions of Fisher’s likelihood theory. People believing in and using these 
methods might be classed as “likelihoodists” to distinguish themselves from 
traditional “frequentists” with their emphasis on null hypothesis  testing and 
notions of confidence intervals and “Bayesians” with their priors on parameters 
and priors on models and inference being based on the posterior distribution.

Classifications such as this are sometimes helpful but perhaps the best 
philosophy is to use the best tool for a specific science problem. I do not 
hide the fact that I think the best, and most practical, approach is most often 
the objective one based on K–L information and entropy. I do not support the 
 subjective aspects of the Bayesian methods in science but believe the objec-
tive Bayesian approach is well suited for the large class of random effects 
models (some additional comments are offered in Appendix D).

One often hears of “traditional” frequentist statistics – meaning null hypoth-
esis testing approaches and frequentist confidence intervals, etc. It should be 
noted that although such approaches date back to the early parts of the twentieth 
century, the Bayesian approach goes back quite further, to the mid-1700s.

I do not favor the word “testing” regarding these new approaches, as it 
seems confusing and might imply testing null hypotheses. “Evaluate” seems a 
better choice of words. The word “significant” is best avoided in all respects.

Fisher tried to avoid a cutoff value to interpret his P-values. He once chose 
a = 0.05 saying that a one in 20 chance might be something to suggest inter-
est. Neyman and Pearson’s approach called for a to be set in advance and 
was used in decisions about “significance” and power and so on. People have 
a natural tendency to simplify, but the reliance on (always arbitrary) cutoff 
points is to be discouraged in the empirical sciences.

The so-called Akaike weights are the basis for approaches to making infer-
ence from all the models in the set (Chap. 5), but they are interestingly more. 
Ken Burnham found that if one takes the Bayesian approach that Schwarz 
(1978) took and uses “savvy priors” on models instead of vague priors on 
models, AIC drops out (instead of BIC)! There is more to this at a techni-
cal level, but it is in this sense that it can be shown that AIC can be derived 
from Bayesian roots (Burnham and Anderson 2004). Thus, the w

i
 are properly 

termed Bayesian posterior model probabilities. I usually prefer to call them 
just “model probabilities.”

Bayesians are struggling with the issue of assigning prior probabilities on models 
and how to make these “innocent” or vague. It seems reasonable to investigate fur-
ther the general notion of savvy or K–L priors on models in a Bayesian framework 
(see Burnham and Anderson 2004 for a more technical treatment of this issue).

The “theory of the theory” can get very deep in model selection (e.g., Linhart 
and Zucchini 1986; van der Linde 2004, and especially Massart 2007). Also 



see Vol. 50 of the Journal of Mathematical Psychology, edited by Wagenmakers 
and Waldorp, for some current research results.

4.12 Exercises

There were seven science hypotheses concerning possible evolutionary 
changes in beak lengths and these were represented by seven models. Your 
research team has collected data on beak lengths over many years and it is 
time for an analysis. Your technician has studied each of the models and 
has obtained the MLEs of the model parameters and the value of the maxi-
mized log-likelihood function. These are summarized below:

 Model i log £ K AICc ∆
i
 w

i

 1 −66.21 2   
 2 −57.77 5   
 3 −59.43 6   
 4 −60.98 6   
 5 −49.47 6   
 6 −49.47 7   
 7 −49.46 8   

You are asked to complete the computations for the remaining columns 
and use the results as evidence in addressing the following questions:

a. What hypothesis is best supported? Why do you say it is the “best”?
b. Do these data provide evidence for two phenotypes? Why do you say this?
c. Is the evidence for two phenotypes strong? Weak? Be specific.
d. What is the supporting evidence for the covariates? Which one? Both? 

Why?
e. What is the evidence for the interaction term in model 7?
f. What further, post hoc, analyses might be considered? How would 

future research be molded by these results?

2. Some results concerning the affect of a flood on dippers were given in Sect. 
4.8. The two models were nested and a likelihood ratio test was made: 
model {f,p} vs. model {f

n
,f

f
,p}. The test statistic was 6.735 on 1 degree 

of freedom, giving a P-value of 0.0095. This is markedly different (by an 
order of magnitude!) from the probability of model {f,p}, given the data 
(0.0868). Explain this issue in some detail.

3. The nightly weather forecast uses the words probability of rain and likeli-
hood of rain as synonyms. Detail the technical differences in these terms.

4. You are given the result, “the probability of hypothesis H
4
, represented by 

its model g
4
 is 0.53.” This result might be called “conditional,” but how? 

Explain. How is this different from an evidence ratio?
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1. Reread the information in Sect. 2.4.1 on beak lengths in Darwin’s finches. 
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5. Can you intuit why adjusted R2 leads to overfitted models? (advanced 
 question)

6. Can you prove to yourself that the differencing leading to the ∆
i
 values 

removes the constant (across models) term that was omitted in the heuristic 
derivation from K–L information to AIC?

7. You have a colleague in Spain collaborating with you on an interest-
ing science problem. You have worked together and have settled on six 
hypotheses, have derived six models to carefully reflect these hypotheses, 
and have fitted the data to the models. Thus, you have the MLEs, the 
 covariance matrix, and other associated quantities. Everything seems to be 
in order. She has taken the lead in the analysis and provides the  following 
AICc values:

 H
1

 3,211 H
4

 14,712
 H

2
 3,230 H

5
   7,202

 H
3

 3,234 H
6

   5,699

  She tentatively suggests that H
1
 is the best, H

2
 and H

3
 are very close, but that

H
4
–H

6
 are very poor (implausible, actually). Compose your e-mail com-

ments on her findings so far. Form your response in terms of strength of 
evidence and ways to provide this.

8. While the mapping from the residual sum of squares (RSS) to the maximized 
log(L) is simple, many people stumble in trying to use the  information-
 theoretic approaches in a simple “t-test” or ANOVA setting. First,  consider 
a paired design of sample size n. (a) Lay out the models for the null and 
alternative hypotheses and display the computations for the RSS. (b) Lay 
out the same items for the unpaired design. Then, discuss how one would 
 proceed to compute AICc, ∆

i
, Prob{H

0
| data}, Prob{H

A
| data} and an 

evidence ratio. Finally, compare the advantages and differences between 
the usual t- statistics, the P-value, and rulings of statistical “significance” 
vs. model probabilities and evidence ratios.



5
Multimodel Inference

Hirotugu Akaike was born in 1927 in Fujinomiya-shi, Shizuoka-jen in Japan. He 
received B.S. and D.S. degrees in mathematics from the University of Tokyo in 
1952 and 1961, respectively. He worked at the Institute of Statistical Mathemat-
ics for over 30 years, becoming its Director General in 1982. He has received 
many awards, prizes, and honors for his work in theoretical and applied statistics 
(de Leeuw 1992; Parzen 1994). This list includes the Asahi Prize, the Japanese 
Medal with Purple Ribbon, the Japan Statistical Society Award, and the 2006 
Kyoto Prize. The three volume set entitled “Proceedings of the First US/Japan 
Conference on the Frontiers of Statistical Modeling: An Informational Approach” 
(Bozdogan 1994) was to commemorate Professor Hirotugu Akaike’s 65th birth-
day. He is currently a Professor Emeritus at the Institute, a position he has held 
since 1994 and he received the Kyoto Prize in Basic Science in March, 2007.

For many years it seemed logical to somehow select the best model from an 
a priori set (but many people ran “all possible models”) and make induc-
tive inferences from that best model. This approach has been the goal, for 
 example, in regression analysis using AIC, Mallows’ (1973) C

p
 or step-up, 

step-down, or stepwise methods. Making inferences from the estimated best 
model seems logical and has served science for the past 50 years.

It turns out that a better approach is to make inferences from all the  science 
hypotheses and their associated models in an a priori set. Upon deeper 
 reflection, perhaps it is not surprising that one might want to make inferences 
from all the models in the set, but it is very surprising that this expanded 
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approach is so conceptually simple and easy to compute. Approaches to 
 making formal inferences from all (or, at least, many) models is termed 
 multimodel inference.

Multimodel inference is a fairly new issue in the statistical sciences and one 
can expect further advances in the coming years. At this time, there are four 
aspects to multimodel inference: model averaging, unconditional variances, 
gauging the relative importance of variables, and confidence sets on models.

5.1 Model Averaging

There are theoretical reasons to consider multimodel inference in general 
and model averaging in particular. I will not review these technicalities 
and instead offer some conceptual insights on this interesting and effective 
approach.

First, it becomes clear from the model probabilities (w
i
) and the model like-

lihoods (L (g
i
|data) ) that there is relevant information in models ranked below 

the (estimated) best model. Although there are exceptions (e.g., Flather’s data 

els ranked second, third, etc. (e.g., the dipper data in Table 4.2). If there is 
information in the model ranked second, why not attempt to use it in making 
 inferences? Multimodel inference captures this information by using all, or 
several of, the models in the set.

Second, most models in the life sciences are far from full reality. With fairly 
adequate sample sizes, we might hope to find first- and perhaps second-order 
effects and maybe low-order interactions. Our models are often only crude 
approximations: unable to get at the countless smaller effects, nonlinearities, 
measured covariates, and higher order interactions. For example, even the best 
of the Flather models with an R2 value of 0.999 is hardly close to full reality 
for the system he studied (i.e., dozens of species of birds, across several states 
and years, with data taken from a wide variety of observers). So, we might ask 
why we want to base the entire inference on the (estimated) best model when 
there is usually uncertainty in the selection as to the “best” model. Instead, 
perhaps inference should be based on a “cloud” of models, weighted in some 
way such that better models have more influence than models that are rela-
tively poor. Here, rough classification of “good” and “poor” models is empiri-
cally based using model probabilities and model likelihoods. These lines of 
reasoning lead to what has been termed model averaging. Although the gen-
eral notion has been in the statistical literature for many years, Bayesians have 
championed this approach in the past 10–15 years; however, their approach is 
computationally quite different.

Third, ad hoc rules such as “∆
i
 greater than 2” become obsolete as all the 

models are used for inference. A model-averaged regression equation attempts 
to display the smaller effects and one can judge their usefulness against the 
science question of interest.

in Sect. 4.7), there is often a substantial amount of information in mod-



5.1.1 Model Averaging for Prediction

The best way to understand model averaging is in prediction. Consider the case 
where one has four well-defined science hypotheses (H

1
,…, H

4
) and these are 

represented by four regression models (g
1
,…, g

4
). The data are  analyzed using 

standard least squares methods to obtain the parameter estimates (b̂, ŝ 2) and 
their covariance matrix (Σ). For a given set of values of the predictor values 
(say, x1 = 4.1, x2 = 3.3, x3 = 0.87, and x4 = −4.5), one can use any of the models 
to make a prediction (Ŷ ) of the response  variable Y, for example,

ˆ ˆ ˆ ˆ ˆY x x x= + ( ) + ( ) + ( )b b b b0 1 1 3 3 4 4

specifically,

ˆ ˆ ˆ . ˆ . ˆ .Y = + ( ) + ( ) + −( )b b b b0 1 3 44 1 0 87 4 5

using the values given above (note that this model does not include x
2
). Of 

course, the MLEs of the b
j
 would have to be available before this model could 

be used for prediction of the response variable (Y).
Assume that this is the best model and has a model probability of 0.66. The 

second-best model excludes x
1
 and is

ˆ ˆ ˆ ˆ ˆ ˆ . ˆ .Y x x= + ( ) + ( ) = + ( ) + −( )b b b b b b0 3 3 4 4 0 3 40 87 4 5or

and has a model probability of 0.27. The b
i
 parameters differ somewhat by model; 

that is, b
2
 in the models above are different. I trust that notation to make this differ-

ence explicit is not needed as it would clutter the simple issue (i.e., the numerical 
value of b̂

3
 in the best model is almost surely different from the value of b̂

3
 in the 

second model). These and the other two models are summarized by rank as

 Model i Ŷ
i
 Model probability w

i

 1 67.0 0.660
 2 51.7 0.270
 3 54.5 0.070
 4 71.1 < 0.001

The predicted values can vary substantially by model; the b
j
 typically vary less 

from model to model. Prediction based on the best model might be risky as it 
has only two-thirds of the model probability and prediction from this model 
is somewhat higher than the other two models having the remaining one-third 
of the weight. Thus, the urge to make inference concerning predicted values 
using all four models (multimodel inference).

In this case, model-averaged prediction is a simple sum of the model prob-
ability for model i (w

i
) times the predicted value for model i (Y

i
)

ˆ ˆY = w Yi i
i=1

R

∑ ,

5.1 Model Averaging  107
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where Ŷ
i
 denotes a model-averaged prediction of the response variable Y and 

R = 4 in this example. This is merely

0 660 67 0 0 270 51 7 0 070 54 5 0 000 71 1 61 994. . . . . . . . .× + × + × + × =

or 62 for practical purposes. The model-averaged prediction downweights 
the prediction from the (estimated) best model for the fact that the other two 
 models provide lower predicted values and they carry one-third of the weight. 
The fourth model has essentially no weight and does not contribute to the 
model-averaged prediction. Model-averaging prediction is trivial to compute; 
it is a simple weighted average. In the past, people did not know what to 
use for the weights and an unweighted average made little sense. The proper 
weights are just the model probabilities and Ŷ  is fairly robust to slight dif-
ferences in the weights. For example, bootstrapped weights (see Burnham 
and Anderson 2002:90–94) or weights from BIC (Appendix E) are different 
somewhat from those defined here; however, these differences often make 
relatively little change in the model-averaged estimates). 

Model Averaging Predictions

Model averaging for prediction is merely a weighted average of the 
 predictions (Ŷ ) from each of the R models.

ˆ ˆY = w Yi i
i=1

R

∑ ,

where the subscript i is over models. The weights are the model  probabilities 
(w

i
) and the predicted values (Y

i 
) from each model are given a particular 

setting of the predictor variables.

Typically, all the models in the set are used in such averaging. If one has 
good reason to delete one or more models, then the model weights must be 
renormalized such that they sum to 1.

I have been asked if some of the poorest models have “bad” information and, 
thus, should be excluded in the averaging. Lacking absolute proof, I have recom-
mended against this. For one thing, if a model is that poor, it receives virtually no 
weight. I generally prefer using all the models in the a priori set in model averaging 
as this keeps unwanted subjectivity out of the process. Prediction is the ideal way 
to understand model averaging because each model can always be made to make 
an estimate of the response variable, given settings of the predictor variables.

5.1.2 Model Averaging Parameter Estimates Across Models

There are many cases where one or more model parameters are of special 
interest and each of the models has the parameter(s). In such cases, model 
averaging may provide a robust estimate.



I will use the data on European dippers from Sect. 4.8 to illustrate averaging 
of estimates of model parameters. I found the MLEs and model probabilities 
for the two models to be the following:

 Model MLE Model probabilities w
i

 {f,p} 0.5602 0.08681
 {f

n
,f

f 
, p} (n) 0.6071 0.91319

                   ( f ) 0.4688 

Model averaging for the survival probability in normal years is just

ˆ ˆ ,f f=
=
∑wi i
i 1

2

or

0.08681 × 0.5602 + 0.91319 × 0.6071 = 0.6030,

and the model-averaged estimate of the survival probability in flood years is

0.08681 × 0.5602 + 0.91319 × 0.4688 = 0.4767.

Note that the MLE for both flood and nonflood years in model {f,p} is merely 
f = 0.5602, because this model does not recognize a flood year as being  different 
from any other year. In this particular example, the estimates changed little 
because the best model had nearly all of the weight (91%). If the best model 
has a high weight (e.g., 0.90 or 0.95), then model averaging will make little 
 difference as the other models contribute little to the average because they have 
virtually no weight (an exception would be the case where the estimates for 
models with little weight are very different than the other estimates). In other 
words, there is relatively little model selection uncertainty in this case and the 
model-averaged estimate is similar to the numerical value from the best model.

There are many cases where the parameter of interest does not appear in all 
the models and this important case is more complicated and is the subject of 

The investigator must decide if model averaging makes sense in a particu-
lar application. In general, I highly recommend model averaging in cases 
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Model Averaging Parameters within Models

An obvious approach to gain robust estimates of model parameters is to model 
average the estimates (q̂ ) from each of the models i, where i = 1, 2,  ...., R,

q qˆ ˆ=
=
∑wi i
i

R

1

,

where q̂  is the model averaged estimate of q (q is used to denote some 
generic parameter of interest)

cope with the difficult issue of model selection bias (Sect. 6.2.2).
Sect. 6.2. Although not as easy to conceptualize or compute, there are ways to 
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where there is special interest in a parameter or subset of parameters. It 
should be clear that the parameter being considered from model averaging 
must mean the same thing in each model. Thus, if there is special interest in 
a disease transmission probability l, then this parameter must be consistent 
in its meaning across models.

The models used by Flather have parameters a, b, c, and d but these mean 
very different things from one model to another. For example, consider three 
of his models:

E Y ax

E Y a x

E Y a x c

b

d b

( ) ,

[ ( / ) ] .

=

= +

= − +( )−

( ) log( ), and

( ) 1 1

The parameter a, for instance, has quite different roles in these three models 
and it makes no sense to try to average the estimates â across models.

