
WormBox
version 0.9 beta

 © Denis J. Machado

A tool set for automating measurements

with Fi j i/ImageJ

Bruno C. Vellutini & Fernando P.L Marques

– 2011 -

https://github.com/nelas/WormBox/zipball/masterAbout WormBox:

WormBox is a plugin to FIJI/ImageJ that was written with the intent to help you to automate the
uptake of measurements from sets of images. This macro is based on plotting landmarks upon images
from which a table with linear distances will be generated. You can also use it to count structures (i.e.,
meristic variables). We have not tested how effective time wise this plugin will be in comparison to the
traditional ways most people obtain measurements from specimens. We expect that it will vary a lot
among cases. Ultimately, it will all depend on how easy (and fast) you can produce images from which
you can extract the information you need. If that is not an issue, we believe that you will find that this
application will speed up data gathering. You should also consider that, even if you do not speed up
your work by using this application, using it will provide you with full documentation of your
measurements – which usually is not the case by traditional methods. Be that as it may, give it a try. We
will be happy if it turned out to be a good tool for your research.

To download the most recent version of the plugin, press here.

System requirements:

As this application makes full usage of Fiji/ImageJ, which can be downloaded from
http://fiji.sc/wiki/index.php/Fiji, as long as you meet the system requirements of Fiji/ImageJ, this
application will work. Thus, before you start you should install Fiji/ImageJ. After installing
Fiji/ImageJ, you should verify whether there are updates for Fiji and/or ImageJ available. To
accomplish that, open the casting menus of Help in the main menu of Fiji/ImageJ and select the options
to update both applications (Figure 1).

Figure 1. Options of updates in the main menu of Fiji/ImageJ.

NOTE: WormBox will not work in ImageJ as distributed because this plugin requires Jython.
However, you can make ImageJ capable of dealing with WormBox by installing Jython in your system
(see here). We have not tried to do that and advise you to install Fiji/ImageJ, which seems to a much
easier solution.

https://github.com/nelas/WormBox/zipball/master
https://github.com/nelas/WormBox/zipball/master
http://marcora.caltech.edu/jython_imagej_howto.htm
http://fiji.sc/wiki/index.php/Fiji

Installing the plugins:

After downloading WormBox.zip and decompressing the ZIP file, you will find two files
within the folder: WormBox_Tools.txt and WormBox_Analyzer.py. These files are the scripts of
WormBox and will have to be moved to specific locations within Fiji/ImageJ's folders. Thus, move
WormBox_Tools.txt to Fiji.app/macros/toolsets/ and WormBox_Analyzer.py to Fiji.app/plugins/.

NOTE: MAC users could use the terminal to accomplish this task.
1. open the Terminal application.
2. move to the folder where WormBox.txt and WormBox_.py are located (e.g., cd Desktop/WormBox)
3. execute 'cp WormBox.txt /Applications/Fiji.app/macros/toolsets/'
4. execute 'cp WormBox_.py /Applications/Fiji.app/plugins/'

To make life a little bit easier for Mac and Linux users, we wrote a script in PERL that will copy
the files to their appropriated directories. Open the Terminal application, move to WormBox folder and
execute the script:

your_computer/WormBox$ perl install.pl

Planning your project:

WormBox uses landmarks to compute linear distances. Thus, before you start, you should plan
your project so that you have a clear idea of how many landmarks you will need to obtain the
measurements you want. You can add more landmarks throughout the process, but we advise you to
really make an effort to plan ahead. We will illustrate the basics of WormBox by using an example in
which our goal is to obtain measurements from a set of hooks for Potamotrygonocestus (a
onchobothriid cestode). With this example we hope to demonstrate how WormBox can be helpful.

You should start by defining the landmarks that would allow you to calculate the distances
(measurements) you need (Figure 2). In the example below, we want to obtain the measurements from
handles and prongs of the internal and lateral bothridial hooks. Accordingly, we defined 8 landmarks
(Figure 2). WormBox allows you to set as many as landmarks as you need (or wish), but you should
always be careful and minimize the amount of landmarks for practical reasons.

Figure 2. Definition of landmarks upon handles and prongs of internal and lateral bothridial hooks of
Potamotrygonocestus.

Getting started with WormBox:

Once you have a good idea of the measurements you want to take and the landmarks required to
do that, you should compile within a folder all the images you want to extract the measurements. We
provide a folder called “hooks” that we will use in the first part of this tutorial. The images in this
folder have the hooks from which to obtain the measurements defined in Figure 2. Ultimately, the
images should be all scaled, preferentially using ImageJ or Fiji/ImageJ. WormBox will inform you
whether it recognized the scales in your images. If WormBox does not recognize the scale, it will ask
you to set up the scale. Here are the steps you should take to fully complete the first part of this tutorial:

Step 1. Start Fiji/ImageJ and enable WormBox in the switch to alternate macro tool sets (Figure 3).

Figure 3. Selecting WormBox tool sets.

Once the plugin is enabled, 5 new icons will become available to you with the following
function:

Initialize landmark setup and/or load ROI (Region of Interest) to images.

Save landmark positions.

Count meristic variable.