5.2 Unconditional Variances

Sampling variances are a measure of precision or repeatability of an estimator, 
given the model and the sample size. In the model above

E(Y)ˆ ˆ ˆ ( ) ˆ ( ).= + +b b b0 3 3 4 4x x

The variance of the estimator b̂
3
 is said to be “conditional” on the model. In 

other words, given this model, one can obtain a numerical value for var( b̂
3
) 

using least squares or maximum likelihood theory. The fact is, another variance 
component should be included – a variance component due to model selection 
uncertainty. In the real world, we are not given the model and thus we cannot 

we use information-theoretic criteria or Mallows Cp or ad hoc approaches such 
as stepwise regression to select a model from a set of models. Usually, there 
is uncertainty as to the best model selected in some manner. That is, if we had 
other replicate data sets of the same size and from the same process, we would 
often find a variety of models that are “best” across the replicate data sets. This is 
called model selection uncertainty.” Model selection uncertainty arises from the 
fact that the data are used both to select a model and to estimate its  parameters. 
Much has been written about problems that arise from this joint use of the data. 
The information-theoretic approaches have at least partially resolved these 
issues (the same can be said for several Bayesian approaches).

Thus, a proper measure of precision or repeatability of the estimator b̂
3
 

must include both the usual sampling variability (i.e., given the model) and a 
measure of model selection uncertainty (i.e., the model to model variability in 
the estimates of b̂

3
). This issue has been known for many years; statisticians 

have noted that using just the sampling variance, given (i.e., “conditional on”) 
the model represents a “quiet scandal.” Ideally,

condition on the single best model resulting from data based selection. Instead, 



var q̂( ) = +sampling variance given a model
variation due to moodel selection uncertainty.

var |g= ( ) + −( )∑ˆ ˆ ˆ .q q qi i i

2

The last term captures the variation in the estimates of a particular parameter 
q across models. If estimates of q vary little from one model to another, this 
term is small and the main variance component is the usual one, var(q̂ | g), 
which is the variance of q̂, conditional (given) on the model g

i
. However, as is 

often the case, q̂ varies substantially among models and if this term is omitted, 
the estimated variance is too small, the precision is overestimated, and the 
confidence intervals are too narrow.

Building on these heuristics, we can think of the above equation and take a 
weighted sum across models as

var var
2

=1

ˆ ˆ | ˆ ˆq q q q( ) = ( ) + −( )⎧
⎨
⎩

⎫
⎬
⎭

∑w gi i i i
i

R

where the final term is the model-averaged estimator. This variance is called “uncon-
ditional” as it is not conditional on a single model; instead, it is conditional on the 
set of models considered (a weaker assumption). [Clearly, the word “unconditional” 
was poorly chosen; we just need to know what is meant by the term.] Note that 
model averaging arises as part of the theory for obtaining an estimator of the uncon-
ditional variance. The theory leading to this form has some Bayesian roots.

Note that the sum of the two variance components is weighted by the model 
probabilities. If the best model has, say, w

best
 > 0.95, then one might ignore the final 

variance component, ˆ ˆq qi −( )2

, because model selection uncertainty is nil. In such 

cases, model averaging is not required and the usual conditional variance 
should suffice.

There are sometimes cases where the investigator wants to make inference 
about a parameter from only the best model; here an unconditional variance and 
associated confidence intervals could still be used with the expected advantages.

Unconditional Variance Estimator

An estimator of the variance of parameter estimates that incorporates both 
sampling variance, given a model, and a variance component for model 
selection uncertainty is

var var
2

=1

ˆ ˆ | ˆ ˆ ,q q q q( ) = ( ) + −( )⎧
⎨
⎩

⎫
⎬
⎭

∑w gi i i i
i

R

where q̂  is the model averaged estimate, w
i
 are the model probabilities, 

and g
i
 is the ith model. This expression is also useful in a case where one 

is interested in a proper variance for q̂ from only the best model (not the 
model-averaged estimator).

Of course se =ˆ var ˆ ,q q( ) ( )  and if the sample size is large, a 95% confi-
dence interval can be approximated as q̂  ± 1.96 × se q̂ .

5.2 Unconditional Variances  111



112  5. Multimodel Inference

Use of this approach provides estimators with good achieved confidence 
interval coverage. I highly recommend this approach when data are used to both 
select a model and estimate its parameters (i.e., the usual case in applied data 
analysis).

5.2.1 Examples Using the Cement Hardening Data

We return to the cement hardening data to provide useful insights into model 
selection uncertainty for this small (n = 13) data set. Material presented in 
Sect. 4.5 indicated that only two models (models {12} and {12 1*2} had any 
discernible empirical support. This is almost too simple to illustrate the points 
I want to make clear; therefore, I will use an extended example using these 
data from Burnham and Anderson (2002:177–183).

Model averaging the b
i
 parameters and obtaining the unconditional  variances 

was done using, strictly for illustration, all possible subsets, thus there are 
24−1=15 models. Clearly, model {12} is indicated as the best; however, sub-
stantial model selection uncertainty is evident because that best model has a 
model probability of only 0.567 (Table 5.1).

TABLE 5.1. Model probabilities for 15 
nested models of the cement hardening data.

Model i  w
i

Model i   w
i

{12} 0.5670 {23} 0.0000a

{124} 0.1182 {4} 0.0000
{123} 0.1161 {2} 0.0000
{14} 0.1072 {24} 0.0000
{134} 0.0810 {1} 0.0000
{234} 0.0072 {13} 0.0000
{1234} 0.0029 {3} 0.0000
{34} 0.0004
aValues shown are zero to at least five decimal 
places.

TABLE 5.2. Quantities used to compute the unconditional variance of the 
 predicted value for the cement hardening data.

Model i K Ŷ w
i
 var(Ŷ | g

i
) (Ŷ

i
 – Ŷ )2

{12} 4 100.4 0.5670 0.536 1.503
{124} 5 102.2 0.1182 2.368 0.329
{123} 5 100.5 0.1161 0.503 1.268
{14} 4 105.2 0.1072 0.852 12.773
{134} 5 105.2 0.0810 0.643 12.773
{234} 5 111.9 0.0072 4.928 105.555
{1234} 6 101.6 0.0029 27.995 0.001
{34} 4 104.8 0.0004 1.971 10.074



The computation of unconditional estimates of precision for a predicted 
value is simple because every model i can be made to provide a prediction (Ŷ ). 
We consider prediction where the predictor values are set at x1 = 10, x2 = 50, 
 x3 = 10, x4 = 20. The prediction under each of the eight models is shown 
in Table 5.2 (the last seven models were dropped here as they have virtu-
ally no weight). Clearly, Ŷ is high for model {234}, relative to the other 
models. The estimated standard error for model {1234} is very high, as 
might be expected because the X matrix is nearly singular. Both of these 
models have relatively little support, as reflected by the small model prob-
abilities, and so the predicted values under these fitted models are of little 
credibility.

Table 5.2 predicts the response variable Y for the cement hardening data. 
Ŷ is a predicted expected response based on the fitted model (given the  predictor 
values, x

1
 = 10, x

2
 = 50, x

3
 = 10, and x

4
 = 20), conditional on the model.  Measures 

of precision are given for Ŷ ; Ŷ  denotes a model-averaged predicted value, and 

(Ŷ
i
 – Ŷ )2 is the model-to-model variance component when using model i to 

estimate Y. For example, for model {12} and i = 1, (Ŷ
1
 – Ŷ )2.

The remaining seven models had essentially no weight and are not shown.
The predicted value for the AICc-best model is 100.4 with an estimated 

conditional variance of 0.536. However, this measure of precision is an 
 underestimate because the variance component due to model selection 
 uncertainty has not been incorporated. Model averaging results in a predicted 
value of 101.6. The corresponding estimated unconditional standard error is 
1.9. The unconditional standard error is substantially larger than the condi-
tional standard error 0.73. Although it is not a virtue that the unconditional 
standard error is larger than has been used traditionally, it is a more honest 
reflection of the actual precision. If only a conditional standard error is used, 
then confidence intervals are too narrow and achieved coverage will often be 
substantially less than the nominal level (e.g., 95%).

Study of the final two columns in Table 5.2 shows that the variation in the 
model-specific predictions (i.e., Ŷ ) from the weighted mean (i.e., (Ŷ

i
 – Ŷ )2) is 

substantial relative to the estimated variation, conditional on the model (i.e., 
the var(Ŷ | g

i
)). Models {124} and {1234} are exceptions in this case.

The investigator has the choice as to whether to use the predicted value 
from the AICc-selected model (100.4) or a model-averaged prediction 
(101.6). In this example, the differences in predicted values are small rela-
tive to the  unconditional standard errors (1.9); thus, here the choice makes 
little  difference. However, there is often considerable model uncertainty 
 associated with real data and I would suggest the use of the model-averaged 
predictions. Thus, I would use 101.6 as the predicted value with an uncondi-
tional standard error of 1.9. If the best model was more strongly supported by 
the data (i.e., w

i
  >  0.95), then I might suggest the use of the prediction based 

on that (best) model (i.e., Ŷ=100.4) and use the estimate of the unconditional 
standard error (1.9).

5.2 Unconditional Variances  113
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Model {1} has only x
1
 in it, allowing a “straight shot” at b̂

1
; however, it is a 

very poor model, relative to the others. When other variables are included in 
a model with x

1
, the parameter estimates change due to the fact that the x

1
 is 

correlated with the other predictor variables (see Table 5.3). This is frustrat-
ing as the biologist wants a simple answer to this simple question. So, what 
is a robust estimate of the regression slope on x

1
? Model averaging is one 

approach to answer this question.
The computation of the model-averaged estimates of b

1
 and its uncondi-

tional sampling variance is illustrated in Table 5.3 (recall that the variance is 
the square of the standard error).

The other seven models do not have b
1
 in them and are not shown above.

Note the variation in the estimates of b
1
 across models – this model-to-model 

variation is model selection uncertainty and needs to be reflected in estimates 
of precision. The model-averaged estimate,

ˆ ˆ .b b1 1
1

1 4561= =
=
∑wi i
i

R

, while the estimate of b
1
 from model {1} is 1.8687.

The unconditional variance of this model-averaged estimate of b
1
 is obtained 

by using the formula above, expressed in terms of b
1
 (instead of the generic 

parameter q),

var var | ,b b b b1 1 1 1

2

1
( ) = ( ) + −( )⎧

⎨
⎩

⎫
⎬
⎭=

∑w gi i i i
i

R

where i reflects the model and “1” is the parameter of interest, b
1
. For example, 

the first term in the needed sum is

w g1 11 1 11 1

2

0 5670 0 0147 0 0122

× ( ) + −( )⎧
⎨
⎩

⎫
⎬
⎭

× +

v̂ar | ˆ ˆ

. {( . ) ( . )

b b b

22 0 00842} . .=

Note that the final term is 1.4683 – 1.4561 = 0.0122; then this is squared. 
 Completing the rest of the calculations, we get var(b̂

1
) = 0.0308, or an 

 estimated unconditional standard error on b̂1 of 0.1755. This compares to the 

TABLE 5.3. Quantities needed to make multimodel 
inference concerning the parameter b

1
 for the cement 

hardening data.

Model i b̂
1
 var(b̂

1
 | g

i
) w

i

{12} 1.4683 0.01471 0.5670
{124} 1.4519 0.01369 0.1182
{123} 1.6959 0.04186 0.1161
{14} 1.4400 0.01915 0.1072
{134} 1.0519 0.05004 0.0811
{1234} 1.5511 0.55472 0.0029
{1} 1.8687 0.27710 <0.0001
{13} 2.3125 0.92122 <0.0001

ˆ ˆ ˆ ˆ



conditional standard error of 0.1213, given the selected model. This difference 
is the “quiet scandal” because model selection uncertainty (a component of 
variance) had been omitted (ignored) in the conditional approach.

Model selection uncertainty is more clearly present when examining the 
model-to-model variation in the estimator of b

2
 (Table 5.4). Note that the esti-

mate of b
2
 for model {234} is negative; this is due to the high correlations 

among the predictor variables.
The Akaike weights (w

i
) for just the eight models above add to 0.8114. 

However, to compute results relevant to just these eight models, we must renor-
malize the relevant model probabilities to add to 1. Those  renormalization 
probabilities are given in Table 5.4. The model-averaged estimator of b

2
 is 

0.6110 (compared to 0.6623 for the best model and 0.7891 for model {2}) and 
the unconditional estimated standard error of b̂ 2

 is 0.1206. The  conditional 
standard error for the best model was 0.0459, while the unconditional  standard 
error was 0.1206 – reflecting the high degree of model selection uncertainty. 
This estimate attempts to provide a robust estimate of the “slope” on the vari-
able x

2
 without regard to other variables in the model.

It is important to compute and use unconditional standard errors in infer-

b
1
 and b

2
, using results from model {12}, should be constructed based on a 

t-statistic with 10 df (t
10,0.975

 = 2.228 for a two-sided 95% confidence interval). 
Such intervals here will still be bounded well away from 0; for example, the 
95% interval for b

2
 is 0.39–0.93.

5.2.2  Averaging Detection Probability Parameters 
in Occupancy Models

Ball et al. (2005) used occupancy models (MacKenzie et al. 2006) to evaluate a 
habitat model for the Palm Springs ground squirrel (Spermophilis  tereticaudus 
chlorus) in the Coachella Valley, California, in 2002. I will use this paper 
to illustrate several things, in addition to model averaging and unconditional 
variances.

TABLE 5.4. Quantities needed to make multi-
model inference concerning the parameter b

2
 for 

the cement hardening data.

Model b̂
2
 se(b̂

2
 | g

i
) w

i

{12} 0.6623 0.0459 0.6988
{124} 0.4161 0.1856 0.1457
{123} 0.6569 0.0442 0.1431
{1234} 0.5102 0.7238 0.0035
{234} −0.9234 0.2619 0.0089
{23} 0.7313 0.1207 < 0.0001
{24} 0.3109 0.7486 < 0.0001
{2} 0.7891 0.1684 < 0.0001
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ences after data based model selection. Note also that confidence intervals on 
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Ball et al. (2005) were interested in the evaluation of a habitat model 
developed by a Scientific Advisory Committee (SAC) as part of a multispe-
cies Habitat Conservation Plan. Interest was focused on mesquite (Prosopis 
glandulosa), which was not common, thought to be excellent habitat, and in 
decline, while creosote (Larrea tridentata) was much more common but of 
somewhat questionable value compared to the squirrel.

Ball et al. (2005) developed 15 models based on squirrel occupancy (y) 
and squirrel detectability (p). They justified their choice of a priori  hypotheses 
based largely on the literature, knowledge of the biology of the species, and on man-
agement concerns and this required considerable thought (Doherty,  personal 
communication). A pilot study was conducted and these results used to improve 
survey design and data-gathering protocols. Four preserves were sampled using 
systematic samples with random starts. Over 1,900 points were sampled in the 
initial field session. Occupancy was modeled as a constant (·) or as a function 
of individual vegetation (mesquite, creosote, or desert scrub) or substrate types 
(dune and hummock) or combinations. Detection probability was modeled as a 
function of these same variables and sampling time (t); sampling was done on 
three occasions (t = 1, 2, 3). Our entree into this issue will be Table 5.5 where 
15 models are summarized. One thing to notice at first glance is that virtually 
100% of the model probability is tied to just three models and the science 
hypotheses that they represent.

Estimates of the constant detection probability from the best model was 
0.216 but varied from 0.156 to 0.256 for other models in the set. Model aver-
aging was done and the results are shown in Table 5.6.

TABLE 5.5. Model selection statistics for 15 models of ground squirrel occupancy (y) 
and detection probability (p) from Ball et al. (2005). The models are shown by rank.

 Hypothesis/model log(L) AICc K ∆
i
 w

i

 1 y mdh,cdh,sdh,ae’
 p. −229.27 468.56 5 0.00 0.58

 2 y mdh,cdh,sdh,ae’
 p

mdh = cdh,ae
 −229.11 470.26 6 1.70 0.25

 3 y mdh,cdh,sdh,ae’
 p

t
 −228.49 471.05 7 2.48 0.17

 4 y mdh = cdh,sdh,ae’
 p. −235.32 478.66 4 10.09 < 0.01

 5 y mdh = cdh,ae’
 p. −236.97 479.96 3 11.40 < 0.01

 6 y m,distom’
 p. −236.00 480.01 4 11.45 < 0.01

 7 y mdh = cdh,sdh,ae’
 p

mdh = cdh,ae
 −235.31 480.65 5 12.09 < 0.01

 8 y mdh = cdh,sdh,ae’
 p

t
 −234.93 481.91 6 13.35 < 0.01

 9 y mdh = cdh,sdh,ae’
 p

mdh = cdh,ae
 −236.96 481.95 4 13.38 < 0.01

10 y distom’
 p

t
 −235.25 482.54 6 13.98 < 0.01

11 y mdh = cdh,ae’
 p

t
 −236.57 483.17 5 14.60 < 0.01

12 y . pmdh = cdh,ae
 −242.19 490.17 3 21.83 < 0.01

13 y . p. −278.61 561.23 2 92.67 < 0.01
14 y . pt

 −278.36 564.74 4 96.18 < 0.01
15 y m.distom.

 p
mdh = cdh.ae

 −279.66 569.34 5 100.78 < 0.01

M mesquite; C creosote; D dune; H hummock; S desert scrub (e.g., Atriplex spp.); AE all else; DisToM 
distance to mesquite.



Approximately 11% of the variation stems from model selection uncer-
tainty and is a small proportion in this example. Note that the weighted aver-
age of the conditional standard errors (0.049) is larger than the conditional 
standard error for the best model (0.044).

Careful examination of the log-likelihood values suggests that model 2 is 
a good model only because it has one additional parameter (thus a “penalty 
term” of approximately 2); however, the fit did not improve. That is, the log-
likelihood value for the best model was −229.27, whereas this value for the 
second-best model was −229.11. This finding leads to the conclusion that the 
structure on the detection probability (p

mdh=cdh,ae
) is without support. The two 

estimates of detection probability under the second-best model are similar 
(0.228 vs. 0.170) and their confidence intervals overlap entirely (0.144–0.342 
vs. 0.059–0.403). This is an example of a “pretending variable” (see Sect. 
3.6.8). One should check to be sure that there has been a change in the log-
likelihood values to avoid the “pretending variable problem.”
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TABLE 5.6. Summary of model averaging for detection probability for the ground 
squirrel data from Ball et al. (2005).

Estimated

Model number Model probability Detection probability Standard error

 1 0.576 0.216 0.044
 2 0.247 0.228 0.051
 3 0.166 0.256 0.064
 4 0.004 0.161 0.050
 5 0.002 0.162 0.050
 6 0.002 0.195 0.040
 7 0.001 0.156 0.061
 8 0.001 0.178 0.062
 9 0.001 0.156 0.061
10 0.001 0.231 0.058
11 < 0.001 0.180 0.063
12a < 0.001 0.209 0.063
Weighted average 0.225b 0.049c

Unconditional standard
 errord

0.052

a The remaining models had virtually no weight and are not shown. The results are shown to 
only three places.
b The weighted average was based on

ˆ ˆ ,p w pi i
i

R

=
=
∑

1
cThe first entry is a weighted average of the conditional standard errors, while the uncondi-
tional standard error includes a variance component for model selection uncertainty.
dThe unconditional standard error was based on

var var | .p w p g p pi i i i
i

R

( ) = ( ) + −( ){ }
=
∑

2

1

ˆ ˆ ˆ ˆ
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If model 2 is removed from the set for some post hoc reason, the model 
probabilities for the first- (1) and the second-best (formerly 3) models change 
to 0.764 and 0.221, respectively, from 0.576 and 0.166 (see Sect. 3.7.1). One 
should always examine the log-likelihood or deviance to be sure that the  addition 
of a new parameter or variable improves the fit.

Now we consider the issue of vegetation and substrate type on the  occupancy 
parameter y: variables MDH and CDH. Model 3 allows these variables to 
operate independently, whereas model 8 enforces the equality constraint, 
MDH = CDH and requires one less parameter to be estimated. All other 
structural aspects of these two models are the same. Evidence in issues such 
as this can be provided using an evidence ratio, E

3,8
 = 0.28938/0.00126 = 230. 

Thus, the evidence is strong (my value judgment) that the constraint repre-
sents a poor hypothesis. Such evidence ratios do not depend on other models 
in or out of the set and are useful in contrasting two models that have differing 
parameterizations.

Because of the interest in mesquite, the relationship between occupancy 
and the distance to the nearest mesquite was quantified. This was done by 
 computing the evidence ratio between models 6 and 13 and this showed 
 substantial  evidence in favor of a relationship (E

6,13
 = 118 divided by essen-

tially 0). The estimated slope of the relationship from model 6 was −0.00075 
with se = 0.00014 and 95% confidence interval of (−0.0010, −0.00048), fur-
ther confirming the importance of mesquite to this species of ground squirrel. 
[Do not be fooled by the low numerical value of the estimated slope (−0.00075). 
It is very small because its associated variable was large (a distance). The 
importance of this variable is revealed by the relatively small standard error of 
0.00014 and the fact that the coefficient of variation is 19%.]

A final aspect of Ball et al.’s (2005) work was to examine the evidence for 
the SAC habitat model that had been proposed for the management of this 
ground squirrel. Model {y, p} most closely represented the proposed habitat 
SAC model; however, it was ranked third to the last with a model probability 
of e92.67/2 = 1.33 × 10−20. One must conclude that the SAC model was very poor 
as a basis for management decisions.

5.3 Relative Importance of Predictor Variables

In some cases, research is in an early descriptive stage and model selection and 
valid inference may be constrained by lack of knowledge, small sample size, 
high dimensionality of the predictor variables, high degree of  multicolinearity, 
and high variability. In such cases, it may be judicious to gain insight into the 
more important variables from analyzing data from a pilot study and then 
attempt to collect high quality data on these (few) more important  variables. 
Proper a priori hypothesizing and modeling might then focus better on a few 
variables thought to be important, rather than tackling data on all the vari-
ables. This seems like a useful way to approach exploratory data analysis.



5.3.1  Rationale for Ranking the Relative Importance 
of Predictor Variables

Consider a small team of researchers interested in both understanding 
 relationships and making predictions about a response variable Y, based on 
measurements of 15 predictor variables (x

1
, x

2
,…, x

15
). There are, in this case, 

215 − 1 = 32,767 possible models, excluding interactions or transformations 
such as quadratic terms. Rather than gearing up for a huge computer run, 
the team decides to generate a reasonable subset of variables that seem most 
important. Thus, an ability to rank the relative importance of the predictor 
variables might be useful. Then, further research could chase understanding 
and prediction based on a few variables that rank high. This is not the only 
approach to making scientific progress under the severe constraints noted, but 
it is an interesting alternative.

Such ranking can be done with ease if one has some experience with  spreadsheets 
and has a statistical software package that can unthinkingly run “all possible mod-
els.” In general, I do not recommend running all the models; this is a special case 
where every variable must be put on an equal footing with the rest for the ranking 
to be interpretable. Running all the models is an easy way to achieve the bal-
ance (fairness) in ranking the relative importance of the predictors. As with AICc 
model selection, there is no guarantee that any of the predictors are good in some 
absolute sense; we are merely going to rank them.

5.3.2 An Example Using the Cement Hardening Data

The cement hardening data will serve as a handy example with four predictor 
variables, thus 24 − 1 = 15 possible models. Step 1 is to list all 15 models and 
their associated model probability (Table 5.7).

Ranking, step 2, is done by merely selecting all the models where x
i
 appears 

and summing up the associated model probabilities. Thus, let i = 1, then pre-
dictor variable x

1
 appears in the following eight models: {1}, {12}, {13}, {14}, 

{123}, {124}, {134}, and {1234}. The sum of these eight model  probabilities 

TABLE 5.7. Summary of the model probabilities for the 
cement hardening data.

Model Probabilitya Model Probabilitya

{1} 0.0000 {24} 0.0000
{2} 0.0000 {34} 0.0004
{3} 0.0000 {123} 0.1161
{4} 0.0000 {124} 0.1182
{12} 0.5670 {134} 0.0811
{13} 0.0000 {234} 0.0072
{14} 0.1072 {1234} 0.0029
{23} 0.0000  

aShown to four decimal places.
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is 0.9925. The process is repeated for the eight models where x
2
 appears, 

namely models {2}, {12}, {23}, {24}, {123}, {124}, {234}, and {1234}.
The results for the four predictor variables are summarized as

 Variable Sum Rank

 1 0.9925 1
 2 0.8114 2
 3 0.2077 4
 4 0.3170 3

In this small example, one might want to focus further work on the two  predictors 
that are ranked high. Note that the use of all possible models gave each variable 
an equal footing; each variable was in exactly eight models and the sums were 
all based on eight entries. The method has utility even when R is fairly large (e.g., 
20) as standard software can compute the models in a few hours. Then one needs 
to capture the relevant statistics, compute AICc, the ∆

i
 values, and model prob-

abilities, and use a spreadsheet to compute the simple summations.
This ranking procedure will never see heavy use but it is a method worth 

knowing about when faced with exploratory phases of investigation where 
dimensionality is high. This ranking approach is most appealing for hypoth-
eses that can be well represented by linear or logistic regression models. The 
ranking tries to break correlations between and among the predictor variables 
by having a variable appear on its own and then together with all the other var-
iables. This is an opportunity to determine, via the model probabilities, which 
variables are related to the response variable and which variables appear to be 
related, but only because they are correlated with another predictor.

Ad hoc procedures such as stepwise regression give a false impression of “impor-
tance.” Once the algorithm has stopped adding and deleting predictor variables, 
one might have the final fitted model (where there are 13 predictor variables),

ˆ ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ).Y x x x x= + + + +b b b b b0 1 1 6 6 7 7 12 12

Then, one is led to the (incorrect) conclusion that variables x
1
, x

6
, x

7
, and 

x
12

 are “important” in terms of the response variable. One is compelled to 
believe that these variables must be important because, after all, they are in 
the final model. Conversely, the remaining variables, x

2
, x

3
, x

4
, x

5
, x

8
, x

9
, x

10
, 

x
11

, and x
13

 are surely not important; after all, if they had been important, they 
would have been in the final model. Because of the intercorrelations among 
the predictor variables, such seemingly obvious dichotomies are surprisingly 
false. Stepwise algorithms do not even identify the second-best model; in fact, 
no ranking of models is possible using these techniques. Insights such as the 
one above tend to motivate the use of models beyond just the one estimated 
to be the best one. There is often substantial information in models ranked 2, 
3,…, R and it is easy to use this information to allow better inferences to be 

making inference from all the models in most scientific work. Ranking of the 
importance of predictor variables is one facet of multimodel inference.

made from the evidence available. Model based inference ought to be about 



5.4 Confidence Sets on Models

Bayesians define an interval in a manner in which they can assert that a single 
interval contains the parameter with a certain probability (e.g., 0.95). These 
are often called credible intervals and are easy to understand, whereas the 
frequentist confidence interval falls back on notions of repeated sampling and 
the long run coverage at the nominal level (e.g., 0.95). In the real world, there 
is often little numerical difference between the two types of intervals, but 
there are worthwhile philosophical differences.

Now consider a set of five science hypotheses represented by five models and 
a data set with sample size 145. Given this set and the fixed sample size, one of 
the five models is the best model in a K–L sense; we just do not know which one 
it is (much like an unknown parameter). We can estimate which model is best 
and the probability that each model i is that actual best model (the model proba-
bilities w

i
). This thinking leads the way to consider a confidence set on models.

Caley and Hone’s (2002) data on bovine tuberculosis in ferrets can be used 
to illustrate the concept. From Sect. 4.6, we had

 Hypothesis Model Model probability

 H
1
 g

1
 <0.0001

 H
2
 g

2
 <0.0001

 H
3
 g

3
 <0.0001

 H
4
 g

4
 0.7595

 H
5
 g

5
 0.2405

Summation of the last two probabilities gives 1.0 in this example. We can say 
probabilistically that the best K–L model is either g

4
 or g

5
 (given the model 

set) with virtual certainty in this case. The model set (g
4
, g

5
) constitutes an 

approximate 100% confidence set on models. This concept is sometimes use-
ful as an aid in comprehending the meaning of the evidence.

A second example comes from Linhart and Zucchini’s (1986) book and 
deals with prediction and smoothing of weekly data on storm frequency at 
a botanical garden in Durban, South Africa. They used a combination of 
logistic regression and Fourier series terms to model weekly storm frequency 
across 47 consecutive years. The Fourier series terms enter in pairs (sines and 
cosines); thus, models are nested and K jumps by 2 from model to model. 
I will avoid other complications (e.g., overdispersion) and provide a summary 
of the quantities available:

 Model i ∆
i
 Model probability

 1 39.04 <0.0001
 2 1.64 0.2141
 3 0.00 0.4861
 4 1.49 0.2305
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 5 3.98 0.0665
 6 10.59 0.0024
 7 17.24 <0.0001
 8 24.51 <0.0001
 9 33.29 <0.0001

Model 3 with six parameters is the best with probability 0.4861 flanked by 
model 2 and model 4, with probabilities 0.2141 and 0.2305, respectively. 
The sum of these three probabilities gives 0.93, giving an approximate 95% 
confidence set. Including the probability for model 5 gives a 99.7% confi-
dence set. These sets are only approximate but allow the notion of confidence 
intervals for parameters to be extended to confidence sets for models. Here, 
models other than 2, 3, and 4 lie outside a 93% confidence set. Clearly, models 
1, 7, 8, and 9 lie well outside either set.

The use of confidence sets on models is occasionally useful, particularly 
when the models are nested. These sets can help understand subsets of models 
that have reasonable plausibility.

5.5 Summary

The idea of making formal inductive inferences from an array of a priori 
 models is compelling. Given a choice of using one model where there is 
uncertainty concerning its rank and using all the models in the set, I think 
people would prefer the latter. Multimodel inference seems generally desir-
able. The curious thing is that multimodel inference is computationally easy. 
In the future, it seems likely that additional approaches will be developed to 
allow inference from multiple models.

5.6 Remarks

A good discussion of model averaging is given by Hoeting et al. (1999). Their 
paper is written in a Bayesian setting, but the review of the general approach 
is good reading.

Anthony et al. (2006) provide the results of an enormous research program 
on the Northern Spotted Owl (Strix occidentalis caurina). The analysis of 
these data was done under a multimodel inference paradigm due partly to the 
litigious nature of the long-term controversy over cutting old growth forests 
and its effects on spotted owls and other conservation concerns. Model aver-
aging can have substantial values when the science issue involves controversy 
(see Hoeting et al. 1999; Anderson 2001).

Chatfield’s (1995b) extensive paper is excellent on several important, but 
perhaps subtle, issues; in particular, problems that arise when using the data 
to both select a model and then make inferences from that selected model. 



These concepts are largely handled by the information-theoretic approaches 
for many classes of problems.

Breiman (1992) offered the term “quiet scandal” when estimates of precision 
are presented without a variance component for model selection uncertainty.

Burnham and Anderson (2002:Chap. 5) provide the results from a number of 
MC simulation studies showing the poor confidence interval coverage of estimators 
when model selection uncertainty is ignored. They simulated binomial data (10,000 
replicates) from a simple age-specific survival model with ten age classes with sam-
ple size of 150 subjects. The model set allowed estimates of survival probability up 
to some age, whereas the remaining age classes were pooled, as is often done when 
the number of survivors dwindles. Inference was made from the best model and 
confidence interval coverage was poor when only the sampling variance was used 
as a measure of precision: mean coverage was 81.3%, ranging from a low of 63.0% 
to 95.9%. In contrast, when a variance component for model selection uncertainty 
was added, coverage averaged 95.0%, ranging from 90.6% to 97.7%.

Various approaches to model selection began to appear in the technical lit-
erature since computers became available in the 1960s. Prior to that, one was 
happy to obtain the MLEs and covariance matrix for a single model as calcula-
tions were laborious and had to be done by hand. Procedures such as stepwise 
regression filled an important void and saw heavy use. Only in the past 15 years 
have people begun to ask about the statistical properties of the selected model 
(be it from stepwise, Mallows’ Cp, AICc, or whatever). It became clear that the 
estimators used in the selected model had confidence interval coverage below 
the nominal level. This limitation was caused because model selection uncer-
tainty was not embedded into estimates of precision (Chatfield (1995b) covers 
this issue and provides insights into problems with data dredging).

Statistical software packages could be much more useful if they treated sets 
of models, given a data set, rather than treating individual models in isola-
tion. I am aware of only two major software packages that take this approach: 
program MARK (White and Burnham 1999) and Distance 5.2 (Thomas 
et  al. 2006). Both of these packages are freeware; however, neither is general 
 purpose statistical package.

Predictor variables in linear and nonlinear regression are often  correlated and this 
has its consequences. The cement hardening data will serve as an example where 
the variables x

2
 and x

4
 had a correlation coefficient of −0.973. One advantage of 

using AICc is that both of the variables are retained in the analysis. Thus, models 

of 0.567, 0.107, and 0.118, respectively. Although x
4
 is not the best of the pair, per-

haps this variable is very much less expensive to measure; thus, it should not be lost 
from the results. There are several ways to handle correlated variables, including a 
simple geometric mean of the members of the pair, thus reducing two variables to 
one. If several similar variables have high correlations, one can perform a principal 
components analysis (PCA) and hope that most of the variation is contained in the 
first 1–2 components; however, issues of interpretability often arise.

Ranking the relative importance of variables is a more sound way to try 
to identify important variables from a large set. In the past, people have used 
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{12}, {14}, and {124} were three of the best four models, with model probabilities 
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some sort of statistical test to sequentially weed out “nonsignificant” variables 
and this approach has poor properties (the multiple testing problem to men-
tion only one issue).

I hope the reader is gaining an appreciation for how bad ad hoc proce-
dures such as stepwise regression can be, even in routine situations where the 
assumptions are fairly well met. Although stepwise methods are still being 

models setting (see McQuarrie and Tsai 1998).
Guidelines have been published outlining the quantities that should often 

appear in publications (Anderson et al. 2001b). In the ground squirrel exam-
ple, the issue surrounding model 2 could not have been uncovered had the 
value of the log-likelihood (or the deviance) not been published.