Add new landmarks

Run WomBox Analyzer, to compile measurements to *.cvs file.

Step 2. Open the first image of your working folder. You can do that by either dragging the image into
the Fiji/ImageJ main menu area (gray area) or by using File/Open.

Figure 4. Opening images in Fiji.

NOTE: Files should be in *.tif format and the extension should be in lower case. WormBox will
recognize all major images formats recognized by Fiji/ImageJ. However, if the original image is not in
*.tif format, or if the extension is written in upper case, WormBox will make a copy of the image and
save it as *.tif after processing.

Step 3. Scaling images. If your images are not scaled by Fiji/ImageJ or, although scaled using a
different software, Fiji/ImageJ did not recognize the scale, WormBox will require that a scale is
provided and the warning window below will be presented.

Figure 5. Request for providing a scale by WormBox.

To scale the image in Fiji/ImageJ you will have to follow these steps:

i. Select the *straight* tool to draw lines.

Figure 6. Selecting the straight line tool in ImageJ.

ii. Draw a straight line using as reference the scale bar embedded into the image.
iii. In the main menu, select Analyze/Set Scale and provide the known distance (i.e., 50)

and the unity of the length (i.e., um)

Figure 7. Set scale menu in ImageJ.

NOTE: It might be easier to have all images scaled before setting up landmarks. But that is not
mandatory, you can provide the scales as you work in each image.

Step 4. Placing landmarks. If you have opened a image and WormBox has recognized the scale, you
are ready to define and/or place the landmarks you desire to obtain the measurements you want. Press
the button to load ROI from the WormBox tool set. If this is the first time you are using WormBox for
the images within a given folder you will have to define the number of landmarks you will be working.

Figure 8. Defining the number of landmarks in WormBox.

As we mentioned above (Figure 2), we will need 8 landmarks for the measurements we are
planning to take from the hooks. By selecting 8 and pressing “OK”, we will define a template with
eight landmarks which will be used for all images in this folder (Figure 9A). A file called RoiSet.zip
will be created and all landmarks will appear on the left part of the image.

Figure 9. A, landmark pasted on image after defining numbers of landmarks or loading template. B, landmarks
placed in desired positions.

Once the landmarks have been defined or loaded, all you have to do is to drag the landmarks to
its right position using the mouse (Figures 2 and 9B) and then save it using the icon in the macro tool
set menu of WormBox. After saving the image, WormBox will wipe the landmarks from the image.
However, all information will be still there, saved in associated files with extensions *.txt and *.zip.
These files will be used to compile the information after you process all images and SHOULD NOT

BE REMOVED – unless you want to wipe out all the data. If you desire to verify and or modify the
positions of the landmarks, just reload the ROI using the icon in the macro tool set menu of WormBox.

NOTE: WormBox allows you to delete any landmark if you feel that a given measurement should not
be taken from a given image.
All you have to do is to place the landmarks that you consider that should be
included in the image and use the ROI manager to delete the ones that should
not be taken into account. In its final stage, when WormBox will parse the
images to compile the measurements, images for which one or more
landmarks are missing, will still be used. WormBox will attribute “NA” for
cells in which the distance could not be calculated by the lack of landmarks in
the *.cvs file (see below).

Step 5. Compiling the data from images. Once you have processed all images (in this particular
example it should take less than 10 minutes to process all 8 images) you will have to write a
configuration file to run the compiling tool of WormBox. The configuration file should be a text file
with the following format1:

internal_handle:1,3
internal_prong:2,4
lateral_handle:5,7
lateral_prong:6,8

Each line should contain the name of the variable, followed by “:” and at least two landmarks
separated by comma defining the two points from which WormBox will calculate the distance.

NOTE: You can use more than two land marks for a single variable. For instance, your configuration
file could have a line like this: “variable_x:1,2,3,4”. In this case, the measurement for “variable_x” will
be the sum of the distances between 1 2, 2 3, and 3 4.

Once you have written your configuration file (e.g., hooks_measurements.conf) and saved it,
run the WomBox Analyzer (see definition of icons above). First, WormBox will ask you the target
folder in which your images have been processed (Figure 10A); and then the name of your
configuration file (Figure 10B).

Figure 10. A, menu for selecting target folder. B, menu to specify configuration file.

1 You should use plain text format here. Thus, do not use Word or any other text editor the leave hidden characters into the text. Linux users could use
nano, vim, Geditand etc. Mac users could use TextEdit, Wrangler, nano, and etc.

Finally, you will have to specify the output file name. WormBox will generate a *.csv (comma-
separated values) text file that can be opened in any spreadsheet software (e.g., Excel, OpenOffice, and
etc) as demonstrated in Figure 11.

Figure 11. Summary results from WormBox showed by opening the *.csv file in OpenOffice Spreadsheet.

The summary results will contain a column with the image names and each variable will be
displayed in a separated column. The three last lines of the file will compile the average, standard
deviation and sample size of each variable. Cells with “NA” (as Non Available) denote measurements
that were not taken due to the lack of associated landmark(s).

More on WormBox (Part 2):

 Now we will explore some other features of
WormBox. We provide a folder called “proglottids” upon
which we base this second part of the tutorial. Within this
folder you should find 3 images of loose proglottids of
Potamotrygonocestus, all of which have been scaled using
Fiji/Image.
 In Figure 12 we depict the landmarks we wish to use to
compile length and width of the proglottids, position of
the genital pore, and testes diameters. We also will
compute the number of testes for each proglottid. Thus,
we will make use of the counting tool in WormBox, which
we have neglected in the first part of the tutorial.
 Except for the fact that we are using two sets of
landmarks to compute testes diameter, and that the total
legth of the proglottids will be calculated the sum of two
distances (i.e., 1 2 and 2 3), you should have no problem
with that if you went through the first part of the tutorial.
It is true that the configuration file will have to specify
that; which will be addressed latter. Thus, let's see how we
count structures using WormBox.

 Figure 12. Landmarks on loose proglottids of
Potamotrygonocestus.

Counting structures: Before starting the use of the counting toll of WormBox, you should:

i. Define the number of landmarks you need.
ii. Place them in the right positions.
iii. Save image (required)

The steps above have been described in the first part of the tutorial. If you have any difficulties,
please go back and have a quick look above. To start counting, you have to enable the function to count
meristic variables (icon with Σ sign). By doing that, you will turn on the multi-point tool of Fiji/ImageJ
and a window named “action required” will appear.

Figure 13. Enabling the multi-point tool of Fiji/ImageJ.

Once the counting tool is on, all you have to do is to position your mouse on top of the
structures you want to count and click the mouse. Here, we will count two sets of testes: poral and
aporal ones. As you start clicking on top of the testes, let's say on the aporal side, landmarks in yellow
will provide the counting (Figure 14).

Figure 14. Image showing landmarks in blue and counting unities in yellow for partial counts of aporal testes.

After concluding counting the aporal testes, you should click on “OK” on the window for
“Action Required” and this will prompt WormBox to ask you to name of the variable you just counted
(e.g., aporal_testes).

NOTE: Watch out for spelling error here
otherwise the script will consider them as
different variables. It is important to inform you
that the script is case sensitive. Thus, “testes” and
“Testes” will be understood as two different
variables.

Now, let us count the other set of testes, i.e., poral
testes. You can start by loading all you have done
thus far by pressing the icon to load ROI into
image. If you load the ROI, you should have
something like Figure 15.
The image should display all landmarks for
calculating distances and counting, and the ROI
manager should have a list of all landmarks and
variables. Now proceed to count the poral
testes by enabling the counting tool and repeating
the steps you did before in which you count the
aporal testes. You should repeat all the steps Figure 15. Summary information after loading ROI at this

above for the other remaining (2) images. point.

Compiling results (complex version): As explained above, you will need to specify a configuration
file to parse all the information you implemented in each image. Here we will apply a configuration file
a bit more sophisticated than before. Within the configuration file, we will not only obtain euclidean
distances between landmarks but also specify new variables based on operations of those distances.
Below we provide a example of configuration file to illustrate this capability of WormBox2:

#1 length:1,2,3
#2 width:4,5
#3 progl_ratio:${length}//${width}
#4 genital_pore_distance:2,3
#5 genital_pore_position:${genital_pore_distance}*100/${length}
#6 testes_dia:6,7
#7 testes_dia:8,9
#8 aporal_testes:count
#9 poral_testes:count
#10 total_testes:${aporal_testes}+${poral_testes}

Here is what this configuration file will do with the data you compiled for each image:

Lines 1 and 2 (i.e., #1 and #2) will calculate the length and width of your proglottid, which
except for the fact that the length is being calculated by the sum of two distances (i.e., 1 2 + 2 3), they
are the kind of distances you calculated before in the first part of this tutorial.

Line 3 provides something new. Here we defined a new morphometric variable,”progl_ratio“,
which is equal to the floored quotient of length and width of the proglottid; that is, its ratio. To operate
with variables there are few rules you must follow:

i. You can only operate with variables that were defined before. That is, line 3 could not be
written prior to lines 1 and 2.

ii. The syntax for operating variables should be “${name_of_variable}”.
iii. The operator used in WormBox are basically those available in Python:

Other lines that make use of this property are lines 5 and 10 in which we calculate the genital
pore position and the total number of testes, respectively.

Next, we should comment lines 8 and 9. These two redundant lines specify the distances for
testes diameter (i.e., 6 7 and 8 9). For those, when WormBox parse the information of an image, it

2 For explanation proposes, each line is specified by a number (e.g., #1), which should not be in the configuration file.

Operation Result
x + y sum of x and y
x - y difference of x and y
x * y product of x and y
x / y quotient of x and y
x // y (floored) quotient of x and y

pow(x, y) x to the power y
x ** y x to the power y

compiles the mean value between 2 or more pseudo-replicates.

Finally, meristic variable are defined by its name followed by “:count”. Examples of that are
the testes counts defined in “aporal_testes” and “poral_testes”, lines 8 and 9, respectively.

The final results should be something like this:

Figure 16. Summary results from WormBox showed by opening the *.csv file in OpenOffice Spreadsheet.