5.7 Exercises

1. The first exercise in Chap. 4 dealt with the data in bill lengths in Darwin’s finches. 
Would you employ model averaging the estimates of b

1
 in this case? Why? Why 

not? Would you do any model averaging in this example? Should model selec-
tion uncertainty be incorporated into estimates of precision in this example?

2. Review Table 5.5 from the study of Palm Springs ground squirrels. Your 
colleague provides you with the evidence ratio E

5,8
 = 2.65. Write a concise 

paragraph explaining the biology implied by this result.
3. When faced with many predictor variables in linear or logistic regression 

one must often try to reduce the dimensionality by various means. One 
approach has been to perform a principal components analysis (PCA) on 
the X matrix. Then, the regression is on PCI, PC2,…, rather than on the 
original variables x

1
, x

2
…. What are the advantages and disadvantages to 

this approach? (advanced question)
4. A nonparametric bootstrap might be used in model selection. Outline this 

approach in a one-page report and offer a critique. (advanced question)
5. We learned in Chap. 2 that information was additive. How might this fact 

be exploited using the ∆
i
 values? (advanced question)

6. Review the paper by van Buskirk and Arioli (2002) and consider ways in 
which their model set might evolve to the next level, given their results.

7. Bortz and Nelson (2006) studied HIV infection dynamics that surely gives 
some insight into modeling complex system using state-of-the-art quanti-
tative methods. Readers with a background in various types of differential 
equations and mixed effects modeling should read this paper.

 a.  What is gained by thinking that the “penalty term” in AIC, AICc, and 
TIC is a measure of “complexity”?

 b.  They seem to favor an information criterion termed ICOMP. Can you 
determine the rationale for this choice?

 c.  Is it not surprising that K is so small for the models they evaluate?. Why 
might this be?

taught routinely, they are a poor basis for model based inference in a linear 
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6.1 Overdispersed Count Data

Statistical methods are often based on the “iid” assumption: independent 
and identically distributed data. This assumption is nearly always made 
in application (time series and spatial models are exceptions); however, 
in reality, data are often somewhat dependent and not identically distrib-
uted. These conditions fall under the concept of overdispersion. Count 
data (zero and the positive integers stemming from some count) are often 
said to be “overdispersed.” There are two issues here. First, overdisper-
sion is a property of the data, not a model; however, overdispersion can 
be modeled. Second, overdispersion can be modeled as either a lack of 
independence or parameter heterogeneity. There are a variety of special-
ized approaches to attempt to deal with overdispersed data, most are at an 
advanced level and specific to certain problem types. A simple method 
often serves to lessen the problem with overdispersed count data and it 
will be introduced in this section.

6.1.1 Lack of Independence

Flipping new pennies and observing the binomial outcomes (i.e., heads 
or tails) nicely illustrates independence of the outcome from flip to flip. 
 However, count data in the life sciences often have some degree of depend-
ence.  Husbands and wives may not be independent with respect to some 
condition. Individuals in small groups of tadpoles along a mud bank prob-
ably die or survive with some degree of dependence within a group. If one 
tadpole in a group dies it may be that many others die at about the same 
time and for the same underlining cause. The analysis of count data of litter 
mates, breeding pairs, schools of fish, and pods of whales should always be 
suspected of having some degree of dependence. If such count data are ana-
lyzed as if they were independent, then the sampling variances tend to be too 
small (underestimated), giving a false sense of precision (e.g., confidence 
intervals are too narrow).

6.1.2 Parameter Heterogeneity

Overdispersion can also arise as most statistical methods rely on the con-
cept of parameter homogeneity. Although 200 new pennies may each have 
 essentially the same probability of a head, it is clear that 200 laboratory mice 
are somewhat variable, almost regardless of the trait of interest. This indi-
vidual variation leads to what is termed “parameter heterogeneity” and this 
violates the iid assumption. Again, the effect of such heterogeneity, if the 
data are analyzed under methods that assume parameter homogeneity, is again 
the underestimation of sampling variances. There may be substantial bias in 
parameter estimates in some isolated cases.



6.1.3 Estimation of a Variance Inflation Factor

Overdispersion causes the estimated theoretical variances and covariances to 
be biased low; thus, a first-order approach is to “inflate” these up to a nominal 
level. This is a simple and often effective procedure. First, we focus on a robust 
global model; a model with plenty of structure. Here we must assume that there 
is no structural lack of fit and, therefore, lack of fit can be blamed on overdis-
persion. This is a strong assumption and one risks the situation where some of 
the lack of fit is a structural inadequacy of the model and not overdispersion. 
In this case, the covariances would be inflated (and this might be beneficial) 
when, in fact, some bias is likely due to inadequate structural modeling.

If there is little reason to suspect some dependence among observations 
based on counts, then perhaps one should ignore the issue. However, if there is 
biological reason to suspect overdispersion, then an overdispersion parameter 
c can be estimated,

ˆ ,c = c 2 df

where c 2 is the usual goodness-of-fit test statistic based on the global model and 
df is the degrees of freedom for the test. The overdispersion (c) parameter is also 
called a variance inflation factor. Under the iid assumption, c ≡ 1. In biological 
data on counts one often sees ĉ in the 1–3 range. Fish in schools, insects in colo-
nies or swarms, or snakes in dens can have  overdispersion parameters substan-
tially higher than 4–5. As ĉ  gets large one must worry that there are structural 
issues with the model and these are being incorrectly cast as overdispersion.

6.1.4 Coping with Overdispersion in Count Data
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Coping with Some Dependence

Used carefully, the estimation of an overdispersion parameter can adjust 
the analysis in the face of some degree of dependence and parameter 
 heterogeneity. If overdispersion is thought to be an issue and an estimate of 
the overdispersion parameter is available, e.g., ĉ , then three things should 
be done in the analysis (the order is not important):
1. The log-likelihood of the parameters q, given the data and the model, 

should be computed as

log ( | , )
,

L q x g

c
i( )

therefore, model selection should use the following modified criterion
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The log-likelihood is adjusted in an intuitive way. Usually, the log-likelihood 
contains all the information in the sample data, given the model and assum-
ing independence. When, instead, there is some dependence, a log-likelihood 
that assumes independence exaggerates the amount of information in the data. 
Thus, division by the estimated overdispersion coefficient correctly adjusts 
the log-likelihood for the degree of dependence reflected in the data.

Highly dependent data have considerably less information and ĉ is needed 
to adjust for the dependence. Assuming everything else is constant, highly 
dependent data reflect less precision for parameter estimates and selected 
models with fewer parameters or less structure.

6.1.5 Overdispersion in Data on Elephant Seals

Pistorius et al. (2000) evaluated hypotheses concerning age- and sex-dependent 
rates of tag loss in southern elephant seals (Mirounga leonina) by considering 
four models. There was belief that these data were overdispersed due primarily 
to parameter heterogeneity. Burnham and Anderson (2001) made use of these 
data as an example to explore these issues further. They performed a goodness-
of-fit test (TEST2, Burnham et al. 1987) on these data, partitioned by gender. 
The results were

 Quantity Males Females Combined

 c2 157.20 97.92 255.12
 df 77 84 161

giving ĉ = 255.12/161 = 1.58. This suggests some minor to moderate 
 overdispersion and it is likely to be worthwhile to inflate the variances and 
covariances and alter the deviance.

Thus, QAICc was used, whereby the deviance was computed as −2log(L(f) )/ĉ, 
the parameter count (K) was increased by 1 for the estimation of the  variance 
inflation factor, and the covariance matrix for the four models was multiplied 

2. The number of parameters (K) is now the number of parameters (the 
dimension of q ) in the model, plus 1 to account for the estimation of the 
overdispersion parameter, c

3. The variance–covariance matrix should be multiplied by the estimated 
overdispersion parameter, ĉ (i.e., ĉ (cov(q̂

i
, q̂

j
) for all the models. Thus, 

c is used to actually inflate the variance and covariances. Alternatively, 
standard errors are inflated by the square root of ĉ.

Once an estimate of the overdispersion parameter has been made from a 
global model, it is used for all the models in the set (i.e., the three steps out-
lined above). If ĉ < 1, then it is rounded up to 1 and no adjustment is made 
in any of the above quantities. The notation QAICc stems from the concept 
of quasi-likelihood from a well-known paper by Wedderburn (1974).



by ĉ = 1.58. Pistorius et al. (2000) used the bootstrap to obtain estimates of 
sampling variance and they found the empirical support to be for the models 
where tag loss was sex- and age-dependent (w

best
 = 0.82) or just age-dependent 

second
 = 0.18).

As dependence in the data increases, QAICc will tend to select less rich 
models (i.e., fewer parameters and less structure). This result follows because 
there is less information when some dependence is present in the data. In a 
sense, the “effective” sample size is less than n. Underdispersion seems hard 
to imagine; I have not seen this in my experience.

A reviewer brought up the question of independence in time series and 
spatial modeling problems. Here, the “response variable” is correlated in time or 
space. Thus, it is the model that attempts to handle the dependencies in time 
or space (see Renshaw 1991). If successful, the “residuals” will be uncorrelated.

6.2 Model Selection Bias

Technical difficulties can arise when using data to both select a good model 
and estimate its parameters. Chief among these is the subtle but very impor-
tant issue of model selection bias.

It is difficult for most of us to understand model selection bias because in our 
regression classes we learned that, given the model, the b

i
 were unbiased, normal, 

and have minimum variance. This is all true, given the model and its underlying 
assumptions. In the real world, the model is not given to us, we must use some 
analytic approach to select a good model from the data. Again, issues arise when 
the same data set is used to both select a model and estimate its parameters.

6.2.1 Understanding the Issue

This issue can best be understood in terms of linear or logistic regression. I begin 
by considering the linear regression function, and for simplicity I will assume 
all the b

i
 are positive (and then the discussion relates to overestimation),

E Y x x x( ) ( ) ( ) ( ).= + + +b b b b0 1 1 2 2 3 3

We will define x
1
 as a “dominant variable” because its relationship to the response 

variable (Y) is quite important. Here, we might expect b
1
/se(b

2
) ≈ 3 or 4. Nearly 

all methods would select this variable to be important (see Miller 2002). The 
variable x

2
 is, in fact, somewhat important, but its relationship to the response 

variable is a bit weak. Perhaps b
2
/se(b

2
) ≈ 1. Finally, variable x

3
 is tenuous at 

best. Here, perhaps b
3
/se(b

3
) ≈ 1/4. The epidemiologist Michael Thun noted, 

“… you can tell a little thing from a big thing. What’s very hard to do is to tell 
a little thing from nothing at all” (Taubes 1995). This is the concept of tapering 

3
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effect size (Sect. 2.2.5). Here, b  is nonzero and reflects a very weak effect.

(w
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Assume we use the linear model above to generate 1,000 data sets where 
the b

i
 parameters are known, then we can use a model selection approach 

(e.g., stepwise, AICc or BIC) to find the best model for each of the data sets. 
Variable x

1
 will likely be selected in virtually all of the 1,000 data sets, while 

variable x
2
 might be selected in perhaps half of the data sets. That is, too little 

information is contained in many of the data sets and, in view of parsimony, 
the importance of x

2
 and its b

2
 is not picked up. More interestingly, it might 

be that variable x
3
 and its parameter b

3
 is selected in only a few (i.e., 3–6%) 

of the data sets.
Now we must ask what are the properties of the estimator b̂

3
 when it is in 

the selected model? Large bias is the answer! The bias arises because about 
the only time x

3
 is in the selected model are cases where it is overestimated. 

If b̂
3
 is near the actual value (b

3
), then the variable does not appear in the 

selected model. It is only when it happens to be overestimated that it is 
selected and in the best model. Thus, when one averages across (the few) 
models where b̂

3
 appears, it is far too large. Thus, a large bias is present and 

it is this that is called model selection bias. The issue extends to variables 
that are exactly unimportant; i.e., where b = 0. Occasionally, b̂ will be large 
and the inference will be that this variable is important. Model selection bias 
is not an easy concept but it is both common and important. Model selection 
bias can often be in the 10–80% range, but can be far more serious (see Miller 
2002, for some examples).

When a given data set gives rise to a substantial overestimate, a standard 
Wald test, t = b̂

3
 / ŝe(b̂

3
), would be “highly significant” and x

3
 and its parameter 

estimate of b
3
 would be in the model. In this case, the numerator (b̂

3
) is biased 

high and the denominator (ŝe(b̂
3
) ) is biased low, yielding an unreliable test 

result. AICc and other approaches have this same strong tendency but is harder 
to demonstrate in an analogous way.

When one has 1–2 dozen predictor variables (i.e., 4,095–16,777,215 
 models), the opportunity for large biases due to model selection are enormous 
and the probability of several spurious effects quickly goes to 1. Model selec-
tion bias is subtle but its effects are widespread and little understood by many 
people working in the life sciences.

Model selection bias should be a worry in applied data analysis because the 
analyst has no way of knowing, from the analysis of a single data set, which 
parameters might be very much overestimated and which have little bias. In 
fact, the inference that x

3
 is very important is largely spurious. This problem is 

compounded in that the estimated sampling variances are too low (underesti-
mated), giving a false sense of high precision. Driving this issue is the concept 
of tapering effect sizes that seem omnipresent in the real world.

6.2.2 A Solution to the Problem of Model Selection Bias

Model averaging offers a solution to the problems of model selection bias 
(P. Lukacs and K. Burnham, personal communication). This approach applies 



to model parameters, not predictions that were covered in Chap. 5. The approach 
is a type of shrinkage (see below) estimation using model averaging. We will 
use the case outlined above where x

1
 was a dominant variable, x

2
 was far less 

important, and x
3
 was barely nonzero. The models with their associated model 

probabilities are shown in Table 6.1.
There is a “balancing” such that each of the b slope parameters occurs in 4 

of the 7 models. Such balancing can be done is one of several ways for many 
problems, but each parameter should be allowed an equal footing. It is often 
sufficient to list “all possible models” as a way to achieve the needed balance.

Notice that all the models with the dominant variable tend to have high 
weights (model probabilities). In contrast, the model with only x

3
 has virtually 

no weight. A robust estimate of each of the 3 b parameters can be made in the 
usual manner,

ˆ ˆ ˆ ˆ ˆ ˆ ,b b b b b b1 1 2
1

7

2
1

7

3 3
1

7

= = =
= = =
∑ ∑ ∑w w and wi i
i

i i
i

i i
i

but when a regression parameter does not appear in a model, it is assigned a 
value of 0. The fact that a parameter does not appear in a model implies it has 
a zero value, and so this ought not seem too surprising upon consideration. 
Note, in all cases, the model probabilities sum to 1 

(i.e., wi
i=
∑ =

1

7

1)

For example, the model averaged estimator for b
3
 is b̂3 computed as a sim-

ple weighted average, where zeros (in bold) are assigned for models where the 
parameter does not appear (see Table 6.2).

That is, 
ˆ ˆb b3 3

1

7

=
=
∑wi i
i

 = 0.610. This estimate is below the MLEs as it has been 
“shrunk.”

The fitted equation is a single equation where the parameters have all been 
model averaged,

ˆ ˆ ˆ ˆ ˆ .Y x x x= + + +b b b b0 1 1 2 2 3 3

TABLE 6.1. Model averaging as a means of reducing model selection 
bias. The model probabilities are shown at the far right.

1 Ŷ = b̂
0
 +b̂

1
X

1
 +b̂

2
X

2
 +b̂

3
X

3
 0.15

2 Ŷ = b̂
0
 +b̂

1
X

1
 +b̂

2
X

2
  0.35

3 Ŷ = b̂
0
 +b̂

1
X

1
  +b̂

3
X

3
 0.10

4 Ŷ = b̂
0
  +b̂

2
X

2
 +b̂

3
X

3
 0.05

5 Ŷ = b̂
0
 +b̂

1
X

1
   0.25

6 Ŷ = b̂
0
  +b̂

2
X

2
  0.10

7 Ŷ = b̂
0
   +b̂

3
X

3
 0.00
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This single equation allows robust predictions to be made, based on each 
of the regression parameters having been model averaged. This procedure 
“shrinks” estimates toward zero, and greatly lessens the bias due to model 
selection. Finally, note that predictions made using this model (above) 
are identical to those made by making a prediction from each model and 
then model averaging these. The two approaches are equivalent for linear 
models.

MC simulations have been carried out to suggest this simple approach is 
very effective (Lukacs et al. unpubl ms.). Here it is important to use the uncon-
ditional variance to account for model selection uncertainty.

Use of “all possible models” is a poor strategy in general; in this specific 
case using all the models is a simple way to impose a balance and put each 
variable on an equal footing (e.g., each variable appeared in exactly 4 of the 
7 models in this example). There are other ways to maintain this balance; for 
example, in the data on hardening of Portland cement the single variable mod-
els were ruled implausible. Thus, one could get the shrinkage estimates from 
11 of the models, rather than using the full set of 15 models and still achieve 
the needed balance.

Freedman’s (1982) paradox is largely resolved using this model averaging 
approach. The combination of shrinkage model averaging and unconditional 
variances help guard against spurious results. Freedman (1983) concluded, 
“To sum up, in a world with a large number of unrelated variables and no clear 
a priori specifications, uncritical use of standard methods will lead to mod-
els that appear to have a lot of explanatory power.” It seems that this type of 
model averaging will appear to be useful in lessening these issues. Additional 
research on this matter will be useful in application. Lukacs et al. (unpub-
lished manuscript) have completed some simulations using logistic regression 
and found performance to be good in this case. While I do not recommend 
wholesale data dredging via “all possible models,” I believe this type of model 
averaging will help avoid serious model selection bias when faced with many 
predictor variables, little science theory, and small sample sizes.

TABLE 6.2. Computing the model averaged estimate of b
3
.

Model Model weight MLE of b
3
 Product

1 0.15 1.73 0.260
2 0.20 0.00 0.000
3 0.25 0.83 0.208
4 0.10 1.42 0.142
5 0.20 0.00 0.000
6 0.10 0.00 0.000
7 0.00 1.08 0.000
Sum 1.00  0.610



6.3 Multivariate AICc

When one is performing multivariate analyses (e.g., multivariate regres-
sion or factor analysis), a slightly altered model selection criteria must be 
used. Terminology can be confusing; here I am addressing the case where 
there are more than one response variables (multivariate regression vs. mul-
tiple  regression – both will typically have several predictor variables). The 
altered criterion is from Fujikoshi and Satoh (1997) (also see Bedrick and 
Tsai 1994),

AICc =  2log( )+2− L K
K K

np K
+ +

− −
2

( )

( )

n
n

,

where n is sample size on observations on each of the p variables and n is the 
number of distinct parameters estimated in the covariance matrix (K includes n). 
Also see Sclove (1994b), McQuarrie and Tsai (1998:147–149), and Burnham 
and Anderson (2002:424–426), for additional discussion. In the univariate case, 
p = 1 and n = 1 and the criterion above reduces to AICc for univariate cases.

Model selection criteria for multivariate analysis represent an active 
research area. Recent work includes Siotani and Wakaki (2006) and Segh-
ouane (2005, 2006). It is certainly prudent to work closely with a statistician 
with expertise in multivariate analysis before going too far with an analysis of 
complex multivariate data.

6.4 Model Redundancy

Occasionally the model set contains two or more models that are inadvertently 
the “same.” This condition is termed model redundancy. Model redundancy 
does not cause problems with ∆

i
 values, model likelihoods, or evidence ratios, 

but the model probabilities (w
i
) are affected.

Model redundancy can arise as a mistake or the result of carelessness. Alter-
natively, a team member might suggest a model where a transition probability 
(y) is modeled as a function of distance (d) from a source as

y
b b

b b
( )

exp ( )

exp ( )
d

d

d
=

+{ }
+ +{ }

0 1

0 11
,

while another person suggests the model

y
b b

( )
exp ( )

d
d

=
+ − +{ }⎡⎣ ⎤⎦

1

1 0 1

,

These models are actually the same and will have the same log(L) values. 
Many models have a chameleon-like form and it is sometimes easy to have 2 
or more models with different forms that are actually the same model.
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Model redundancy can arise when using semiparametric models (Buckland 
et al. 1997) where the number of parameters is not fixed, but rather enter from 
the results of model selection. Consider the parameters in a series of Fourier 
series being used to smooth and make predictions of weekly storm events 
discussed in Sect. 5.4. These were nested models where 2 parameters were 
gained from model to model. Thus, g

1
 had 2 parameters, g

2
 had 4 parameters, 

g
3
 had 6 parameters, and so on. Model selection indicated that model g

2
 with 

4 parameters was satisfactory. It is then possible that, without realizing it, the 
analyst believes he has 4 models with 2, 4, 6, and 8 parameters, respectively. 
However, the last 3 of the 4 models actually have but 4 parameters (because 
the additional parameters in models 3 and 4 were not needed (dropped).

Model redundancy can arise in subtle ways and steps should be taken or 
risk the possibility that the model probabilities will be affected, leading per-
haps to inferences that are needlessly poor. The usual effect is that one model 
gets too much weight. The first and most effective solution is to identify the 
redundant models and delete them from consideration. This will mean the 
model probabilities (w

i
) must be renormalized, but this is trivial to do.

The alternative solution is to cast the redundant models into a subset and 
assign the models in this subset an appropriate “weight.” For example, let 
there be 6 models in the set and 2 are found to be redundant (let these be mod-
els 5 and 6 for illustration). The solution is to compute the model probabilities 
using the expression

wi
i i

r r
r

R=
−( )

−( )
=

∑
exp

exp
,

1
2

1
2

1

D x

D x

where the x
i
 are 1/5, 1/5; 1/5, 1/5; and 1/10, 1/10. This simple device merely gives 

the two redundant models 1/2 their usual weight. Note, the Σx
i
 = 1 as it must.

6.5 Model Selection in Random Effects Models

This book has been about models that can be termed “fixed effects” models. 
There is an interesting class of models falling under a general classification of 
“random effects models;” roughly alternative names include “variance com-
ponent models,” “random coefficient models,” and “hierarchical models” (see 
Vonesh and Chinchilli 1997; Shi and Tsai 2002; McCulloch 2003; and Gurka 
2006, for additional details). Because of the design of the data collection, such 
procedures often allow an inference that is wider in scope than with fixed 
effects models. These approaches allow separate estimation of a component of 
variance due to sampling (var(q̂ | model, q)), distinct from a process variance 
component (s2 = var(q̂)). Here process variation might be temporal or spatial. 
In a sense, the goal of random effects models is the estimation of population 



means (m) and process variances (σ 2) and this can often occur without models 
with a large number of parameters.

Other useful approaches allow shrinkage estimators; these are estimators 
that attempt to shrink estimates toward their mean value and the amount 
of shrinkage depends on the relative magnitude of the sampling variance 
to the process variance. The number of estimable parameters in shrinkage 
approaches may not be an integer. Such estimators, as a set, can have smaller 
mean squared errors (MSEs) than MLEs for the same data. Then there are 
“mixed” models that allow for both fixed and random effects and these too 
are being used often. All of these approaches exist at a somewhat advanced 
level and are seeing increased use in many applied fields in the life sciences. 
There is a large literature on this important class of models (see Gurka 2006, 
and references therein).

Model selection for random effects and mixed models can be done under 
a Kullback–Leibler information framework without modification (assuming 
the proper likelihood is used and the “number” of parameters is available 
and correct). Here, standard software provides things such as the RSS or the 
 maximized log-likelihood and AICc can be easily computed by hand. Several 
software packages now output AIC; however, rarely is AICc provided. The 
key here is to be sure the correct likelihood is in place.

More complicated hierarchical models (e.g., multilevel hierarchical effects) 
are very well suited for Bayesian Markov Chain Monte Carlo methods 
(Gelman et al. 2003; Givens and Hoeting 2005). This is a class of models 
where Bayesian approaches have a distinct edge over other methods; however, 
 methods based on “h-likelihood” may eventually provide another alternative 
(Lee et al. 2006). There is a large Bayesian literature on these methods and 
many applications are beginning to appear in journals in the applied sciences. 
Model selection in these classes of models seems to rely on DIC, the deviance 
information criterion (see Spiegelhalter et al. 2002). DIC is implemented in 
programs BUGS and WINBUGS and is seeing heavy use. DIC has Bayesian 
roots, comes easily from the MCMC algorithm, and is largely AIC-like in its 
goals and properties.

6.6 Use in Conflict Resolution

The focus of this book as been on science philosophy and the provision of 
empirical evidence for a priori science hypotheses. This final section men-
tions the use of information-theoretic methods in the resolution of certain 
types of conflicts. The key to this application is a “protocol” that is jointly 
developed as an a priori template to guide the resolution of the conflict. This 
approach assumes that data and data analysis are central to the resolution 
of the conflict and, therefore, defines a relatively narrow region of potential 
application.
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In all subdisciplines in the life sciences, there are conflicts and  controversies 
and many of these concern technical issues (e.g., does smoking cause lung 
cancer? does exposure to low levels of lead lower IQ?). Many such contro-
versies exist when alternative economic, social, or legal outcomes hinge on 
scientific results.

Often as a controversy starts to brew one individual or party will take a 
partition of the available data, analyze it in a way that suits him, develop the 
results, and show them to the larger group, expecting them to yield to his posi-
tion. Unimpressed, others in the group question the choice of the data used, the 
methods, and the “obviously biased” result. These people then retreat to use 
the data they feel can be justified, choose their own analysis method, develop 
what they believe to be the results and again expect the larger group to yield 
to their conclusion. By then personalities are on edge and the controversy 
may begin to enlarge and become personal. At this stage, the controversy may 
continue to brew over long time periods or be headed for the courts. It seems 
better to try to get agreement on the substantive, technical issues; then if the 
courts get involved it is over the less tangible political issues, but hopefully 
based on good science.

Here it seems important to clearly separate the science issues (does smok-
ing cause lung cancer or not?) from the management or political implications 
and the related value judgments (e.g., smoking causes cancer; therefore, ban 
all smoking products or, at least, tax smoking products heavily). The material 
to follow suggests a protocol for resolving the science issues in a controversy. 
Science should ideally provide a uniform result; science results should not 
align with sponsorship or employment of the scientists. The material in this 
section is taken largely from Anderson et al. (1999).

Evidence in Confl ict Resolution

The overall theme in using information-theoretic methods in the reso-
lution of scientific controversies is to replace the a priori set of science 
 hypotheses (H

i
) with an a priori set of “stakeholder” positions (S

i
). In both 

cases, similar issues are important: careful definition of the problem, good 
data, sound analysis methods, quantified evidence, and synthesis, usually 
followed by value judgments.

The goal is then to examine the empirical support for each position with 
an a priori understanding as to what is expected under different  outcomes.

6.6.1 Analogy with the Flip of a Coin

The protocol is patterned after the flip of a coin to decide a course of action. 
In a coin flip, there are numerous issues that must be decided and agreed upon 
prior to the flip, such as (1) who flips the coin? (2) should the coin land on the 
floor or on the back of one’s hand? (3) who gets to choose “heads” or “tails”? 



(5) who gets to flip? and (6) most importantly, what is the exact action to be 
taken if the coin comes up “heads”?

Take the example of Mary and John deciding who will pick up the tab 
for lunch. Mary and John debate the preliminary issues and mutually agree 
that John will flip a single coin, that it must land on the floor, and that Mary 
chooses “heads” while the coin is in the air, and that this outcome means that 
John must buy lunch (i.e., “heads” = John buys and “tails” = Mary buys). 
There is clear, deliberate agreement on these a priori issues. These issues 
represent the agreed upon protocol.

The key to the coin flip protocol is that it is clearly unfair or unethical for 
one party to change their choice after the flip! That is, Mary cannot expect to 
switch to a position “if it is ‘tails’, John must cover the expenses” after the 
coin has landed and the outcome noted. Similarly, she cannot decide not to 
play, once the coin has landed and she has lost. The parties can argue about the 
preliminaries, but once these are agreed upon and the coin is “flipped,” they 
cannot argue the outcome (e.g., “heads,” therefore John must buy). Of course, 
if agreement cannot be found on, say, who flips the coin, then the matter of 
lunch expenses must be settled in one of many other ways (i.e., the player 
decides not to play). A player can withdraw with honor anytime during the 
development of the protocol. Football and many other sporting events use a 
coin flip with specific protocols as part of achieving “fair play.”

6.6.2 Conflict Resolution Protocol

The conflict resolution protocol rests on the a priori agreement by all parties on

● The questions to be addressed
● The data to be analyzed,
● The specific data analysis methodologies
● Who performs the analysis
● What outcomes provide evidence for which stakeholder position (to favor 

one side or the other or remain ambivalent)
● How these outcomes will be announced, reported, or reviewed

The fundamental idea is to argue points and eventually agree on the relevant 
data (which cannot be changed after results are known), an analysis protocol, 
and then agree on the interpretation of the results within certain limits. This 
final point (interpretation) attempts to avoid any ambiguity where both sides 
argue, after the analysis has been completed, “that proves what I said.”

Management implications (the nonscience) based on empirical results (the sci-
ence) may often be open to discussion and intense debate. The protocol advocated 
deals only with the science of the matter. The protocol outlined provides a useful, 
general framework to deal with the synthesis and analysis of empirical data where 
decisions are to be based on empirical data (“the best available science”).

Often, synthesis of empirical data for management decisions comes from 
disparate sources with differing analytical methodologies and interpretations. 
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Such reviews often list tables of results from different published and unpub-
lished studies from which conclusions are made. However, this approach 
is often hampered by the different analytical methods used in the separate 
studies. The approach suggested here differs from those approaches in 
that there is a deliberate attempt to unify separate studies under a single 
analytical philosophy and framework that was agreeable, before the results 
were in, to all parties involved. This procedure allows the synthesis of 
empirical data to have greater scientific credibility and clearly demands 
consensus among the parties involved regarding methods of data collec-
tion and analysis.

Using this protocol might often avoid acrimonious and expensive judicial 
hearings to arbitrate controversies. In such hearings, both parties present evi-
dence to support only their own, often vested, position. These hearings often 
aggravate controversy, widen disagreements, and confuse the evidence. While 
the judicial model has several advantages, I suggest that scientists and manag-
ers should attempt an objective resolution of scientific issues, rather than turn 
over these technical tasks to opposing teams of attorneys and a judge.

Often, relevant data, proper analysis methods, and the interpretation of 
results in terms of management are disputed by the parties. Issue resolution 
requires numerous features in our protocol, including involving outside par-
ties with minimal vested interest in the outcome, and a priori consensus on 
directions to proceed. Such issues would benefit from the application of the 
protocol, once those directions are established. I stress that there is a good 
deal of flexibility in the application to other situations as long as the philo-
sophical core remains intact.

6.6.3 A Hypothetical Example: Hen Clam Experiments

Anderson et al. (2001) illustrated the use of information-theoretic approaches 
using a hypothetical experiment to examine the effects of a chemical on 
monthly survival probabilities of the hen clam (Spisula solidissima). A reg-
istered chemical (Llikmalc) was applied aerially across aquatic habitats for 
mosquito control and controversy arose over its unintended effects on other 
aquatic organisms. The hen clam became the subject of conflict between (a) 
the manufacturer and distributor of Llikmalc, (2) the state regulatory agency, 
and (c) an environmental group.

The protocol was followed in this hypothetical example and the three stake-
holder positions (S

j
) were obvious from the beginning:

S
1
:  There is a trivial difference in monthly survival probability and this vari-

ation cannot be attributed to the application of Llikmalc. There is no 
treatment effect.

S
2
:  There is a substantial acute survival effect due to the treatment,  lasting 

one month following the aerial application of Llikmalc.
S

3
:  There is a substantial acute survival effect due to the treatment,  lasting 

one month, followed by a month-long chronic survival effect.



The agreed upon protocol made it clear that if a stakeholder’s position was 
unsupported, then the others expected that party to yield. One can see that the 
stakeholder positions are analogous to the science hypotheses. Here, models 
must be developed to represent each stakeholder position. Here, an important 
aspect is that each stakeholder is free to derive their own model to best repre-
sent their position. In fact, they might be encouraged to hire expertise in this 
area. This approach is far different that trying to get all the stakeholders to 
agree on a single model.

There were many complications in the hen clam study (e.g., overdispersed 
data, at least 2 different approaches to modeling the recapture probabilities, 
replicates). I will show only enough of the results to illustrate the type of 
results one might expect (Table 6.3).

Here it is clear from Table 6.3 that stakeholder position 1 is essentially 
without support (model probability is 0.000055) and its proponent is expected 
to yield his position. Most of the support is for stakeholder position 3; the 
evidence ratio E

2,3
 = 14.8 might be viewed as moderate support for the chronic 

effect. One could examine the estimate of the chronic survival effect and its 
precision and make further judgments about the importance of chronic effects. 
The importance of acute effects have been clearly established with moderate 
evidence concerning a further chronic survival effect. Model averaging could 
be done to best estimate both acute and chronic survival effects.

The analysis under an information-theoretic approach is the easy part in 
conflict resolution; it is getting opposing parties to agree on a fair protocol 
that is often the challenging part. Still, the underlying driving force is the fair-
ness implied in a coin flip, assuming parties that there will be no surprises, 
and getting them to understand that this is their opportunity to demonstrate to 
the others that their position is clearly justified and, therefore, will have strong 
empirical support. There must be a clear statement as to what is expected in 
the event of various outcomes. I have been part of a large team of people that 
have used variations of this approach on the northern spotted owl – old growth 
forest controversy (see Anthony et al. 2006). This has been North America’s 
largest environmental controversy, spanning some 3–4 decades and the data 
set has been valued at approximately $40M. The protocol has worked well 
and it is being continually refined. Details of the protocol development and 
(multimodel) results are given in Anthony et al. (2006).

This approach can be expected to be useful in only a small proportion of 
existing conflicts. If people are hired to pressure for a particular position 

TABLE 6.3. Summary of the evidence for the controversy over the chemical Llikmalc 
and its effect on hen clams.

Stakeholder position Log L K ∆
i
 Model probability

S
1
 −6,140.52 10 19.63 0.000

S
2
 −6,108.51 11 5.40 0.063

S
3
 −6,096.26 12 0.00 0.937
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against all reason or evidence, this approach will clearly not work and the 
issue might as well go on to the courts for partial resolution in the long term. 
Further, if data are not central to the issue, then this approach will not work. 
However, I think there are many conflicts or controversies within groups of 
scientists or managers where this approach has potential. Freddy et al. (2004) 
present a case where the approach might be judged to be useful, but there were 
difficulties and compromises.

I have seen controversies where some stakeholders withhold their judgment 
on an ongoing study until the results are in (the coin lands and is inspected). 
Then, depending on the result, they are either supportive and in agreement or 
wildly opposed to everything done by the study group. This scenario should 
be carefully avoided. The use of information-theoretic approaches to aid in the 
resolution of conflicts is just one application outside the science realm. While 
this is primarily a primer on science applications, there are a host of other 
applications in other arenas that are important.

6.7 Remarks

Heuristically, ĉ adjusts sample size downward in the face of overdispersion 
(K. Burnham, personal communication). For count data the log(L) can be 
written as

where n = Σn
i
 = sample size. Thus, effective sample size is taken as n

c
 = n/ĉ, 

where ĉ > 1 and n
c
 < n.

The importance of model selection bias is hard to fathom for a person new 
to this issue. In some areas of science, I think nearly half of the research work 
involves the “three demons” – many predictor variables, little science to guide 
the data collection and modeling, and small sample size. If the results of such 
work were merely worthless it might not be so bad. However, the results are 
actually deceiving in that bias suggests the importance of things that are actu-
ally not important (i.e., spurious). Ideally, there needs to be a greater aware-
ness of model selection bias and its importance.

There are two cases where “all possible models” finds useful application. 
First is the ranking of relative variable importance. Second is in computing 
shrinkage estimates to lessen model selection bias. In both applications, there 
is a need to put variables or parameters being summed or averaged on an 
equal footing. In these cases, inferences are not being drawn from the care-
less, unthinking consideration of “all possible models.” Instead, “all possible 
models” is a device to achieve a proper balance as an intermediate step in a 
particular analysis type. Beyond these two exceptions, one should not run all 
the possible models as this is poor practice.



7
Summary

Kei Takeuchi (1933–) was born in Tokyo, Japan, and graduated in 1956 from 
the University of Tokyo. He received a Ph.D. in economics in 1966 (Kei-
zaigaku Hakushi) and his research interests include mathematical statistics, 
econometrics, global environmental problems, history of civilization, and 
Japanese economy. He is the author of many books on mathematics, statis-
tics, and the impacts of science and technology on society. His 1976 paper, 
although obscure and in Japanese, is important as it gives the general result 
from Kullback–Leibler information, now called TIC in honor of his name. He 
is currently a professor on the Faculty of International Studies at MeijiGakuin 
University and Professor Emeritus, University of Tokyo.

I will provide a brief summary of some of the main issues. The remarks below 

ence is about. I wrote this text for others interested in good science strategies 
and effective methods and the important concept of evidence. Application of 
the information-theoretic approaches are very broad and potentially useful 
over a very wide range of science and nonscience applications.

are written from a science perspective because that is what model based infer-
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7.1 The Science Question

The central science question is of critical importance and one must always 
ask if the question is worthy of study and well focused. The emphasis of this 
textbook is on a science philosophy that encourages hard thinking to derive 
a small set of plausible science hypotheses, H

i
. I think this issue might often 

take a good person a substantial amount of time and mental effort over several 
weeks or months. Here one must work hard to define a set of good alternative 
hypothesis concerning the overall science question. Study of the literature 
is often a starting place; here one is encouraged to read broadly and not just 
on the very specific species or process of interest. One should confer with 
others, attend relevant meetings, use e-mail to correspond with others, ask 
 questions, and try to gain new insights. The emphasis should be on thinking 
of the  various alternatives.

This hard thinking process must go far beyond notions of a null  hypothesis. 
The derivation of a small set of plausible, alternative hypotheses is both  difficult 
and rewarding. This is not something that can be done in an afternoon or a few 
days; one should be prepared to put their mind to this critical matter. Chamber-
lin wrote of “…the thoroughness, the completeness, the all-sidedness, and the 
impartiality of the investigation.” He stated, “There is no nobler aspiration of 
the human intellect that the desire to compass the cause of things.” Finally, he 
believed, “The vitality of the study quickly disappears when the object sought 
is a mere collection of dead, unmeaning facts.” Akaike (Kyoto Award cere-
mony in 2007) advised, “Select one problem and continue to pursue it until you 
find the perfect solution.”

Before the investigation can move ahead, the alternative hypotheses must 
be in place. Ideally, data collection (i.e., study design) would be somewhat 
optimized to try to separate the support for these alternatives and lessen 
model selection uncertainty. From there one wants to provide measures of 
 quantitative evidence for members of this set and gain a comprehension and 
understanding of the results. Finally, the set evolves as implausible  hypotheses 
are identified and deleted, remaining hypotheses are refined and strengthened, 
and new hypotheses are suggested. Some higher dimensioned models with 
low support might be kept if the sample size is to increase substantially for 
the next data set. It is this notion of evolving sets that can allow very rapid 
progress in a field of science. This evolution can provide fast learning if used 
effectively. This process does not always prevent mistakes or occasionally 
taking the wrong path; but science has a way of backing up and correcting 
these setbacks.

I feel there is often far too much descriptive work done in many of the 
life sciences; this seems particularly true in my fields of ecology and natu-
ral resource issues. Some a priori thinking can lead to a more confirmatory 
approach and this has a variety of rewards. We all need to think more about our 
strategy for doing good science. Issues such as random sampling and scope 
of inference by defining the population to which inductive inferences are to 



be made seem so fundamental; I think it is a disservice to continue to accept 
research papers where such basic things are clearly lacking. A culture needs to 
be developed to enforce and expect higher standards in our science.

7.2 Collection of Relevant Data

The collection of relevant data should deserve special attention. Utmost care 
should be exercised and this is not the place for volunteers unless carefully trained 
and closely supervised. A great deal is known about the proper design of experi-
ments and valid sampling protocols. There are dozens of good books on both of 
these important topics and there is no excuse for collecting data that are funda-
mentally flawed. Still, I see data collected from convenience sampling where any 
valid inductive inference from the sample to the population is  precluded. In some 
cases the population of interest is not even defined. I see obvious confounding in 
experiments and a lax attitude where many variables are measured just because 
they are easy to measure. Many fields in the life sciences could benefit from 
more coursework in experimental design and sampling theory. The information-
theoretic approaches are not meant to fix bad data, we must accept these chal-
lenges as a way to make progress in our science.

Large sample size conveys many advantages in the empirical sciences as 
does the use of many replicates. Estimators have better performance,  precision 
is enhanced, and evidence for the alternative hypotheses is sharpened; all of 
these allow better understanding as a result. I see many papers that ask good 
science questions but they have only 20–50 samples and the need to estimate 
at least, say, 6–8 parameters. In such cases, there is relatively little informa-
tion in the data and valid inferences may tend to be shallow and somewhat 
uninteresting.

7.3 Mathematical Models

Information is buried within the data and much of this information can often 
be extracted by using a mathematical model. Good models of hypotheses are 
essential in empirical science and are the basis for rigor in the investigation. 
Soule (1987) suggests, “Models are tools for thinkers, not crutches for the 
thoughtless.” Importantly, the inductive inference is model based. Modeling 
is both an art and a science and this is a place where consultation with a stat-
istician might be very helpful. Ideally, one hopes that there is a one-to-one 
correspondence between the jth hypothesis and its model.

Modeling is done to evaluate alternative hypotheses, gain insight into model 
structure, allow predictions, aid in variable selection in regression, and pro-
vide objective means of smoothing to identify patterns in the data. Modeling 
is an essential aspect of empirical science.
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7.4 Data Analysis

Data analysis begins with the estimation of the unknown parameters and their 
covariance matrix for each model (these important issues are not the subject 
of this book; however, Appendix A provides a brief overview of likelihood 
methods). Other statistics also need to be provided (e.g., adjR2, goodness-
of-fit assessments, residual analyses) as these help in the critique of model 
assumptions. These procedures provide assurances that at least some of the 
models in the set are worthwhile. Then, one must have the value of the resid-
ual sum of squares or the value of the maximized log-likelihood for least 
squares or  likelihood approaches, respectively. These values are the basis for 
the  evidential approaches.

Several things can go awry here: using “all possible models,” mixing 
response variables, counting estimable parameters incorrectly, doing data 
dredging in the middle of attempting an a priori analysis, failure of algorithms 
to converge (Appendix A.7), etc. Over-fitting and spurious effects should be 
avoided (see Appendix F). Advice and review by a person in the statistical 
sciences might be carefully considered at this stage.

7.5 Information and Entropy

The ability to quantify information has opened many important doors in  science 
and technology. Boltzmann’s entropy is the negative of Kullback-Leibler 
information and these are fundamental to deep science. Akaike found a link 
between expected K–L information and the maximized log-likelihood function 
and this was a pivotal breakthrough. The log-likelihood is a natural estimate of 
entropy. Akaike’s AIC exploited this link and provided an asymptotic correc-
tion of bias. A second order bias correction was soon found and this is impor-
tant to use in applications. While probabilities are multiplicative, information 
and entropy are additive. These fundamental quantities lead to ways to obtain a 
formal “strength of evidence” for alternative science hypotheses.

7.6 Quantitative Measures of Evidence

I ask graduate students, “what justifies a conclusion.” This is a vexing prob-
lem for some students as well as professionals in the field. I think an answer 
relates primarily to “valid methodology.” It is the methodology that must be 
assessed to judge an inference or conclusion: it is the rigor of the process that 
is important.

Hypotheses can be easily ranked using the ∆
i
 values. These values are piv-

otal in various measures of evidence as they are on the scale of information. 
Being able to quantify information loss is very important in applied science. 



Plausible hypotheses exist only within a fairly narrow band; perhaps 0–8 or 12 
on a scale of information loss if the independence assumption can be met.

It is simple to obtain the (relative) likelihood of each model i, given the 
data: L(g

i
 | x). These are useful measures of the strength of evidence for sci-

ence hypotheses and do not depend on other models in or out of the set.
It is equally simple to compute the discrete probability of each model i, 

given the data: Prob{g
i
 | x}. These measures of strength of evidence are condi-

tional on the set of hypotheses and their models.
Finally, an evidence ratio is just the quotient of 2 model probabilities (or 

2 model likelihoods) and is another way to effectively quantify the evidence for 
any two hypotheses, as represented by their models. Only the two models being 
compared are relevant here, regardless of other models in or out of the set.

The hard science stops with the provision of various quantitative measures 
of the evidence. Following this, value judgments can be made to qualify the 
evidence. The investigator is certainly able to make their value judgments as 
are others. In many cases, honest observers will reach the same qualitative 
conclusions about the strength of evidence, while in other cases there may be 
honest differences in this interpretation.

This distinction helps scientists with the contentious issue of “advocacy.” 
Scientists certainly have the right to clearly state and stand behind the objec-
tive, quantitative result; this is not advocacy. The qualification of the result 
can sometimes push the issue into an advocacy position – these become value 
judgments.

7.7 Inferences

Most inference methods in the life sciences are inductive and statistical. Prop-
erly done, both allow rigorous inference from the sample data to the popula-
tion sampled. Initially, there is interest in the estimates of model parameters 
and measures of the uncertainty but one must determine which model to use 
as a basis for these estimates.

It now seems clear that final inferences should routinely be based on all the 
models in the set – multimodel inference. This important extension allows 
information in the data from models other than the best to be used in making 
inferences. The main tools here at the moment are model averaging and the 
use of unconditional variances to incorporate model selection uncertainty into 
estimates of precision. Both approaches are easy to compute and to under-
stand. While there may be cases where inference is sensibly confined to a 
single model; however, the use of all the models will be commonplace. Multi-
model inference is most often the effective path to reliable evidence.

There needs to be increased awareness of conditions that lead to spuri-
ous effects (e.g., Freedman’s paradox). If one has little background science 
to guide the hypothesizing and modeling, small sample size, many predictor 
variables, and many models, the results will likely be largely spurious. People 
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often fear they will miss an effect that is contained in the data; however, they 
should have an equal fear that they will find something that is not there at all 
(i.e., spurious). A type of model averaging is useful in reducing the important 
issue of model selection bias.

7.8 Post Hoc Issues

I encourage some post hoc examination of the data. This might include the 
addition of new hypotheses and models to represent them or slight changes 
to several of the better models. Such examination can include residual analy-
ses and goodness-of-fit results leading to additional models. Because such 
examination and subsequent modeling are based on the same data, the conclu-
sions from such activities must be recognized as being weaker than the more 
 confirmatory inferences.

7.9 Final Comment

Given some background science and philosophy (Chaps. 1 and 2), it can be 
helpful to view the information-theoretic approaches at three different lev-
els. The first level is conceptual and entails the Principle of Parsimony and 
Occam’s razor (Chap. 2). The second level is the rigorous target of model 
selection – expected Kullback-Leibler information (Chap. 3). The third level 
provides a simple approach to application – various forms of Akaike’s infor-
mation criterion and quantitative measures of strength of evidence (Chaps. 
3 and 4). These approaches are simple to compute and seem compelling. The 
entire approach seems to encourage people to be good scientists and allow fast 
learning and understanding.

timodel inference (Chap. 5). There are substantial advantages to be realized 
in basing inferences on all the models in the set. Doing so is computationally 
trivial and easy to understand and interpret.

The cutting edge in model based empirical science is the concept of mul-
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Appendix A: Likelihood Theory

Likelihood methods are much more general, far less taught in applied 
 statistics courses, and easier to understand as a concept or procedure than 
least squares. The material in much of this book relies on an understand-
ing of likelihood  theory, and so a very brief introduction is given here. While 
likelihood  methods underlie both frequentist and Bayesian statistics, there 
are no more than a handful of applied books on this important subject 
(examples include McCullagh and Nelder 1989; Edwards 1992; Azzal-
ini 1996; Morgan 2000; Severini 2000; Pawitan 2001) and none of these 
 constitute easy reading.

A.1 Likelihood Functions

The first key point is that the likelihood function is a product of probabilities. 
The concept can be illustrated by considering events (or outcomes) that can 
be observed (e.g., the number of “heads” observed from flipping a coin n 
times). The set of these observations constitute the data. Specifically, the data 
from a coin flipping study are the number of heads ( y ) and the number of 
tails (n−y) from n coin flips. The probability of such events can be “assigned.” 
 Underlying each time a head is observed is the probability of a head; call this 
p. Underlying each observation of a “tail” is it’s probability; call this 1−p.

Tacit assumptions have been made; these are often termed “independent and 
identically distributed, iid. It is easy to believe that the outcomes of coin flips are 
independent. Whether a single coin is flipped n times or n coins are flipped once, 
surely one outcome does not influence the next. The term identically  distributed 
relates to each coin having the same properties; if one coin has the probability 
of a head as some value p, the others have that same value (this condition is 
also known as parameter homogeneity). These are important assumptions; for 
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raffle tickets. If you have 14 tickets and Barney has only one ticket then the 
likelihood of you winning the raffle, relative to Barney winning, is 14:1. 
 Likelihoods are functions of the unknown parameters (q ), given the data (x) 
and the model (g); L (q |x, g). In contrast, probabilities sum or integrate to 
one and are absolute. Probability functions and distributions are functions of 
the data, given the value of the parameters and a model; p(x | q, g). Both prob-
abilities and likelihoods are conditional on various things. Both quantities are 
useful in inductive inference, but they are different (even though lay people 
might use these interchangeably).
Clearly, the likelihood is a function of (only) the unknown parameter (p in 
this example), given the model upon which L is based. Those familiar with 
the binomial probability model will note the similarity with the binomial 
 likelihood. The probability model of the data and the likelihood function of 
the parameter are closely related; they merely reverse the roles of the data and 
the parameters, given a model. The important point to remember is that the 
likelihood function is always a product of the probabilities.

Thus, given the data (y and n) and the binomial model, one can compute 
the likelihood that p is 0.15 or 0.73 or any other value between 0 and 1. The 
likelihood (a relative, not absolute value) is a function of only the unknown 
parameter p. Given this formalism, one might compute the likelihood of 
many values of the unknown parameter p. The likelihood of 4 values of p are 
 tabulated below.

P L
0.3 0.0173
0.5 0.1611
0.7 0.2201
0.8 0.1107

Clearly, some values of p are much more likely than others and this is invari-
ant to any scaling of the data. In fact, p = 0.7 is 12.7 (= 0.2201/0.0173) times 
more likely than the value of p = 0.3. Given the ability to compute the like-
lihood of various values of p, Fisher reasoned that the best estimate of the 
unknown parameter p would be the one that was “most likely.” Hence the 
term  maximum likelihood estimate or MLE. In the values tabulated above, 
p = 0.7 is the most likely. If the derivative of the analytical form of the likeli-
hood were used to compute the exact maximum of the entire function, we 
would see that the MLE is 0.63636. This estimate could also be gotten using 
numerical methods and that is what is done in practice with real problems.

It seems compelling to pick the value of the unknown p that is “most likely.” 
Likelihood theory includes asymptotically optimal methods for estimation 
of unknown parameters and their variance–covariance matrix, derivation of 
 hypothesis tests, the basis for profile likelihood intervals, and other  important 
quantities. Likelihood is the backbone of statistical theory, whereas least squares 
can be viewed as a limited, special case (but certainly an important case).
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A.2 Log-Likelihood Functions

For many purposes the natural logarithm of the likelihood function is essen-
tial; written as log(L(q | data, model)), or log(L (q | y, model)), or if the context 
is clear, just log(L(q )) or even just log(L). Thus, taking logarithms

log(L ( | , )) log log( ) ( ) log( ).q y y p n y py
nmodel = ( ) + ⋅ + − ⋅ −1

Often, one sees notation such as log(L (q |y)), without making it clear that 
a particular model is assumed. An advanced feature of log(L) is that it, by 
itself, is a type of information concerning the unknown parameters (q ) and 
the model. A property of logarithms for values between 0 and 1 is that they lie 
in the negative quadrant; thus, values of the log-likelihood function are nega-
tive (unless some additive constants have been omitted). Figure A.1 shows a 
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FIG. A.1. Plots of the binomial likelihood (a) and log-likelihood (b) function, given n = 11 
penny flips and the observation that y = 7 of these were heads. Also shown are plots of the 
binomial likelihood (c) and log-likelihood (d) function, given a sample size 10 times larger; 
n = 110 penny flips and the observation that y = 70 of these were heads.
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plot of the likelihood (a) and log-likelihood (b) functions where 11 coins are 
flipped, 7 heads are observed, and the binomial model is assumed. The value 
of p = 0.6363 maximizes both the likelihood and the log-likelihood function; 
this value is denoted as  and is the maximum likelihood estimate (MLE). 
Relatively little information is contained in such a small sample size (n = 11) 
and this is reflected in the broad shape of the plots. Had the sample size been 10 
times larger, with n = 110 and 70 heads observed, the likelihood and log-likeli-
hood functions would be more peaked (Fig. A.1). In fact, the sampling variance 
is derived from the shape of the log-likelihood function around its maximum 
point. Finally, the value of the log-likelihood function at its maximum point is a 
very important quantity and it is this point that defines the maximum likelihood 
estimate. In the example with 11 flips and 7 heads, the value of the maximized 
log-likelihood is −1.411 (Fig. A.1b). Thus, when one sees reference to a maxi-
mized log(L(q )), this merely represents a numerical value (e.g., −1.411). The 
value −1.411 is computed using the binomial  coefficient

7
11 11

7 11 7
330( ) =

−
=!

!( )!
.

Specifically, the value of the maximized log-likelihood function is

log(L ( | , )) log log( ) ( ) log( ),p x y p n y py
nbinomial = ( ) + ⋅ + − ⋅ −1

log(L ( logp | , , )) log ( . ) ( ) log( .7 11 7 0 6363 4 1 0 63637
11binomial = ( ) + ⋅ + ⋅ − ))

. ( . ) ( . )

. .

= + − + −
= −

5 799 7 0 452 4 1 012

1 411

The value of the log-likelihood function log(L) = −1.411. Then, AIC = 
−2log(L) + 2K is simply −2(−1.411) + 2(1) = 4.822. Software for computing 
MLEs always give the value of the maximized log-likelihood or the deviance 
(which is −2log(L) and is the first term in AIC and AICc). Thus, computation 
of AICc is trivial once the MLEs have been found.
Those using LS to get estimates in linear models can easily compute the value 
of the maximized log-likelihood function by the simple mapping

log L( ( )) log( ),q sˆ ˆ~ – 1
2

n 2

where 2 = RSS/n (the MLE). This result is important in model selection 
 theory as it allows a simple mapping from LS analysis results (e.g., the 
RSS or the MLE of 2) into the maximized value of the log-likelihood func-
tion for  comparisons over such linear models with normal residuals. Note 
that the  log-likelihood is defined up to an arbitrary, additive constant in this 
usual case. If the model set includes linear and nonlinear models or if the 
residual  distributions underlying the models differ (e.g., normal, gamma, 
and log- normal), then all the terms in the log-likelihood must be retained, 
 without omitting any  constants. All uses of the log-likelihood are relative to 
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its  maximum, or to other likelihoods at their maximum, or to curvature of the 
log-likelihood function at the maximum.

The variance–covariance matrix can be found from the log-likelihood 
 function; this is a more technical subject and I will only provide a glimpse into 
Fisher’s approach. The variance is directly related to the shape (peakedness) 
of the log-likelihood function near the maximum point. The more peaked the 
smaller the variance and vice versa. If there are 3 unknown parameters, then 
the variance–covariance is a square matrix with dimension 3. The 3 variances 
appear on the diagonal, while the covariances appear in the  off-diagonal ele-
ments. [Elements of this matrix come from second mixed partial derivatives of 
the log-likelihood function with respect to the parameters. This is a very gen-
eral and useful procedure, but often seems difficult when first encountered; we 
will not take this issue further here.]

The likelihood function L(q | x, model) makes it clear that for infer-
ence about q the data and the model are taken as given. Before one can 
compute the likelihood that q = 0.53, one must have data and a particu-
lar statistical model. While an investigator will have empirical data for 
analysis, it is unusual that the model is known or given. Rather, a number 
of alternative model forms must be considered as well as the specific 
explanatory variables to be used in modeling a response variable. This 
issue includes the variable selection problem in multiple regression anal-
ysis. If one has data and a model, LS or ML theory can be used to esti-
mate the unknown parameters (q) and other quantities useful in making 
 statistical  inferences.

Model selection relates to fitted models; given the data and the form of the 
model, then the MLEs of the model parameters have been found (“fitted”).

A.3 Why Likelihood Theory?

The review above has been in terms of only one model (the binomial) with 
a single unknown parameter, but the principles extend to other models and 
models with hundreds of unknown parameters. The theory is worth the effort 
to learn and be comfortable with. Reasons for this include

● Likelihood and log-likelihood functions form the general basis for deriving 
estimates of unknown parameters in the models of science hypotheses and 
their variance–covariance matrix as measures of precision

● Log-likelihood functions are the basis for profile likelihood intervals. These 
allow for asymmetric intervals and avoid the notion of repeated sampling 
and the awkward definition of the usual frequentist intervals

● Likelihood and log-likelihood values are the basis for hypothesis tests – the 
likelihood ratio tests (LRT) and goodness-of-fit tests in particular (however, 
these are of little use in model building or model selection)

● Model selection based on Kullback-Leibler information
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A.4 Properties of Maximum Likelihood Estimators

MLEs are asymptotically optimal; that is, as sample size gets “large” they 
enjoy the following important properties:

● Normally distributed
● Minimum variance
● Unbiased

In addition, linear or nonlinear transformations of an MLE to estimate another 
parameter are also MLE. For example, mean life span  is defined as 1/log(S). 
An estimator of mean life span is

ˆ / log( ˆ),L S= 1

where Ŝ in an MLE. This being the case, then one can say that L̂  is also MLE. 
This is a very important property in application.

A.5 Deviance

A useful quantity in likelihood-based inference is the deviance,

Deviance = −2log(L(q̂ | x,g) ) + 2 log(L
s
(q̂ | x, g) ),

where L is a “saturated” model. In model selection, this L
s
 term is con-

stant across models and can usually be omitted. In other situations the 
saturated model would produce log(L

s
) = 0; hence, there is a basis to 

say deviance = −2log(L(q̂  | x, g)). Thus, for the issues here, deviance = 
−2log(L(q̂  | x, g)) and is a measure of lack of fit and is the first term in 
AIC and AICc.

A.6 Likelihood Ratio Tests

Likelihood ratio tests (LRT) can be used to compare two nested models; the 
form of the test is suggested by its name

T
x g

x g
s

g

= −
⎛

⎝
⎜

⎞

⎠
⎟

∧

∧2 log
( | , )

( | , )
,

L

L

q
q

where the simpler model (s) has fewer parameters than the general model (g) 
– seen as subscripts. [Note the appearance of the −2 again.]
Asymptotically, the test statistic (T) is distributed as a chi-squared variable 
with degrees of freedom equal to the difference in the number of param-
eters between the two nested models. LRTs can also be expressed in terms 
of the difference between the two deviances.
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A.7 A Likelihood Version of R2

Nagelkerkle (1991) provided a near analog to the R2 of least squares, we will 
denote this as R2. Let �(q̂) and �(0) denote the maximized log-likelihoods for 
the fitted model of interest and the null model, respectively. Start with

R
n

2 1
2

0= − − −⎧
⎨
⎩

⎫
⎬
⎭

exp ( ( ) ( ))� �q̂

and then rescale to allow a maximum of 1 by defining

max ( ) .R
n

2 1
2

0= − ⋅⎧
⎨
⎩

⎫
⎬
⎭

exp �

and finally the rescaled value we want

R2
 = R R2 2/ max .

Often, the statistic R2 is optimistic and it is not an exact analog to the usual 
R2 in linear models. Still, this approach is useful and easy to compute. In 
addition, other approaches have been developed such as the “analysis of devi-
ance,” which is closely allied with the usual R2 in regression.

A.8 Potential Problems

Virtually all applications of likelihood methods for real problems are done 
numerically. That is, calculus is not used to find the maximum of multidimen-
sional functions; instead, sophisticated numerical routines have been found 
years ago to perform these tasks.
The first problem is that the function, at least in one dimension, is very 
flat and the numerical routine cannot identify the “exact” maximum point. 
There are several reasons that might cause this; however, the software 
usually outputs a message that it failed to converge. The user might restart 
the routine using the provisional values of q̂  available when the routine 
last stopped. Alternatively, one might start over using a different starting 
value for q̂ .
The second problem is that a log-likelihood function might have multiple 
local maxima (modes) and one must worry that the numerical routine will 
find a suboptimal maximum point and this is unknown to the user. Here, 
one might try different starting values or use some other numerical rou-
tine (e.g., simulated annealing). Most of the commonly used statistical 
distributions are in the so-called “exponential family” and these carry a 
guarantee of unimodality (however, mixture distributions of these com-
mon forms do not).
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Appendix B: Expected Values

Statistical expectations of estimators or other expressions are often useful in 
a variety of ways. Such expectations can be thought of as an “average” taken 
over all possible samples of size n (see Wackerly and Mendenhall 1996). 
This process is simple when working with discrete random variables. The 
 expectation of a discrete random variable x is defined as

E( ) ( ),x x p xi i= ∑
i

where p is the probability of being in class i. Consider a population of size 
N = 4 and a sample of size 2. The binomial coefficient n

N( ) is read “N chose n” 
or, in this example, 

2
4( ) is “4 chose 2” = 4!/[2! ́  (4–2)!] = 6. This is an effective 

way to compute the number of ways a sample of size 2 can be drawn from a 
population of size 4. In general, the binomial coefficient is

N

n

N

n N n

⎛
⎝⎜

⎞
⎠⎟

=
−

!

! ( )!
,

×

where ! means factorial. Let N = 5, then 5! is 5 ́  4 ́  3 ́  2 ́  1 = 120.
Now consider a population of 4 rats (rat A, B, C, and D) each with a number 
of ticks. An exact count of the number of ticks on each rat has been made; rat 
A has 2 ticks, rat B has 4 ticks, rat C has 2 ticks, and rat D has 8 ticks. As we 
have an exact count of the number of ticks on all the rats in the population, 
we can compute the mean number of ticks per rat as a population parameter; 
denote this parameter as m. The value of µ in this simple example is merely 
the total number of ticks (2 + 4 + 2 + 8 = 16) divided by the number of rats 
(4). This gives the parameter as  m = an average of 4 ticks per rat. So, the 
 population parameter in this example is known,  m = 4.
We must now summarize all possible samples of size 2 that could be drawn 
from the population of size 4; we know from the binomial coefficient that there 
are 6 such samples of size 2 possible. The sample data are summarized below:

Sample, i No. ticks Sample mean m̂
1 AB 6 3
2 AC 4 2
3 AD 10 5
4 BC 6 3
5 BD 12 6
6 CD 10 5

Each of the 6 sample means m̂
i
 is a maximum likelihood estimate. The 

expected value of the MLE m̂ is written as E(m̂) and is the average of the 6 
sample means
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( ) / .3 2 5 3 6 5 6 4+ + + + + =

Thus, E(m̂) = 4. This is the average of all possible samples from the popula-
tion of size 4 for samples of size 2. The notation “E(•)” is an operator meaning 
“take the expectation of (•).” One reason for taking statistical expectations 
is in assessing the bias of an estimator. Bias is also an average quantity and 
defined as

Bias = E( )−q

where q is some parameter of interest. In the rat example, bias = E(m̂) − µ = 4 
− 4 = 0, or unbiased. Expectations of continuous random variables also exist; 
integrals replace summation operators, but the principle remains the same.

A second type of expectation is useful in parameterizing some types of 
models. Consider a sample of size R

2
 sea turtles marked and released in year 2 

of a conservation biology study. Four years after release, r
25

 turtles are killed 
(as bycatch) in a primitive fishery and reported to conservation authorities. 
The notation r

25
 reflects the number of turtles recovered dead in year 5 from 

those marked and released in year 2. So, under a model that allows survival 
and reporting probabilities to vary by year, we can write down the expecta-
tion of r

25
, i.e., E(r

25
). Here the expectation operator (E) asks for the analytical 

expression of the count r
25

, given a model. We note that to have been killed 
and reported in year 5, the turtles had to survive the yearly intervals 2–3, 3–4, 
4–5, they died in year 5, and were reported in year 5. Thus, under the time-
specific model

E r R S S S S( ) ( ) ,25 2 2 3 4 5 51= − l

where S is the annual survival probability in year j and λ is the annual 
reporting probability in year j. In this case, one would like estimates of 
the 5 model parameters and their sampling covariance matrix using maxi-
mum likelihood methods. The expectation changes if a different model is 
hypothesized where the parameters are nearly constant across years (an 
approximation as we know that there is some variation in the parameters 
across years). Here

E r R SSS S R S S( ) ( ) ( ) .25 2 2
31 1= − = −l l

Under this model there are only 2 parameters, S and λ. The expectation opera-
tor is used often in statistics.
A final example is the expectation of an encounter history matrix used in cap-
ture–recapture and occupancy models. For each sampling occasion i let “1” 
denote encountered and “0” denote not encountered. As an example, take the 
encounter history for manatee no. 17 over 8 sampling occasions:

{ }.11001101
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The “1” in the final column (representing year 8) makes it clear that the ani-
mal was still alive in the 7th (last) year. Thus, the expectation must contain 7 
annual survival probabilities, f

1
, f

2
,…, f

7
, related to the 7 intervals defined by 

the 8 occasions (this reasoning assumes the model has year-specific parame-
ters). These models condition on the first occasion and so there is no encounter 
probability (denoted as p

1
) for occasion 1. Note, this manatee was encountered 

on occasion 2, 5, 6, and 8, following its initial capture. Thus, the expectation 
must contain p

2
, p

5
, p

6
, and p

8
. Finally, this animal was not encountered on 

occasions 3, 4, and 7 and so the expectation must include (1−p
3
), (1−p

4
) and 

(1−p
7
). In summary

E p p p p p p p{ } ( )( )( );11001101 1 1 11 2 7 2 5 6 8 3 4 7= − − −f f f�

however, the order of the parameters is arbitrary. This component of the model 
has 14 unknown parameters.

As above, the expectation would be different if a different model were 
hypothesized. For example, if one hypothesized a fairly constant environment 
and relatively constant sampling effort, then a model with only an average 
annual survival and encounter probability would yield the following expecta-
tion for the same encounter history

E p p{ } ( ) .11001101 17 4 3= −f

This model has only 2 parameters and these parameters and their covari-

data. Given a specific data set, which of these 2 models is “better”? This is a 
model selection problem and its solution must take into account the concept 
of  parsimony.

Appendix C: Null Hypothesis Testing

The central inferential issues in science are twofold. First, scientists are 
fundamentally interested in estimates of the magnitude of parameters or 
functions of parameters and their precision: are the effects trivial, small, 
medium, large, or extra large? Are these effects biologically meaningful 
or interesting? This is an estimation problem whether the data arise from 
a strict experiment or an observational study. Second, one often needs to 
know if the effects are large enough, given the data, to justify inclusion 
in a model to be used for further inference (such as prediction). This is a 
model selection problem and involves the principle of parsimony. These 
issues are not strongly associated with null hypothesis testing, P-values, 
and rulings about “statistical significance.” Null hypothesis testing in the 

ance matrix can be estimated using maximum likelihood methods, given 
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statistical sciences is like protoplasm in biology; they both served an early 
purpose but are no longer very useful.

Some people still believe that statistics and statistical science are mostly 
about testing null hypotheses without realizing the uninteresting or trival 
nature of most such hypotheses. Many null hypotheses are merely strawmen 
to be struck down and rejected, but little understanding is gained by doing 
so. We need to move on from the traditional testing approach because it is so 
uninformative.

Given that many of us were trained in null hypothesis testing, it is easy to 
cling to the incorrect notion that P-values represent a strength of evidence. 
Royall (1997), Vieland and Hodge (1998:285), and Johnson (1999) provide 
convincing proof that this is not the case (the reasons are technical in 
that P-values are dependent upon the sample space of both observed and 
unobserved data). One unsettling issue (there are many) is assigning prob-
abilities to events that were never observed. I urge people to think hard 
about the differences in approach as illustrated by the European dipper example 
in Sect. 4.8.

Some authors still see a use for null hypothesis testing when the evidence 
against this seems, to me, so overwhelming (e.g., Stephens et al. 2005; Steidl 
2007); I do not mean to criticize, only to note the large variance component 
here. I believe that null hypothesis testing will continue to decline as it is 
replaced by the substantially more relevant methods based on information 
theory and Bayes’ theorem.

Appendix D: Bayesian Approaches

This appendix assumes the reader has a basic understanding of the Bayesian 
paradigm. Bayesian approaches have seen tremendous growth and recogni-
tion in the past 2–3 decades (Gelman et al. (2003) lists nearly 600 references). 
This change has been the result of huge increases in computing power and the 
discovery of powerful numerical methods (i.e., Markov Chain Monte Carlo 
methods, MCMC, see Chen et al. (2000) and Givens and Hoeting (2005)). 
Bayesian methods are particularly powerful in coping with a wide class of 
random effects models (see Sect. 6.5) and will continue to see heavy use in 
this area. There are many excellent books on Bayesian methods including 
Carlin and Louis (2001) and Gelman et al. (2003).

Bayesian methods have met with controversy over the past 2.5 centuries; 
this stems primarily from the subjective nature of early Bayesian approaches. 
Change has emerged in the thinking of many Bayesians because of the use 
of “vague” priors; also termed uninformative, colorless, or flat priors. Here 
the goal is to attempt to withhold any subjective (or “personal”) information; 
thus, the resulting analysis is objective and the parameter estimates are often 
virtually identical to the MLEs. This change in approach has greatly lessened 
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the strong objection to Bayesian methods in science where subjectivity is to 
be minimized, not invited or enhanced. Subjective priors on parameters often 
have utility in nonscience issues; but such priors have been largely rejected 
in scientific work. Having said that, I must note that the data “swamp” the 
prior in some science applications and, if this is clearly demonstrated to be the 
case, then there are no objections with this approach in scientific work. The 
use of vague priors on model parameters has been a major step forward for the 
acceptance of Bayesian approaches by scientists.

Bayesian approaches to model selection include the Bayesian Informa-

jump Markov Chain Monte Carlo approach (RJMCMC). DIC is a Bayesian 
approach but with AICc-like properties and has seen heavy use in the free 
software WINBUGS and more generally. DIC seems to be the workhorse for 
Bayesian model selection; however, other approaches also see application.

Bayesian prior probabilities on models are required when dealing with sev-
eral models. BIC (see Appendix E) has both a Bayesian derivation and a 
“frequentist” derivation, whereas AIC also has both a Bayesian and “frequen-
tist” derivation. Thus, debate should not be just “Bayesian vs. non-Bayesian” 
(see Link and Barker 2006); the issues are more substantive than this. Turning 
beliefs about models into probability distributions has been difficult. Still, 
I think a goal in Bayesian analysis would be to have the model priors swamped 
by the data.

The level of education and experience needed to thoughtfully use Bayesian 
methods is fairly high. One must have a decent background in probability, 
mathematical statistics, numerical analysis, and programming (R being espe-
cially useful) in addition to the subject matter science. This is asking a lot. 
I encourage research people in the life sciences to seek a PhD level statistician 
with expertise in Bayesian theory and computation and work collaboratively 
with them.

Programs such as WINBUGS are useful for smaller problems and can be 
surprisingly useful for many research problems. Otherwise, the researcher 
must often write and debug code for the MCMC or RJMCMC algorithms 
and this can be quite challenging. One must anticipate substantial computer 
run times as well as programming and debugging issues. The recent text by 
Givens and Hoeting (2005) provides a review of these issues.

I have a high regard for Bayesian approaches and I expect to see their 
increasing use in the future. In multilevel random effects models, there is lit-
tle choice of method and the nature of the MCMC algorithm makes Bayesian 
approaches a natural for coping with random effects (however, the concept of 
h-likelihood might provide an alternative at some point). I think more work 
needs to be done to explore the mutualities between extended likelihood the-
ory and Bayesian methods. Ken Burnham has shown several areas of commo-
nality between what might be called likelihoodists and Bayesians (Burnham 
and Anderson 2004). Other investigators have found similar convergence and 
I view these as constructive.

tion Criterion (BIC), the deviance information criterion (DIC), and a reversible 
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Appendix E: The Bayesian Information Criterion

Akaike’s AIC started one of Claude Shannon’s “bandwagons,” the first and 
best known is BIC, the Bayesian information criterion (also called SIC after 
its founder, Schwarz (1978) ). BIC is superficially similar to AIC

BIC = +−2log(L ( )) logq̂ K (n)

but with a different “penalty” term. If n = about 8, then BIC = AIC. In the 
realistic cases where n > 8, the penalty in BIC is slightly larger and there is a 
tendency for it to select smaller dimensioned models than AIC. Comparisons 
between BIC and AICc are harder to generalize.

BIC has nothing linking it to information theory, a misnomer. Many 
Bayesians do not like BIC (e.g., Link and Barker 2006); however, it is not 
uncommon to see its output by various statistical software packages, thus 
I will offer a few comments and a comparison. Almost any short summary 
as to what BIC is supposed to do is probably somewhat wrong or incomplete 
(including this one). There are a large number of papers about BIC; useful 
(but inconsistent) summaries can be found in Weakliem (2004). McQuarrie 
and Tsai (1998) provide the results of elaborate MC simulation studies that 
include BIC as one criterion. BIC has been rediscovered many times and 
several elaborations have been published over the years. I will not attempt 
a thorough review; instead I will offer some overview comments on this 
issue.

E.1 Schwarz’ Criterion

Schwarz’ derivation of BIC does not assume that a true model exists; however, 
the general setting is that a true model exists, this model is in the candidate set, 
and the investigator does not know which model is the true one, thus a model 
selection problem – “find the true model.” Schwarz derived the criterion using 
vague priors on all the model parameters and uniform priors (1/R) on models. 
Bozdogan (1987) termed what would eventually become a class of such crite-
ria, “dimension consistent.”

Consistency is a statistical property in estimation theory indicating an esti-
mator with both bias and variance going asymptotically to zero. Consistency 
has often been touted as BIC’s virtue; however, this has no meaning without 
the false concept of a true model being in the candidate set.

E.2 Real World Properties

The real issue, then, concerns the properties of BIC when the true model 
is not in the set and when sample size is less than very large. Such proper-
ties are  difficult to state clearly as they depend substantially on the nature 
of the underlying reality. I will outline two extremes, (a) are there only 3–4 
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large effects (and no other effects) in the underlying process? or (b) are there 
a wide range (say, 25–80 – if not hundreds) of tapering effect sizes in the 
underlying process of interest? Some useful generalizations can be given for 
these cases.

In (a) BIC will often do well in terms of selecting the model with these 
few and large effects even if sample size is small to moderate (so will AICc). 
Nearly all MC simulation studies generate data from a model with a few 
(2–5) large effects (but see McQuarrie and Tsai 1998); thus, the result 
would seem to show that BIC selects the true model a high percentage of 
the time.

In (b) BIC will perform poorly in identifying the full extent of real-
ity unless sample size is very, very large. BIC approaches the true model 
from the left; thus, if sample size is too small, an underfitted model (as 
judged by full reality) will be selected. BIC will do poorly at selecting the 
model of complex reality in case (b), unless one has samples sizes in the (I 
am guessing)  millions. Understanding the underlying realities gives little 

points.
Burnham and Anderson (2002) suggested the notion of a quasi-true model 

to help with an understanding of BIC’s performance in realistic situations; 
however, even this notion is strained, but at least it points to the target model 
for BIC selection when a true model is not in the set. BIC does not guarantee 
a good parsimonious model, or minimum MSE, good confidence interval cov-
erage, or other performance properties.

E.3 High Probability Assigned to Models that Do Not Fit

BIC has a tendency to give high weight to models that do not fit, as judged 
by a usual goodness-of-fit test (Burnham and Anderson 2004:293–297). One 
might hope that if the global model fits, the selected model would also fit: 
AICc has this property. Under tapering effect sizes and using a = 0.05, they 
found that BIC selected nonfitting models 11.5% of the time with sample size 
= 50, 15.9% of the time with sample size = 100, and 28.1% of the time with 
sample size of 500. As sample size increases, the probability of selecting a 
nonfitting model increases! These results would seem to be disturbing and 
more work on this issue is warranted.

Reschenhofer (1996) noted that AICc and BIC have very different objec-
tives and target models and should not be directly compared. AICc depends 
on the given sample size and selects the fitted model that minimizes estimated, 
expected K–L information as the approximating model of full reality. AICc 
is about approximation and prediction and its target model changes with 
changes in sample size. Thus, as sample size gets larger, additional effects can 
be uncovered; this includes reality where there are countless tapering effects. 
AICc is about “best” models in the sense of approximations to truth and out-
of-sample prediction, given the sample size.

place for BIC to contribute. Link and Barker (2006) offer additional 
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E.4 Predictive Mean-Squared Error

Almost no MC simulation studies have been reported in the literature where 
data were generated from a model with reasonable complexity (say, a non-
linear model with 40–50 or 100 parameters, many correlated covariates, 
several higher order interactions). Then, over a range of sample sizes, evalu-
ate various selection criteria on predictive mean-squared error (PMSE) or 
achieved confidence interval coverage for predictions. Burnham and Ander-
son (2002:300) present the results of a reanalysis of the human body fat data 
from Johnson (1996). This is a linear regression to predict body fat using 13 
predictor  variables (= 8,191 models). They took the global model, its MLEs, 
and covariance matrix and used it as a generating model to simulate 10,000 
reps each with sample size 252. I will not give details here except to tabulate 
some PMSEs (×106) for (a) model averaging (multimodel inference, Chap. 5) 
used or (b) inference from (only) the best model.

Method Model Averaged Best Model

AICc 4.8534 5.6849
BIC 5.8819 7.6590

AICc has a substantially better PMSE, but note that BIC benefited relatively 
more from model averaging. More simulation studies to mimic real world phe-
nomenon would be helpful. In these cases, the evaluation should be focused 
on PMSE instead of the usual “how often does this criterion select the true 
model”? Of course, the generating (“true”) model should not be in the set, a 
mistake so often seen in the literature.

In summary I would not use BIC unless I was trying to select the generat-
ing model from MC simulation. There, a true (generating) model exists 
and I know if it is in the set. Then, if the generating model mimicked some 
complex reality and if sample size is very large (e.g., perhaps hundreds of 
thousands or millions), I would use BIC. Alternatively, if I knew the underly-
ing process had 3–5 large effects (and no smaller effects) I might use BIC even 
if sample size was modest – this is BIC’s element. Putting this in perspective, 
I would still use BIC in regression settings over step-up, or step-down or step-
wise methods in regression.

Appendix F: Common Misuses and Misinterpretations

The recent literature in a cross section of the life sciences suggests several 
problem areas. I will explain a dozen of these including my own observa-
tions along with ideas suggested by various reviewers. Related suggestions 
are found in Anderson and Burnham (2002). Some other comments and opin-
ions are given at www.warnercnr.colostate.edu/∼anderson/PDF_files/AIC%
20Myths%20and%20Misunderstandings.pdf
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 1.  Often too little time is devoted to generating a good set of alternative hypoth-
eses. Some published papers seem to suggest that this important step was 
almost an afterthought. It might be useful for an investigator preparing to 
collect data to ask himself “how much effort was put into developing my 
specific objectives and outlining the alternative hypotheses.” If the answer 
is “a few hours,” then it might be best to revisit these important issues.

 2. Some authors tend to ignore sample size issues when interpreting model 
selection results and then compounding this by misinterpreting the results 
in a dichotomous yes/no fashion (e.g., “… uptake rates did not vary across 
study groups” or “…there was no difference in transition probability by 
group”). Of course, rates of uptake and transition probabilities differed; 
the issue is “by how much”? Perhaps they meant to say that with the sam-
ple size available, differences in uptake seemed small. Or perhaps, the 
estimated differences were large, but the sample size was so small that 
models with such differences could not be supported.

The lowest level of reliable inference is the sign of the effect (+ or −). If 
even the evidence for the sign is weak, perhaps judgment should be with-
held. The parameter estimate and its confidence interval could be given 
but one should probably admit that the estimated effect is about 0 as far as 
the information in the data are concerned.

 3. Some papers misinterpret the relative importance of models within about 
2∆

i
 units when there is no change in the deviance and differing by only 

one parameter (the “pretending variable problem”). This issue is aggra-
vated when the values of the maximized log-likelihoods or the deviance 
are not tabled (see Anderson et al. 2001b).

 4. Other literature has appeared where model building, fitting, selection, and 
inference are treated piecemeal (e.g., splitting a dataset for purposes of 
“validation,” treating groups, such as gender, separately without hypoth-
esizing that some parameters might be in common across groups, ignoring 
the principle of parsimony in hypothesizing and modeling). These are not 
easy issues to understand but sometimes available software will help with 
this issue (e.g., the R package of freeware, Venables and Smith (2002) ).

 5. Some papers provide only a table of AICc and ∆
i
 values allowing a rank-

ing of the models and their hypotheses. This approach might have been 
reasonable 10–15 years ago; however, much more can be learned using 
the model probabilities, evidence ratios, and model-averaged parameter 
estimates to gain insights into estimated effect sizes and structural rela-
tionships. In any case, inference should not stop at just identifying the 
“best model” as estimates of model parameters should be interpreted and 
these insights should be tied back to the science hypotheses.

 6.  A large percentage of papers present the results of simple studies as a NHT 
(see Stephens et al. 2005); perhaps without realizing that an evidence ratio 
would be easier to compute and provide a proper strength of evidence for 
both the null and the alternative (e.g., the model probabilities). The infor-
mation-theoretic approach provides the probability of both the null and the 
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probability of the alternative, model-averaged estimates of effect size and 
estimates of precision that include a variance component for model selec-
tion uncertainty (see Schmidt et al. (2004) for a nice example).

 7. Perhaps the worst issue is the feeling among some people that the infor-
mation-theoretic methods “require” sustained thinking leading to hypoth-
esizing good alternatives and this is too hard and too much to expect (see 
discussion by Steidl (2007)). Therefore, the NHT approach might be 
preferred because less thinking is required (i.e., one can always trump 
up a null). This attitude often fosters people spending resources playing 
the “measuring nature game” without much purpose. Alternative science 
hypotheses and hard thinking represent the very core of good science; 
good science is not always “easy.” I doubt if anyone has received a Nobel 
Prize for testing a null hypothesis.

 8. I often hear that some authors are encouraged/forced by journal editors or 
associate editors to add P-values in place of (or in addition to) estimates 
of effect size and their confidence intervals and model selection statistics. 
It seems, to me, that the peer review process could be much better. A 
colleague suggested that the weakest link in our science is that the accu-
mulation of supposed knowledge is based on the unsupervised individual 
application of statistical hypothesis testing with very little effective over-
sight in the review process.

 9. I see where investigators have conducted all-possible paired comparisons 
using t tests and then used those that were statistically “significant” from 
the null in a multiple regression model (i.e., the “nonsignificant” variables 
are discarded). This is often followed by discarding the variables in the 
regression model that are then not “significant.” This procedure attempts 
to “weed out” nonsignificant variables before moving to a multivariable 
regression analysis with a further weeding of those found to be nonsig-
nificant once the “more comprehensive” modeling started. This strategy 
is not without its logic if one has no background in statistical theory and 
stochasticities.

However, this strategy is very poor for several important reasons (e.g., 
it mixes analysis paradigms, leads to a host of technical matters such as 
the multiple testing problem, and often makes hidden assumptions con-
cerning independence of the predictor variables). If the simple models 
represented plausible hypotheses, they should have been in the candidate 
set of the initial regression models. Underlying this type of error is that 
the focus of the investigation has improperly focused on models rather 
than concentrating on the science issues (i.e., plausible hypotheses). The 
situation points to poor study design that often stems from shallow think-
ing about the science issue in the first place. This problematic approach is 
rampant in some areas of the life sciences.

10. The use of too many models is problematic. This is often the result of 
a focus on running models versus thinking about the alternative science 
hypotheses. Certainly, if there are more models than the size of the sample 
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(R > n), one should expect difficulties. Large, unfocused descriptive stud-
ies are often faced with a huge number of models (see no. 11, below).

11. Some software packages allow one to perform a “stepwise AIC” and this 
represents poor practice. The theme here seems to be that the computer 
will “find out what is important without the investigator having to think.” 
The underlying problem, like running “all possible models,” is the finding 
of effects that are, in fact, spurious. This issue relates back to Freedman’s 
paradox and model selection bias. Admittedly, these are issues that are not 
easy to understand without some background.

12. In general, I think the results from rampant data dredging should often 
remain unpublished. I think more should be done to explain to readers 
what results and conclusions stem from a priori considerations versus the 
more tentative insights from post hoc investigations. Such statements por-
tray honesty and openness in publication and can help define the next set 
of hypotheses and their models.
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